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17 Abstract

18 The Pennine Orefield is one of the most important ore fields for Pb-Zn-Ba-F mineralization in 

19 Great Britain. It is subdivided into the Northern Pennine Orefield (NPO), consisting of the Alston and 

20 Askrigg Blocks, and the Southern Pennine Orefield (SPO). The Alston Block is underlain by the early 

21 Devonian Weardale Granite and the Askrigg Block by the coeval Wensleydale Granite. The potential 
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2

22 relationship between the batholiths and the mineralization is a matter of debate. We here studied 

23 the rare earth elements and Y (REY) geochemistry, Sr-Nd isotopes and fluid inclusion (FI) 

24 compositions of fluorites from the two structural blocks in the NPO and found that the fluorite 

25 mineralization in these blocks differ substantially. The REY in Askrigg fluorites show features that are 

26 characteristic for leaching of adjacent Lower Carboniferous limestones. In contrast, Alston fluorites 

27 have significantly higher REY concentrations, lack REYSN limestone signatures and show a decoupling 

28 of redox-sensitive Eu from its trivalent REY ‘neighbours’. Neodymium isotopes indicate a similar 

29 crustal source of REY in both blocks, but higher REY concentrations and lower Y/Ho ratios suggest 

30 Lower Carboniferous shales as potential REY source in the Alston Block. The fluids that precipitated 

31 the Alston fluorites experienced temperatures >250°C prior to mineral formation, as evidenced by Eu 

32 geothermometry. Fluorite formation, however, occurred at much lower temperatures, as suggested 

33 by homogenization temperatures in FI, that fall within ranges of 105-159°C in Alston and 99-160°C in 

34 Askrigg fluorites. Mineralization of the Mississippi-Valley Type usually lack association with igneous 

35 activity. We show that some of the fluids responsible for the NPO mineralization were influenced by 

36 magmatic sources. The REY systematics in Alston fluorites may be linked to an interaction of the 

37 Permian-age Whin Sill dolerite with the basement granite, which heated fluids and focussed fluid 

38 flow into the overlying sedimentary rocks. In the Askrigg Block, where such a dolerite intrusion was 

39 not described, fluorites lack any positive EuSN anomalies, indicating that these fluids had never been 

40 subjected to temperatures exceeding 200-250°C.

41

42 1. Introduction

43 The mineral fluorite (CaF2) may serve as a valuable tool for deciphering the formation history of 

44 mineral deposits. Fluorite minerals preserve, for example, the rare earth element and yttrium (REY) 

45 patterns and Sr-Nd isotope fingerprint of a hydrothermal fluid from which they precipitated and, 

46 hence, can be used as reliable geochemical archives to reconstruct the physicochemical parameters 

47 of ancient and modern hydrothermal systems (Bau and Dulski, 1995; Göb et al., 2013; Loges et al., 
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48 2012; Schwinn and Markl, 2005). The REY are strongly complexed with fluoride in F-rich 

49 hydrothermal fluids, which may lead to a significant enrichment of REY in F-bearing hydrothermal 

50 fluids and in fluorite (Bau et al., 2003; Bilal and Langer, 1987) due to numerous substitution reactions 

51 (e.g., 2 Ca2+ ↔ REY3+ + Na+; Bilal and Langer 1987; Möller 1998; Bau et al. 2003). However, 

52 complexation of REY in F-rich fluids is strongly dependent on the pH and temperature of the fluid 

53 (Williams-Jones et al., 2012). The analysis of REY in Ca-bearing minerals such as fluorite may 

54 therefore provide important information on metal sources, temperature conditions, fluid migration, 

55 host rock interaction and the chemical composition of the fluid phase (Bau et al., 2003; Castorina et 

56 al., 2008; Möller et al., 1982; Sánchez et al., 2010; Schwinn and Markl, 2005). Understanding ancient 

57 and modern hydrothermal systems and their specific chemistries, in turn, is essential for accurate 

58 and detailed models for ore deposit formation, which may facilitate the discovery of mineral 

59 deposits.

60 In this study, fluorites from the Alston and Askrigg blocks of the Northern Pennine Orefield (NPO) 

61 were investigated for their REY geochemistry, Sr and Nd isotopes and fluid inclusion compositions. 

62 The mineralization in the Pennine Orefield is considered a fluorine-bearing sub-type of Mississippi 

63 Valley Type (MVT) mineralization (Colman et al., 1989). Mississippi-Valley-Type mineralization usually 

64 forms through precipitation from mildly hot hydrothermal basinal brines (100-200°C) with relatively 

65 high fluid salinities (15-25wt.-% NaCl equivalent; Leach et al., 2001). These epigenetic ore deposits 

66 form predominantly in dolostone, but also in limestone and sandstone, and are globally important 

67 sources of lead and zinc sulphides; occasionally MVT deposits are significantly enriched in fluorite 

68 (Leach et al., 2001). MVT mineralization usually lacks a genetic affinity to igneous activity (Leach et 

69 al., 2001). 

70 Fluorite-rich veins are widespread in the Variscan basement of Central and Western Europe. 

71 Important examples are found in the Massif Central (Munoz et al., 2005; Sizaret et al., 2004), in the 

72 Hercynian massifs of Spain (Galindo et al., 1994; Piqué et al., 2008; Sánchez et al., 2010; Tornos et al., 

73 2000) and of Germany (Behr et al., 1987; Lüders and Möller, 1992; Schwinn and Markl, 2005). 
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74 Muchez et al. (2005) suggest that the major basin-hosted deposits in Europe are related to 

75 extensional tectonics and that the mineralizing fluids, which originated as (evaporated) seawater, 

76 intruded downward into the basin through interconnected fractures. The ore-bearing fluids were 

77 then expelled along extensional faults in regions characterized by pronounced extension and heat 

78 production (Muchez et al., 2005). Staude et al. (2009) suggested a model explaining intense fluid 

79 generation due to extensional tectonics.  As a function of differences in compressibility between 

80 rocks and fluid, the pore fluid becomes over-pressured during decompression and additional fluid is 

81 generated due to pressure re-equilibration (Staude et al., 2009).  

82 In the NPO, the Alston Block is underlain by the Weardale Granite (Holland and Lambert, 1970) 

83 and the Askrigg Block is underlain by the Wensleydale Granite (Bott and Smith, 2017; Fig. 1; Dunham 

84 et al., 1968; Webb and Brown, 1989). Already in the mid-1960s, Sawkins (1966) indicated that 

85 fluorine and at least some base metals in the mineralization in the NPO may have originated from a 

86 deep-seated magmatic source. Some contribution in the form of either heat, metals and/or 

87 chemicals from a granitic batholith towards the mineralization in the NPO is assumed for the fluorite 

88 mineralization in the Alston Block, but further south in the Askrigg Block, there is no information on 

89 any potential contribution of the Wensleydale Granite towards the Askrigg mineralization (Bott and 

90 Smith, 2017). 

91 In this contribution we aim to provide a better understanding of the origin of fluorite veins and 

92 their potential genetic relation to basement granites. Here, we show that the fluorites from the two 

93 blocks in the North Pennine Orefield are markedly different in their REY concentrations, their Sr- and 

94 Nd isotope geochemistry and in their fluid inclusion compositions, albeit both blocks are underlain by 

95 coeval basement granites of similar composition. 
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97 2. Geological setting

98 2.1 The Northern Pennine Orefield

99 The Pennines are a ca. 400km long mountain range in Northern England. The Pennine Orefield is 

100 subdivided into the Northern Pennine Orefield (NPO) and the Southern Pennine Orefield (SPO; Fig. 

101 1). The NPO itself is subdivided into two fault-bounded crustal blocks; the Alston Block, which 

102 comprises the northern part of the NPO, and the Askrigg Block, which makes up its southern part 

103 (Dunham, 1990; Dunham and Wilson, 1985; Fisher et al., 2013). Figure 1 shows a simplified 

104 geological map that indicates the extents of the Northern and the Southern Pennine Orefield as well 

105 as the two studied crustal blocks of the NPO. In both blocks, the ca. 360-300 Ma old Carboniferous 

106 marine sedimentary strata that hosts the mineralization is underlain by granitic basement (Table 1; 

107 Fig. 1). The Alston Block is underlain by the Weardale Granite (Holland and Lambert, 1970) and the 

108 Askrigg Block is underlain by the Wensleydale Granite (Bott and Smith, 2017; Dunham et al., 1968; 

109 Webb and Brown, 1989). Both batholiths were emplaced in the Early Devonian (400 Ma) and are very 

110 similar in composition and origin (see Table 1). The upper parts of the two granites are weathered 

111 and Carboniferous sedimentary successions unconformably overlay the two batholiths (Webb and 

112 Brown, 1989). For a detailed petrologic description of the basement granites in the Pennines, see 

113 Webb & Brown (1989). 

114 The Alston and Askrigg blocks constitute the structural highs of an anticline which is oriented 

115 north-south and the fault-bounded blocks represent areas of uplifted crustal parts of a basin-and-

116 range system, with the two blocks separated by the Stainmore Trough (Evans et al., 2002).  The 

117 Alston Block is bound to the north and south by the Stublick and Lunedale faults, which extend into 

118 the Northumberland Basin in the north and the Stainmore Trough in the south. Dolerites of Permian 

119 age (295.6 Ma; Fitch and Miller, 1967) intruded into the Carboniferous-Permian boundary layers in 

120 the Alston Block (the Whin Sills; Fitch and Miller 1967; Bott and Smith 2017). The Askrigg Block is 

121 bordered at its southernmost part by the Craven Fault (Fig. 1), which also separates the Askrigg Block 

122 and the NPO from the SPO. The bedrock comprises mostly Upper Carboniferous limestone and 
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123 Millstone Grit, a coarse-grained Carboniferous sandstone. The covered Wensleydale Granite, 

124 encountered only in drill core (Dunham, 1974), underlies the Askrigg Block in an east-west directed 

125 trend. 

126 2.2 Mineralization

127 Fluorite-bearing MVT mineralization is described in the Alston (Bouch et al., 2008) and Askrigg 

128 Blocks (Bouch et al., 2006) of the NPO as well as in the SPO (Bau et al., 2003; Ford and Worley, 2016).   

129 Lead-Zn-F-Ba mineralization in the Alston Block is present as mostly hydrothermal fissure-vein infills 

130 and stratabound metasomatic replacement accompanied by brecciation and dissolution of 

131 Carboniferous limestones (Bevins, 2010; Bouch et al., 2008). The mineralization is characterized by a 

132 concentric zoning from early fluorite-quartz-sulphide to later stage barite mineralization, which may 

133 represent waning stages of the hydrothermal circulation system at lower temperatures (Bouch et al., 

134 2006; Cann and Banks, 2001). Mineralization in the central fluorite zone is regarded to have been 

135 formed from high-salinity brines with fluid temperatures ranging up to 200°C and with cooler 

136 temperatures of 120°C measured towards the margin of the fluorite zone (Dunham, 1990; Sawkins, 

137 1966). Fischer et al. (2013) indicate that the Weardale Granite may have exerted a certain structural 

138 control on the emplacement of orebodies present in the Alston Block. According to fluid inclusion 

139 data from Cann and Banks (2001), the granite, at approximately 300°C at that depth, heated highly 

140 saline, basinal brines derived from overlying Zechstein units to temperatures of about 200°C and 

141 focused the fluid flow in the sedimentary basin by heat convection. Kimbell et al. (2010) point 

142 towards a significant contribution of the deeply-covered Weardale Granite to the mineralizing fluids 

143 in the NPO. The location of the batholith apparently played an important role in channeling the 

144 hydrothermal fluid into the overlying Carboniferous strata. However, with regard to the 

145 discrepancies in suggested ages between granite (Dunham, 1974; 400 Ma; Holland and Lambert, 

146 1970) and mineralization (250-260 Ma, 210 Ma; Cann and Banks, 2001; Davison et al., 1992; Dunham 

147 et al., 1968; Shepherd et al., 1982), a significant heat contribution of the granite towards the fluids 

148 and the mineralization is unlikely. Therefore, the discussed heat contribution is purely related to the 
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149 depth of the basement granite and the geothermal gradient; it appears likely that the Wensleydale 

150 granite in the Askrigg Block had a similar influence.

151 In the Askrigg Block, hydrothermal Pb-Zn-F-Ba mineralization occurs as stratabound deposits and 

152 as ribbon veins emplaced in faults with only minor displacement. In the Swaledale region, Pb-F-Ba 

153 deposits occur in fissure veins while vein mineralization of galena and fluorite is present in the 

154 southern portion of the Askrigg Block. Copper-bearing veins were described from the eastern and 

155 western flanks of the Askrigg Block (Bevins, 2010), but the zonal distribution is less well understood 

156 than in the Alston Block (Bevins, 2010). The general distribution of veins and mineral occurrences 

157 does not reflect the underlying Wensleydale Granite, which is in marked difference to the 

158 mineralization above the Weardale granite in the Alston Block. However, it was suggested that it may 

159 have exerted a certain structural control on sedimentation and tectonics in the area (Ineson, 1976; 

160 Small, 1977). 

161 In the Pennine Orefield, deep-seated, moderately acidic, highly saline NaCl-CaCl2 brines carrying 

162 hydrocarbons, Pb, Zn, F and Ba, were transported into Carboniferous platform carbonates, where the 

163 mineralization formed due to acid neutralization and sulfate reduction (Plant et al., 1988).  Sulphur 

164 and oxygen isotope data imply that the fluids, or at least the sulphur and oxygen contained in these 

165 fluids, were mostly derived from basinal brines (Crowley et al., 1997; e.g., Solomon, 1966; Solomon 

166 et al., 1971), supporting the hypothesis that mineralization has an MVT affinity. In the following 

167 decades, numerous studies on fluorite mineralization in the NPO and SPO were published. These 

168 included studies on trace elements (Bau et al., 2003; Shepherd et al., 1982), fluid inclusions (Bouch et 

169 al., 2008, 2006; Cann and Banks, 2001; Ewbank et al., 1995; Plant et al., 1988; Sawkins, 1966) as well 

170 as stable isotopes and radiometric dating (Bau et al., 2003; e.g., Jones and Swainbank, 1993). 

171 Fluorite mineralization in the NPO has been tentatively linked to crustal subsidence and declining 

172 geothermal gradients, where Viséan-Namurian shale basins dewatered and the system was 

173 overpressurized due to seismic pumping related to early Permian tectonism (Plant et al., 1988). 
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174 Other studies suggest however, that the majority of the mineralization formed in two phases during 

175 the late Permian (Cann and Banks, 2001; Davison et al., 1992; 250-260 Ma; Dunham et al., 1968; 

176 Shepherd et al., 1982) as well as at the end of the Triassic (210 Ma; Cann and Banks, 2001). There is 

177 currently no data available that could clarify this discrepancy, however, studies on comparable MVT 

178 deposits in Europe suggest a significant age gap between host rocks and hydrothermal 

179 mineralization. Many of the epigenetic analogues in Europe are much younger than the Variscan 

180 orogeny and are thought to be related to the opening of the North Atlantic (170-180 Ma; Munoz et 

181 al., 2005; Staude et al., 2009).  

182

183 3. Samples & methods

184 The mineral samples from the Alston and Askrigg Blocks that were studied in this contribution 

185 are listed in ESM Tables 1 and 2. The mineral specimens were collected from open workings in the 

186 respective underground or open-pit mines. Sample designations, grid reference numbers and sample 

187 localities are also shown in ESM Tables 1 and 2. The fluorite samples chosen for REY analysis were 

188 obtained from the NPO from various localities in the Alston Block (18 deposits) and the Askrigg Block 

189 (11 deposits), respectively. A subset of the fluorites from both blocks was also chosen for Sr- and Nd 

190 isotope geochemistry. The Alston Block fluorites are described in detail in Cann and Banks (2001). 

191 The fluorites are zoned but the growth zones are large (several mm-cm width) and only discrete 

192 zones were sampled in the course of this study.  The minerals precipitated in monomineralic form. 

193 Close intergrowth of fluorite and quartz is not common. An exception is at Frazer’s Hushes mine 

194 (ESM Table 2) where 5-10 cm thick bands of different generations of fluorite precipitated on each 

195 other as big well-formed cubes with ca. 1cm thick intermittent bands of quartz. 

196 3.1 Fluid inclusion microthermometry and crush leach analysis

197 Doubly polished 200-300µm thick wafers of quartz, fluorite and barite were used to determine fluid 

198 inclusion petrography and to determine the salinity, homogenization temperature and bulk 
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199 composition. Phase transitions in fluid inclusions were measured using a Linkam THMS 600 heating 

200 freezing stage calibrated with synthetic fluid inclusions and salts of known melting point. The 

201 accuracy of measurements below 0 °C was ± 0.2 °C and above 100° C was ca.  ± 2 °C. The precision of 

202 low temperature phase transition measurements was ± 0.1 °C and ± 1.5 °C for the temperature of 

203 homogenization. 

204 Samples chosen for crush-leach analysis had previously been studied by microthermometry to ensure 

205 that they contained a single dominant fluid population either in terms of numbers of inclusions or 

206 salinity. In all of these samples inclusions were dominated by high salinity fluids. Barite was a notable 

207 exception where there was also a small number of inclusions of low salinity present. These low 

208 salinity inclusions will only cause a minor error due to contamination and the data from barite is thus 

209 reliable for the higher salinity fluid. Fluorite, quartz, barite, sphalerite and calcite mineral separates 

210 were crushed to 1-2mm in size and cleaned prior to analysis using the procedure described in Banks 

211 et al. (2000).  In fluorite where there were different periods of large crystal growth, samples were 

212 taken from within individual growth bands, which in many cases were 10’s of mm wide.  Fluorite, 

213 barite and quartz were cleaned in hot aqua-regia prior to repeated washing in boiling 18.2 MΩ water. 

214 Calcite and sphalerite were cleaned by repeated boiling in 18.2 MΩ water.  After drying, the minerals 

215 were crushed to a fine powder in an agate pestle and mortar, transferred to a Sterilin sample 

216 container and 7ml of 18.2 MΩ water were added to dissolve the contents of the opened fluid 

217 inclusions that had dried on the mineral. The contents were filtered through a 0.2µm nylon filter to 

218 remove any particulates prior to analysis. Anions were determined with a Dionex DX500 ion 

219 chromatograph and cations by atomic emission spectroscopy (AES). Detection limits were; Cl ~ 

220 25ppb, Br ~1ppb, SO4 ~10ppb, Na, K ~20ppb and Li ~ 0.1ppb. The precision, based on replicate 

221 analysis of the same leach solutions, was less than 5% RSD for ion chromatography and 4% RSD for 

222 AES. The anion and cation concentrations, as analysed, are given in ESM Tables 1 and 2 and Na/Br 

223 and Cl/Br molar ratios are plotted in Figs. 2a and 2b, respectively. 
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224 3.2 Rare earth elements and Yttrium

225 All rock samples were thoroughly rinsed with de-ionized water and dried before further 

226 treatment. The rock samples were then crushed to a particle size of 2-10 mm and fluorite grains were 

227 hand-picked in order to minimize contamination by host rock or other minerals. Fluorite separates 

228 were milled in agate mortars using a Fritsch Pulverisette 6 planetary ball mill to a fine-grained 

229 powder with <64 µm grain size. For bulk rock decomposition, a Picotrace DAS acid digestion system 

230 (Picotrace GmbH, Bovenden, Germany) was used. All acids used in this study for decomposition of 

231 sample material and analysis were of suprapur grade and purity of all reagents was verified by blank 

232 measurements. The mineral powders were dried at 110°C for 24 hours before an aliquot of ca. 0.3g 

233 was put into acid-cleaned PTFE digestion vessels and digested with a mixture of 1 ml concentrated 

234 HF, 1 ml concentrated HCl and 3 ml concentrated HNO3 for 12 hours at 200 °C and afterwards 

235 evaporated to incipient dryness. The samples were treated for another 72 h with 3 ml of 

236 concentrated HF and 3 ml of concentrated HClO4 at 200 °C and subsequently evaporated. Dulski 

237 (2001) and Alexander (2008) outline details of the digestion procedure and on analytical precision of 

238 the employed analytical techniques. After digestion, the samples were taken up in 20 ml of a mixture 

239 of 0.5M HNO3 and 0.01M HF. The digested bulk rock samples were analysed with a Perkin-Elmer 

240 quadrupole ICP-MS ELAN drc-e for Ba, Sr and rare earth elements and Y (REY). Background intensities 

241 of procedural blanks were at least two orders of magnitude lower than sample intensities for the 

242 studied elements. Certified reference material as well as sample duplicates were used in order to 

243 estimate reproducibility of the applied analytical technique and for quality assurance. Accuracy of 

244 the ICPMS measurements was monitored by analysing the CRM standards JLs-1 (carbonate), J-Do1 

245 (dolomite), BHVO-2 (basalt) and IF-G (iron formation) as well as procedural blanks. Rare earth 

246 element and Y concentrations of the CRM standards obtained with ICPMS are within rel. 5% 

247 deviation from published literature values (Dulski, 2001).  
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248 3.3 Calculation of REYSN, CeSN/Ce*SN and EuSN/Eu*SN anomalies

249 Rare earth element and yttrium concentrations are normalized to European Shale (EUS; Bau et 

250 al., 2018) in Figs. 3a-c and Fig. 5. In this contribution, normalized data are referred to as REYSN, the 

251 subscript indicating that data are normalized to shale. Rare earth element anomalies are calculated 

252 based on EUS-normalized data using the equations of Bolhar et al. (2004) for CeSN/Ce*
SN and Bau 

253 (1996) for EuSN/Eu*
SN as follows:

254 Equation 1:

255
�� !

��
∗
 !

=
�� !

(2 ∗ #$ ! ‒ !& !)

256 Bolhar et al. (2004)

257 Equation 2:

258
'( !

'(
∗
 !

=
'( !

(0.67 ∗  ) !+ 0.33 ∗ *+ !)

259 Bau (1996)

260 Deviations from unity reveal decoupling of redox-sensitive Ce and Eu from their strictly trivalent REY 

261 neighbours La3+ and Pr3+ for Ce and Sm3+ and Tb3+ for Eu. Ratios of >1 and <1 indicate positive and 

262 negative anomalies, respectively.

263 3.4 Sr-Nd isotope geochemistry

264 Sample splits from the trace element analyses of four Askrigg Block fluorites, six Alston Block 

265 fluorites and the certified reference materials JDo-1 (issued by Geological Survey of Japan) and IF-G 

266 (issued by Centres de Recherches Petrographiques et Geochimiques) were analyzed for Sr-Nd 

267 isotopes at the Department of Lithospheric Research (University of Vienna) using ion exchange 

268 column separation chemistry and thermal ionization mass spectrometry (TIMS). Circa 50 mg to 200 

269 mg of the powders were digested in an ultrapure acid mixture of concentrated HF-HNO3 (4:1) for two 

270 weeks at 130 °C. The solutions were evaporated, treated with 2ml conc. HNO3 and subsequently 

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649



12

271 dried down to incipient dryness. An additional treatment with 8ml conc. HCl and subsequent 

272 evaporation was performed before re-equilibration in 2ml 2.5N HCl. The following ion exchange 

273 column chemistry and Sr-Nd isotope measurements via Re double filaments with a Thermo Finnigan 

274 Triton TI TIMS are described in detail elsewhere (Wegner and Koeberl, 2016). The international 

275 standards NBS987 and La Jolla yield 87Sr/86Sr of 0.710260 ±3 (n=8) and 143Nd/144Nd of 0.511839±6 

276 (n=7); respectively; maximum blanks are below 1 ng for Sr and below 50 pg for Nd. Mass 

277 fractionation during TIMS measurements was corrected with 88Sr/86Sr = 8.3752 and 146Nd/144Nd = 

278 0.7219. 87Sr/86Sr of CRM JDo-1 was 0.512248±5 and 143Nd/144Nd was 0.707548±5, whereas 87Sr/86Sr of 

279 CRM IF-G was 0.511379±6 and 143Nd/144Nd was 0.719517±6 (see ESM table 6).

280

281 4. Results & Discussion

282 4.1 Fluid inclusion petrography and microthermometry

283 Fluid inclusions were measured from fluid inclusion arrays (FIA’s) that represented primary or 

284 pseudosecondary inclusions. In fluorite, many of the FIA’s were obviously aligned along the crystal 

285 growth faces and as fluorite exhibited discrete periods of crystal growth these were particularly 

286 prevalent. In quartz, fluid inclusions were less numerous but again were clearly of primary origin. 

287 In fluorite, quartz and barite inclusions were L-V; barite also contained a certain number of L-only 

288 inclusions. Barite is particularly susceptible to stretching, either during heating or sample 

289 preparation, which induces the formation of vapour bubbles in inclusions that should only contain 

290 liquid as they represent low temperature fluids (Ulrich and Bodnar, 1988). Yet, we suggest that barite 

291 contains two generations of fluid inclusions trapped at different temperatures and with different 

292 salinities. This suggestion is based on textural relations in FIA’s and the observation that the salinity 

293 in L-only inclusions is much lower compared to that recorded in L-V inclusions. Where possible the 

294 following phase changes were measured in the samples: Te: eutectic temperature, Thyd: hydrohalite 

295 dissolution temperature, Tice: final ice melting temperature and Th: homogenization temperature of 

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708



13

296 the L-V inclusions to liquid. On freezing the majority of the inclusions turned a brown colour 

297 indicating the presence of a significant Ca concentration in the fluid.

298 The temperatures and salinities for the Alston and Askrigg Block mineralization as obtained 

299 from fluid inclusion assemblages (FIA) are provided in ESM Table 3. FIA in Alston Block fluorite, 

300 quartz, calcite and barite are rather uniform with homogenization temperatures between 105-160°C 

301 (104-134°C for calcite) and fluid salinities ranging between 18.4-22.7 % wt% NaCl equiv. FIA from 

302 Askrigg Block show similar homogenization temperatures in the range of 99-173°C, but a significantly 

303 larger range in fluid salinities (12.4-26 wt% NaCl equiv).

304 The low eutectic melting temperatures and the fact that the inclusions go brown on freezing 

305 indicate a significant concentration of CaCl2 in addition to NaCl in the fluids. Using the pairs of 

306 hydrohalite and ice melting temperatures it is possible to estimate the Ca/Na ration in the fluid 

307 inclusions. The ice and hydrohalite melting temperatures are close to the eutectic value for the pure 

308 H2O-NaCl system and therefore Na is still the dominant cation in the fluid. The estimated Ca/Na ratio 

309 is on average 0.3. This ratio is similar to the ratio of Ca/Na obtained from crush-leach (see below) and 

310 bulk analyses of a few monomineralic quartz mineral separates from the Alston Block.  In general, the 

311 fluid characteristics are very similar for the inclusions in the different minerals from the Alston Block, 

312 while in the Askrigg Block there is more variability in salinity and temperature with lower salinities 

313 and higher temperatures reported compared with Alston.

314 4.2 Crush-leach analysis of fluid inclusions

315 The use of fluid inclusion analyses to determine fluid sources and processes relies on the anion 

316 composition (Cl and Br) behaving as essentially conservative components in aqueous fluids. Chlorine 

317 and Br have much greater concentrations in fluids than in minerals and water-rock interaction (WRI) 

318 does not alter their concentration, as they do not readily incorporate into newly formed minerals. In 

319 contrast, the cations in the fluid may be extensively altered by WRI processes.  Here we are 

320 concerned primarily with the conservative anions as the minerals hosting the fluid inclusions 
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321 (fluorite, barite and calcite) all contain elements that would interfere in interpreting the cation 

322 compositions. In Na/Br and Cl/Br diagrams (Figs. 2a&b), the position of evaporating seawater does 

323 not change, despite increasing salinity by almost a factor of ten, until halite saturation is reached and 

324 salt precipitates. As Br is not readily incorporated into the halite structure it increases significantly in 

325 solution as halite precipitation proceeds leading to decreases in both the Na/Br and Cl/Br ratios in 

326 the fluid. Fontes and Matray (1993) provide a detailed analysis of the composition of seawater as 

327 evaporation proceeds through the sequence of different salts that precipitate. Fluid inclusions that 

328 plot on or close to the evaporation trend, drawn from the above-mentioned data, would indicate 

329 little or no WRI to exchange cations in the fluid with cations either along the flow path or at the site 

330 of mineral deposition.  

331 Based on Na/Br and Cl/Br molar ratios from the fluid inclusions as shown in Fig. 2a and reported 

332 in ESM Table 1, the Alston Block minerals studied here fall into three main groups. All quartz and 

333 barite samples have the same range of ratios and plot on the line that represents seawater 

334 evaporation past halite saturation. These are Br-rich bittern brines (residual fluids after seawater has 

335 been evaporated past halite saturation) associated with evaporite deposits and should, for this 

336 degree of evaporation, have salinities in the range of c. 25-30 wt% NaCl equiv. However, the salinities 

337 in the fluid inclusions are >c. 20 wt% NaCl equiv, which indicates a significant dilution by a low 

338 salinity fluid. In fluorite, the majority of samples fall into two groups. The first group clusters around 

339 the values for seawater (n=4) and a further three fluorites and one sphalerite in this group have the 

340 same Cl/Br ratio as seawater but have lower Na/Br ratios. The latter are indicative of Na loss from 

341 the fluids, usually in exchange for Ca. The second group of fluorites have Cl/Br ratios much higher 

342 than seawater, which indicates a certain contribution from dissolution of halite. These fluorites also 

343 have a large reduction in the Na/Br ratio, indicative of loss of Na by either albitization of plagioclase 

344 and release of Ca into the fluid or by mixing with Ca-rich fluids. The fluid inclusions in quartz, barite 

345 and parts of the fluorites show little evidence of loss of Na through fluid-rock interaction whilst other 
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346 fluorites do. This indicates that there were multiple sources of fluids contributing towards the 

347 mineralization found in the Alston Block.

348 ESM Table 2 and Figure 2b show the results of the crush-leach analysis conducted on fluorites 

349 and gangue minerals from the Askrigg Block. The element ratios in the different minerals are less 

350 variable when compared to those in the Alston Block. Here, the different minerals, except calcite in 

351 the shaded ellipse, plot close to seawater and, like the minerals studied from the Alston Block, plot 

352 along the trend for seawater that has evaporated past halite saturation. There is less loss of Na from 

353 the fluids compared with those in the Alston Block. The fluid inclusion data indicates that fluorite 

354 here is derived from the same fluid as quartz and barite, while in the Alston Block the majority of 

355 fluorite is from a quite different fluid source. This observation can also be made in the REY 

356 geochemistry and the Sr-Nd isotope signatures of the investigated fluorites (see below). The fluid 

357 inclusions in calcite have the same Cl/Br ratio as fluid inclusions in the other minerals, but have much 

358 greater Na/Br ratios, plotting to the right of the 1:1 line (Fig. 2b). It needs to be stressed here that 

359 calcite is paragenetically later than the other minerals studied here. 

360 The microthermometry data indicate there is significant Ca in the fluid inclusions. For seawater that 

361 has evaporated to these high salinities there should be none (Fontes and Matray, 1993). The 

362 composition would be dominated by Na, Mg and K, but in many contemporaneous brines (Carpenter 

363 et al, 1974) and fluid inclusion analyses Na-Ca-Cl dominated fluids have been identified (Grandia et 

364 al., 2003; Heijlen et al., 2003, 2001; McCaig et al., 2000; Piqué et al., 2008). Davidson and Criss (1996) 

365 suggest that the excess Ca in fluids arises from albitization of plagioclase and the exchange of Na for 

366 Ca in a 2:1 ratio. However, if this were the sole cause of increased Ca then the fluids would still have 

367 significant Mg but they do not. If the increasing Mg as seawater is evaporated reacts with limestone 

368 to produce dolomites, then on their excess-deficit plot the fluids would lie along the same 2:1 line. 

369 Dolomitization is common in the North Pennine Orefield as it is in other similar carbonate areas with 

370 low temperature fluorite and base-metal mineralization. 
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371 The halogen data shown in ESM Tables 1 and 2 and Figs. 2a-b and discussed above show that there 

372 are multiple fluid types and therefore most likely also multiple fluid sources involved with the 

373 mineralization in both the Alston and Askrigg Blocks. There also appears to have been different 

374 degrees of modification of these fluids by fluid-rock interactions. This is most obvious in fluorite from 

375 the Alston Block where the fluids have experienced a significant loss of Na and an increase in Ca, 

376 probably from (hydrothermal) albitization of plagioclase. According to Bouch et al. (2006), the 

377 mineralization in the Alston Block was caused by mixing of several low-salinity fluids such as sodic 

378 groundwater with high-salinity calcic brines that carried elevated metal contents. Here we suggest 

379 that there were at least three different fluid sources involved; (i) a fluid of unknown source that 

380 dissolved halite, (ii) seawater that evaporated to high salinity but not past the point of halite 

381 precipitation and (iii) Br-rich bittern brines which could be residual fluids after seawater evaporation 

382 past halite saturation (i.e., Walter et al., 2016) and which was diluted by a low salinity fluid, 

383 potentially originating from the basement. The data represents different fluids entering the orefield 

384 at different times. A mixing process of bittern brines with halite dissolution brines was also described 

385 in a study on continental basement brines from the Schwarzwald in Germany (Walter et al., 2016). 

386 With two exceptions, all fluids in fluorite involve evaporated seawater or a component from 

387 dissolution of halite. The two exceptions are AL96-24 (Hilton Mine) and AL96-26 (Cambokeels Mine), 

388 for which halogen contents are more indicative of Br-rich bittern fluids. Experimental results showed 

389 that fluid-rock interaction is insufficient for the production of brines with similar high salinities and 

390 low Cl/Br ratios (Burisch et al., 2015). According to Walter et al. (2016), external fluid sources are 

391 therefore required. In addition to the basinal brines, the Zechstein facies is present close to the 

392 mineralized zones and could represent a potential external fluid source as evidenced by evaporite 

393 minerals and high Br concentrations in the fluids (Cann and Banks 2001).

394 4.3 REY geochemistry

395 Fluorites from the Alston Block in the northern part of the NPO are characterized by elevated total 

396 REY concentrations ranging from 173 mg kg-1 to 923 mg kg-1 with average concentrations of 553 mg 
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397 kg-1 ΣREY (n=16; ESM Table 4). The REYSN patterns shown in Fig. 3a indicate an enrichment of the 

398 middle REY (MREY: Sm-Dy) over light (LREY: La-Sm) and heavy REY (HREY: Gd-Lu) with Y/Ho 

399 fractionation observed in all Alston hydrothermal vein fluorites. Noteworthy is a distinct 

400 fractionation of Eu in all but two Alston Block samples, resulting in positive EuSN anomalies with 

401 EuSN/Eu*
SN ratios in the range between 2.68 and 8.87, positive LaSN anomalies but lack of CeSN 

402 anomalies. The only exceptions are, as with the fluid inclusions, samples AL96-24 (Hilton Mine) and 

403 AL96-26 (Cambokeels Mine). Both of these lack anomalous behaviour of Eu (EuSN/Eu*
SN: 0.79 and 

404 1.11, resp.), but do show similarly elevated total REY concentrations. This may indicate the 

405 involvement of an additional (Br-rich) fluid source and may also point to different pathways and fluid 

406 sources for fluorite mineralization in the Cambokeels and Hilton mines in relation to the 

407 mineralization at the other Alston sites.

408 The total REY concentrations in fluorites from localities in the Askrigg Block in the southern part 

409 of the NPO are considerably lower than those observed in fluorites from the Alston Block (ESM Table 

410 5). Total REY concentrations range from 21.6 to 68.7 mg kg-1 and are on average 42.7 mg kg-1 (n=8), 

411 i.e. more than ten times lower than those found in Alston Block fluorites. The REYSN patterns, 

412 however, show a similar enrichment of MREY over both LREY and HREY (Fig. 3b). The depletion of 

413 LREY relative to MREY is exceptionally strong and covers about two orders of magnitude in the shale-

414 normalized patterns. All samples show Y-Ho fractionation, i.e. positive YSN anomalies, but lack any 

415 EuSN anomalies (EuSN/Eu*
SN = 0.99 - 1.33). The Askrigg Block fluorites also show small negative CeSN 

416 anomalies with CeSN/Ce* as low as 0.93, positive LaSN anomalies, and enrichment of GdSN relative to 

417 TbSN and DySN. 

418 The REYSN patterns differ considerably between the Alston Block in the northern part of the NPO 

419 and the Askrigg Block in its southern part. However, the patterns are rather consistent within each 

420 area and between the respective individual sites. Distribution and hence transport of the REY in the 

421 individual blocks was, therefore, not controlled by a specific proximity to faults and other structural 

422 features. Bau et al. (2003) studied the REY geochemistry of fluorites from the Southern Pennine 
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423 Orefield and fluorites from the Frazer’s Hushes Mine in the Northern Pennine Orefield. While the 

424 Frazer’s Hushes fluorites match well with the fluorites from the Alston Block discussed in our study, 

425 the REYSN patterns of the Askrigg Block fluorites in the NPO more closely resemble fluorites from the 

426 SPO (Bau et al., 2003). Bott and Smith (2017) published mean La, Ce and Y concentrations of fluorites 

427 from the Alston Block (referred to as ‘North Pennines’) and the Askrigg Block. Their data were 

428 obtained by x-ray fluorescence spectrometry, but compare well to the REY data presented in our 

429 study. 

430 All fluorite samples investigated in this study show a distinct fractionation of Y from its geochemical 

431 twin Ho (Fig. 4). Ratios of Y/Ho range from 42 - 97.4 in fluorites from the Alston Block and 97 - 154 in 

432 Askrigg Block fluorites. Such superchondritic Y/Ho ratios are a common feature of many fluorite 

433 occurrences worldwide (e.g., Bau and Dulski, 1995; Graupner et al., 2015). Yttrium is significantly 

434 enriched in fluorite, probably due to the significantly higher stability constants of Y fluoride 

435 complexes relative to Ho fluoride complexes in hydrothermal solutions (Bau, 1996; e.g., Bau and 

436 Dulski, 1995). It is noteworthy that (i) Askrigg Block fluorites show significantly higher Y/Ho ratios 

437 than Alston Block fluorites and (ii) the Viséan limestones which host the mineralization in the SPO, 

438 also have elevated Y/Ho ratios (Bau et al., 2003). Such positive YSN anomalies are common in detritus-

439 poor marine sedimentary carbonates and seawater (Bau et al., 1999, e.g., 1995; Schier et al., 2018). 

440 Therefore, hydrothermal fluids which mobilized REY from the marine limestones in the Askrigg Block 

441 started with much higher Y/Ho ratios than those circulating in the Alston Block. The different extents 

442 of Y-Ho fractionation observed in NPO fluorites can, therefore, be attributed to different REY sources.  

443 The low solubility of REY-fluorides imposes a limitation on transport of the REY as fluoride 

444 complexes. Hence, in hydrothermal solutions, REY are more likely to be transported as chloride 

445 complexes (Migdisov and Williams-Jones, 2014). Dissolution of the carbonate host rocks by aqueous 

446 fluids causes a rapid increase in pH, possibly liberating Ca ions to the fluid and allowing for 

447 subsequent deposition of fluorite (Rajabzadeh, 2007) along with parts of the REY that are dissolved in 

448 these fluids. The fluoride ion in this case acts as a binding ligand for REY deposition along fluorite 
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449 mineralization but does not act as a complexing ligand (Migdisov and Williams-Jones, 2014). The 

450 source of fluorine within fluorite-rich subtypes of MVT deposits, however, is still under discussion. 

451 Models for fluorite genesis in the Illinois-Kentucky district in North America propose the mixing of 

452 magmatic fluids with sedimentary brines (Plumlee et al., 1995). The REYSN patterns (Fig. 3a-b) as well 

453 as the contrasting total REY concentrations and Y-Ho fractionation in fluorite indicate that the fluids 

454 from which these hydrothermal fluorites formed had experienced different physico-chemical 

455 environments, particularly with respect to temperature and REY sources. 

456 Potential causes for EuSN anomalies in hydrothermal minerals

457 The Alston Block fluorites show positive EuSN anomalies, indicating the decoupling of redox-

458 sensitive Eu from its strictly trivalent REY neighbours. In marked contrast, EuSN anomalies are 

459 altogether missing in Askrigg Block fluorites (Fig. 5) and in SPO fluorites (Bau et al., 2003). Either of 

460 the following three mechanisms (or a combination these) may cause Eu anomalies in normalized 

461 patterns (EuN) of hydrothermal vein minerals and fluids: 

462 (a) Inheritance: the EuN anomaly in the studied mineral/fluid could be inherited from the source 

463 rock or any rock that the fluid leached during its evolution and that carried significant amounts of 

464 REY. This implies that one of the rocks that interacted with the fluid should show such an anomaly. 

465 Lithologies showing positive EuSN anomalies in shale-normalized REY patterns are mafic and 

466 ultramafic rocks such as basalts and peridotites. However, neither are such (ultra)mafic rocks 

467 abundant in the NPO, nor would they display positive EuSN anomalies as large as those observed in 

468 the fluorites.

469 Geochemical data for the Weardale and Wensleydale granites are scarce and only incomplete 

470 REY data are reported by Webb & Brown (1989). The REYSN patterns are plotted in Fig. 3c along with 

471 those for the Whin Sill dolerite, which is available as the CRM “WS-E” for which excellent analytical 

472 data are available from Govindaraju et al. (1994) and numerous other sources. Comparison of the 

473 REYSN patterns in Figs. 3a-c shows that neither of the three igneous rocks occurring in the NPO bears 
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474 any similarity to the patterns obtained for the fluorites studied here. The Weardale Granite, in 

475 contrast to the Alston fluorites, does not show a EuSN anomaly, the Wensleydale granite in the 

476 Askrigg Block has a negative one, and the Whin-Sill dolerite in the Alston Block shows an only small 

477 positive anomaly.

478 (b) Selective mineral alteration or partial rock dissolution: leaching or alteration of a certain 

479 mineral or portion of a rock that carries significant amounts of Eu (e.g., feldspars due to substitution 

480 of Ca2+ by Eu2+) relative to other MREY or that is depleted in Eu relative to other MREY, i.e. due to 

481 fractional crystallization. In basalts and basaltic andesites, the melt in the vicinity of a growing 

482 plagioclase crystal becomes selectively depleted in Eu due to preferential partitioning of Eu2+ into the 

483 crystal lattice of plagioclase. This may lead to REYN patterns with negative Eu anomalies at grain 

484 boundaries, in the groundmass and in the interstitial spaces of the minerals (Giese and Bau, 1994; 

485 Kraemer et al., 2015). These minerals, or the matrix, can be preferentially dissolved - or preferentially 

486 not dissolved - during water-rock interaction and selective leaching (see e.g., Kraemer et al., 2015), 

487 creating fluids that are either enriched - or depleted – in Eu relative to its strictly trivalent REY 

488 neighbours (Bach and Irber, 1998; Bau et al., 1998; Giese and Bau, 1994; Shibata et al., 2006). EuN 

489 anomalies in solutions can also form during short-term water-rock interaction with gneisses, but 

490 were not observed in similar leaching experiments with granites (Dill et al., 2011; Schwinn and Markl, 

491 2005). Therefore, EuN anomalies in Alston fluorites are not inherited from water-rock interaction with 

492 granites or its constituents.

493 (c) Temperature: positive EuN anomalies are usually observed in modern acidic and reducing 

494 hydrothermal fluids with temperatures exceeding 200-250°C, such as in modern black smoker fluids 

495 from Mid-Ocean Ridges (e.g., Bau and Dulski, 1999). The Eu3+/Eu2+ redox potential in aqueous 

496 solutions depends mainly on temperature and to lesser extents on pressure, pH and the speciation of 

497 the REY (Bau, 1991; Bau et al., 2010; Bau and Möller, 1992; Schmidt et al., 2010; Sverjensky, 1984). In 

498 the case that positive EuN anomalies have developed in a hydrothermal fluid due to high 

499 temperatures and reducing conditions, this relative Eu enrichment will be inherited by any mineral 
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500 that precipitates from this fluid, provided that most of the Eu in the fluid at the time of precipitation 

501 is in an oxidation state that allows incorporation into the respective crystal lattice (i.e., Eu3+ for 

502 fluorite). Therefore, the temperature needs to be below ca. 200-250°C during mineral formation, i.e., 

503 in a physico-chemical environment when most of the Eu has been re-oxidized to Eu(III). In contrast to 

504 microthermometry, the Eu2+/Eu3+ geothermometry is hence recording the highest temperature 

505 (>200-250°C) a hydrothermal fluid had experienced prior to mineral formation and not a mineral’s 

506 formation temperature.

507 The observed positive EuSN anomalies, accordingly, indicate that a REY-enriched hydrothermal 

508 fluid in the Alston Block was heated to a temperature exceeding 250°C at some stage prior to fluid 

509 mixing and/or fluorite precipitation (Bau et al., 2003; Bau and Möller, 1992). The anomalies in Alston 

510 fluorites were then caused, for example, due to the presence of an external heat source, in contrast 

511 to fluorites from the Askrigg Block, which – similar to fluorites from the SPO (Bau et al. 2003) – lack 

512 significant EuSN anomalies and which, therefore, did not experience temperatures in excess of 250°C. 

513 Potential REY sources

514 Bau et al. (2003) used REYSN patterns and Sr-Nd-Pb isotope systematics to highlight significant 

515 differences in the metal sources and in the maximum temperature of the fluorite-forming fluids 

516 between MVT mineralization in the SPO and of the Frazer’s Hushes Mine in the NPO (Alston Block). 

517 According to Bau et al. (2003), fluorites from the SPO (e.g., “Blue John” fluorite from Treak Cliff Mine) 

518 show REY distributions with negative CeSN anomalies and positive GdSN and YSN anomalies and 

519 relatively low total REY concentrations (~28 mg kg-1 ΣREY on average). Direct comparison with the 

520 REYSN patterns of Viséan limestone country-rock from the Dirtlow open-pit (Fig. 3c) suggest that REY 

521 in fluorites from the SPO were locally remobilized from adjacent marine sedimentary carbonate rocks 

522 (Bau et al. 2003). These marine sedimentary carbonate rocks show typical seawater REY features 

523 which were transferred to the limestone upon precipitation from seawater (e.g., Tostevin et al. 

524 2016). We emphasize that the fluorites from the Alston and Askrigg blocks have REYSN patterns and 

525 specific REY features that show a striking similarity to those found by Bau et al. (2003; e.g., Figs. 3-5), 
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526 yet Alston Block fluorites are significantly enriched in REY relative to Askrigg and SPO fluorites. The 

527 Askrigg Block fluorites show specific seawater (limestone) signals in their REY compositions (i.e., LaSN, 

528 CeSN and GdSN anomalies, elevated Y/Ho ratios). The REY in the Askrigg Block fluorites originate from 

529 the same source as the REY in SPO fluorites and we suggest that the REY in Askrigg fluorites were 

530 mobilized from similar source rocks, most probably marine Carboniferous limestones. The lack of 

531 seawater REY features, the elevated REY concentrations and the lower Y/Ho ratios in Alston fluorites 

532 indicate REY mobilization from a different source.

533 4.4 Sr and Nd isotopes

534 In order to further constrain the origin of the metals and the fluids in both districts, the 

535 143Nd/144Nd and 87Sr/86Sr isotope ratios of carefully selected fluorites of both blocks were measured 

536 and compared to literature values from Bau et al. (2003) for SPO fluorites and Viséan limestone host 

537 rock and from Govindaraju et al. (1994) for the Whin Sill dolerite. Neodymium isotope data are not 

538 available for the two basement granites and for Sr only initial 87Sr/86Sr ratios (t=400 Ma) of isochron 

539 calculations were provided by Holland & Lambert (Weardale: 87Sr/86Sr= 0.706 +/-2; 1970) and 

540 Dunham (Wensleydale: 87Sr/86Sr=0.7210+/-44; 1974). Unfortunately, no data were provided that 

541 would allow us to recalculate modern-day 87Sr/86Sr isotope ratios, hence a comparison with 87Sr/86Sr 

542 in the fluorites and assumptions on fluid mixing between the granites and other sources cannot be 

543 made. 

544 The Sr-Nd isotope systematics of samples from the Alston and Askrigg blocks are shown in Figs. 6 

545 and 7. For Nd isotopes, the Askrigg fluorites plot in a very narrow field in the range of 143Nd/144Nd = 

546 0.511903 - 0.512007 (Table 6) and are much less radiogenic than the Alston Block fluorites, which 

547 also show a much wider compositional variation with more radiogenic 143Nd/144Nd = 0.512050 - 

548 0.512541 (Table 6; Figs. 6 and 7). Nd isotope compositions are similar to SPO (0.512110±21 – 

549 0.512215±11; Bau et al., 2003) and Askrigg fluorites, and also between the majority of Alston 

550 fluorites studied here (Fig. 7a). This observation may indicate a similar crustal REY source for these 

551 minerals. The data also suggest that Askrigg fluorites are less radiogenic than the SPO fluorites, but in 
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552 general Askrigg as well as most Alston fluorites plot in the same range as the Viséan limestones 

553 reported by Bau et al. (2003; Fig. 7a). The Nd isotope data, therefore, suggest that the REY in the 

554 Askrigg and (most of) the Alston fluorites were sourced from the same upper crustal REY source, i.e. 

555 Carboniferous limestones or shales. We emphasize that the ultimate source of REY in both limestone 

556 and shale is the upper continental crust and therefore both sediments have similar Nd isotopic 

557 compositions.

558 The Sr isotope ratios for Alston and Askrigg Block fluorites are markedly different and provide a 

559 deeper insight into potential metal sources. The Askrigg fluorites plot in a very narrow field in the 

560 range of 87Sr/86Sr = 0.710639 - 0.710813 (ESM Table 6) and are much less radiogenic than the Alston 

561 Block fluorites, which also show a much wider compositional variation with more radiogenic 87Sr/86Sr 

562 = 0.710751-0.713896 (ESM Table 6; Figs. 6 and 7). It is evident that neither Alston nor Askrigg 

563 fluorites exhibit Sr isotope ratios comparable to the values reported for the Viséan limestone host 

564 rocks (0.707992±8 – 0.708020±13) and the fluorites from the SPO (0.707007±7-0.708500±7) 

565 reported by Bau et al. (2003). Therefore, while the REY data suggest a certain relationship between 

566 Askrigg Block fluorites and SPO, the isotopic composition of Sr provides a different story due to a 

567 much more radiogenic character of the Sr isotopes in the Askrigg and Alston fluorites (Fig. 7b) 

568 compared to the SPO. The Sr isotopes, on the other hand, are also decoupled from Nd isotopes (Fig. 

569 6 and 7b), implying different sources for REY and Sr in the fluorites. Alston as well as Askrigg Block 

570 fluorites are much more radiogenic in their Sr isotopic compositions than the Whin Sill dolerite 

571 (Govindaraju et al., 1994), the SPO fluorites, and the Viséan limestones (Bau et al. 2003). Based on 

572 the fluid inclusion and REY data reported in the previous chapters, marine sediments can be 

573 identified as a metal source. Strontium isotope ratios of the SPO fluorites and the limestone (Bau et 

574 al. 2003) plot in the Mississippian seawater array (Fig. 7b; Veizer 1989). The NPO fluorites (Alston and 

575 Askrigg) are much more radiogenic in Sr isotopes and plot above the seawater array. Therefore, we 

576 constrain that Sr in the NPO mineralization is sourced by variable portions of mixing between a 

577 seawater/carbonate rock source as one endmember and an unknown, much more radiogenic 
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578 (magmatic or aluminosilicate-rich/shale) source derived from upper crustal components with 

579 87Sr/86Sr >0.71 as the other endmember (Fig. 7b). The contribution of the unknown source towards 

580 the fluid is increasing from Askrigg to Alston Block fluorites. The latter also show a much larger 

581 variety in Sr isotope ratios (Fig. 7b), indicating a greater and more variable degree of mixing. 

582 4.5 Implications on fluid sources and fluid reconstruction

583 Penetration of brines into crystalline basement and the fluid circulation between the 

584 basement/cover interface near unconformities has been discussed widely and is assumed to be of 

585 major importance for the formation of MVT-like deposits (Boiron et al., 2010). Bouch et al. (2006) 

586 suggest that the elevated metal contents in the fluids of the NPO are probably the result of an 

587 interaction with the Weardale Granite, the Whin Sill dolerite and/or the Paleozoic basement. Based 

588 on mineral and alkali geothermometry and EuSN anomalies in fluorite, studies showed that the 

589 mineralisation in (parts of) the NPO derived from fluids which experienced maximum temperatures 

590 of at least 220°C-250°C (Bau et al., 2003; this study; Rankin and Graham, 1988; Shepherd et al., 1982; 

591 Vaughan and Ixer, 1980). The mineralization in the SPO, on the other hand, was sourced from mainly 

592 low-temperature basinal brines which were heated due to the geothermal gradient to significantly 

593 less than 200 °C to 250°C (preventing formation of a positive EuSN Anomaly) and which circulated in 

594 the basin due to heat convection and tectonic events. For the SPO, Plant et al. (1988) and Kendrick et 

595 al. (2002) pointed towards an origin of the ore-forming fluids from nearby shale-rich sedimentary 

596 basins such as the Edale and Widmerpool Gulfs, supporting the basin-dewatering model for MVT 

597 formation in the Pennines (Plant et al., 1988). Other models involve contribution from a brine that is 

598 derived from meteoric water and which infiltrated into the system during a late Carboniferous to 

599 early Permian unroofing of the system (e.g., Cann and Banks, 2001; Bouch et al., 2008). The most 

600 recent fluid inclusion studies from the Alston area (Bouch et al., 2006) and from Askrigg (Rogers, 

601 1978) concluded that the fluids responsible for the mineralization were dominantly low temperature 

602 - high salinity brines. Bouch et al (2006) report homogenization temperatures between 80 and 150°C 

603 with salinities of 21 to 23 wt% NaCl equiv. and for Askrigg Rogers (1978) reports homogenization 
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604 temperatures between 90 and 160°C and salinities between 15 and 25 wt% NaCl equiv. Our fluid 

605 inclusion results confirm that fluorite precipitation occurred at Th=108-158°C in Alston and Th=99-

606 160°C in Askrigg Block, notably lower than the maximum temperature recorded by Eu 

607 geothermometry. Our fluid inclusion data also indicate that a mixing of several different fluids, 

608 including a Br-rich bittern fluid, formed the mineralization in the North Pennine Orefield. The 

609 processes that lead to the formation of Br-rich bittern brines are widely debated (Burisch et al., 

610 2016). Some authors suggest Cl and Br leaching from hydrous silicates and selective leaching of felsic 

611 minerals (Burisch et al., 2016; Markl and Bucher, 1998; Stober and Bucher, 1999) while others 

612 indicate that seawater evaporation (i.e. Zechstein-derived fluids in the NPO) or freezing is 

613 responsible for the formation of these fluids (Boiron et al., 2010; Herut et al., 1990). However, these 

614 brines could have contributed significantly towards the mineralization in the NPO. Burisch et al. 

615 (2016) found that Br is mostly bound to highly soluble phases in felsic minerals and that selective 

616 leaching of such phases causes lower Cl/Br ratios. Therefore, Br-rich bittern brines could have formed 

617 due to the deep penetration of the surface brines into the basement granite and the associated 

618 intense water-rock interaction due to heating of the fluids to temperatures >250°C.  

619 The REY in the Askrigg Block and in the SPO were sourced from marine limestones. The higher 

620 REY concentrations and lower Y/Ho ratios observed in the Alston Block, however, demand for a 

621 different REY source. In the Alston Block, the REY data suggest that the basin-derived fluids were 

622 heated to higher temperatures than the fluids in the Askrigg Block and in the SPO. In fact, both the 

623 Weardale as well as the Wensleydale granite could have, due to the percolation of fluids, contributed 

624 heat and metals to the mineral system. Heat production of the two coeval granites was reported to 

625 be about equal (3.7 and 3.3-3.4 µW m-3; Webb and Brown, 1989) and current models explain the 

626 heating of the fluids in Alston mostly by the depth of the granite and the geothermal gradient (Cann 

627 and Banks, 2001). However, considering the similar situation in Askrigg, a comparable potential 

628 influence on the mineralization would be expected. REY concentrations of the two granites are also 

629 similar within one or two orders of magnitude (Webb and Brown, 1989). Therefore, the sole 
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630 presence of a granite at depth does not necessarily produce fluids with high REY contents, high 

631 temperatures and more radiogenic Sr. Instead, both granites probably acted as important pathways 

632 for the circulating fluids and maybe as a source for some fluid constituents, but higher temperatures 

633 and higher REY concentrations were only achieved in the Alston Block. Burisch et al. (2016) showed 

634 in alteration experiments with granites and gneisses that metals like Pb and Zn and halogens like F 

635 are readily released into the fluids with time and hence granites may represent potential metal 

636 sources for Pb-Zn-F-Ba mineralization. Judging from the REY concentrations, patterns and Sr-Nd 

637 isotope ratios, the Whin Sill dolerite did not contribute metals such as REY or Sr to the fluids in 

638 Alston. Bott and Smith (2017) indicated, however, that the 295 Ma old Whin Sill magma may have 

639 underplated the Weardale Granite in the Alston Block in some areas due to its higher density. This 

640 suggests that the high REY concentrations and the elevated temperatures in the Alston Block may be 

641 the combined result of the interaction of (at the time of formation) hot Whin Sill dolerite with the 

642 cold basement granite, which facilitated metal and/or heat transport for the mineralization that 

643 formed in the Alston Block. Here, REY were probably sourced from aluminosilicate-rich rocks, e.g., 

644 Lower Carboniferous shales, which were intensely leached due to the elevated fluid temperatures. 

645 Such an intrusion and hence underplating was not described for the Askrigg Block (Colman et al., 

646 1989) which may well explain the different fluid sources and the lack of EuN anomalies in fluorites 

647 from this district. 

648 Our neodymium isotope data suggests some similarity of Alston fluorite samples from 

649 Cambokeels (AL-24) and Hilton Mines (AL-26) to Whin Sill Nd isotopes (Fig. 6). These two fluorites 

650 also have elevated REY concentrations typical for Alston Block fluorites, but interestingly lack positive 

651 EuSN anomalies and show evidence of Br-rich bittern brines in their fluid inclusions. As indicated 

652 above, the Br-rich brines may point to water-rock interaction with hydrous silicates (Kullerud, 1996; 

653 Markl and Bucher, 1998). The differences in EuSN anomalies in certain fluorite specimens may 

654 indicate temperature heterogeneities in certain areas of the Alston Block. The fluids transported 

655 similarly high amounts of REY, but temperatures obviously were not high enough (<250°C) to enable 
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656 Eu fractionation within the fluid. The lower temperatures in some areas within the Alston Block are 

657 probably related due to mixing with cold residual surface brines as indicated by crush-leach data or 

658 markedly different fluid pathways due to structural relationships. 

659

660 5. Conclusions

661 The Pennine Orefield hosts abundant fluorite mineralization that differs significantly between the 

662 Alston and Askrigg blocks in the NPO and between the NPO and SPO in general. While there are 

663 some initial similarities in geologic settings and in the fluid compositions as evidenced by fluid 

664 inclusions for all three areas, each area features apparently unique characteristics that modified and 

665 altered the fluid compositions. We showed that the REY systematics are very different between the 

666 two studied blocks and the source of REY are marine limestone (Askrigg) or shale (Alston). The 

667 maximum temperatures in Alston Block were >200-250°C, whereas fluids in Askrigg never 

668 experienced temperatures that high. This significant maximum temperature difference and different 

669 sources caused the differences in REY systematics, with higher REY concentrations and positive EuSN 

670 anomalies in Alston and about ten-times lower REY concentrations and lack of EuSN anomalies in 

671 Askrigg fluorites.

672 Mineralization of the Mississippi-Valley Type usually lack association with igneous activity 

673 (Colman et al. 1989). While the occurrences in the SPO represent varieties of MVT-style 

674 mineralization in a very classical sense (Dunham 1988; Plant 1988; Bau et al. 2003; Leach et al. 2005), 

675 we show that some of the fluid constituents for the NPO mineralization were sourced from the two 

676 Early Devonian basement granites. The unusually high temperatures observed in Alston are possibly 

677 related to a later dolerite intrusion (the Whin Sill) at around 295 Ma, which was also emplaced in and 

678 interacted with the (cold) basement granite. This also sets a tentative age constraint of ca. 295 Ma on 

679 the fluorite mineralization in the Alston Block. 
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680 A potential contribution from magmatic sources towards F-rich (MVT) mineralization is suggested 

681 for a range of European and North African deposits, such as those occurring in the Northwestern 

682 Massif Central, France (Boiron et al., 2010; Munoz et al., 1999, 1994), the Jebel Stah in Tunisia 

683 (Souissi et al., 2010),  the Bohemian Massif in Germany (Dill et al., 2011) and the Central Pyrenees in 

684 Spain (Subías et al., 1998). In the Valle de Tena district in the Central Pyrenees, a fluorite generation 

685 is in contact with diabase dykes (Subías and Fernández-Nieto, 1995). These fluorites exhibit positive 

686 EuSN anomalies which were attributed to feldspar alteration (Subías and Fernández-Nieto, 1995), but 

687 which could also be explained by elevated maximum temperatures due to an interaction with the 

688 adjacent dyke. Fluorites that are not associated with dykes lack EuSN anomalies (Subías et al., 1998).  

689 The major difference to the Alston Block fluorites, however, is the about ten to hundred-fold lower 

690 concentration in total REE in the Valle de Tena fluorites (Subías et al., 1998).

691
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975 8. Figure captions

Fig. 1: Sketch map showing the extent of the Northern Pennine Orefield (NPO) and the Southern 

Pennine Orefield (SPO) in Great Britain as well as simplified geological map of the NPO showing 

the uplifted crustal blocks, associated faults and granitic batholiths (red). Modified after Stone et 

al. (2010).

976

Fig. 2a-b: Na/Br vs. Cl/Br molar ratios of crush leach data for fluorite, quartz, calcite, sphalerite and 

barite specimen from the Alston Block, northern part of the NPO, and the Askrigg Block, southern 

part of the NPO. The numbers correspond to the sample numbers in the data tables. 

Settlingstones is a barite mine to the north of the main orefield in the Northumberland Trough. 

The arrowed line represents the evaporation trend for evaporating seawater (data from Fontes 

and Matray, 1993).

977

Figs. 3a-c: PAAS-normalized REY (REYSN) plots of fluorite samples from the Alston Block (a) and from the 

Askrigg Block (b) in comparison to potential source rocks (c). Note the up to two orders of magnitude 

difference in the concentrations of specific REY and the presence of positive EuSN anomalies in fluorites 

from the Alston Block and absence of or negative Eu anomalies in the Askrigg fluorites.

978

Fig. 4: Graph of Y vs. Ho for fluorites from the Askrigg Block (blue) and the Alston Block (red) of the 

Northern Pennine Orefield (this study) compared to Frazer’s Hush Mine fluorites from the NPO 

(grey diamonds) and SPO fluorites (grey triangles) from Bau et al. (2003).

979

Fig. 5: Graph of CeSN/Ce*
SN vs. EuSN/Eu*

SN indicating potential anomalous behaviour of redox-

sensitive REY Ce and Eu in fluorites from the NPO. Note the pronounced positive EuSN anomalies in 
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Alston Block fluorites, the negative CeSN anomalies in Askrigg Block fluorites and the close similarity 

of Askrigg Block fluorites to SPO fluorites from Bau et al. (2003).

980

Fig. 6: 87Sr/86Sr against 143Nd/144Nd isotope ratio plot of the fluorite samples investigated in this 

study. The 2σ-errors are smaller than symbol size. Note that Alston and Askrigg Block fluorites plot 

in different clusters and their isotopic signatures differ significantly from published SPO fluorites, 

from the carbonate host rocks and from the Whin Sill dolerite reference material WS-E. 

981

Fig. 7: 143Nd/144Nd plotted against the reciprocal of the Nd concentration (a) and 87Sr/86Sr against 

the respective reciprocal of the Sr concentration (b). 
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1

Table 1: Attributes of the two basement granites emplaced in the Northern Pennine Orefield.

Intrusion Weardale granite

(Holland and Lambert 1970)

Wensleydale granite

(Dunham 1974)

Emplaced in Alston Block Askrigg Block

Chemistry calc-alkaline

(Webb and Brown 1989)

calc-alkaline

(Webb & Brown, 1989)

Tectonic setting subduction- and arc-collision

(Webb & Brown, 1989)

subduction- or within-plate

(Webb & Brown, 1989)

Origin Upper mantle (Webb & Brown, 1989) Crust (Webb & Brown, 1989)

Age 420±10 Ma (Rb-Sr; Holland & Lambert, 1970)

398±1.6 Ma (Re-Os; Selby et al. 2008)

399.3 ±0.7Ma (U-Pb; Kimbell et al. 2010)

410±10Ma (Rb-Sr; Dunham, 1974)

2

3 (Webb and Brown 1989)
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1

1 (Govindaraju et al. 1994)

2 Electronic supplementary material

3 Table 1: Samples from the Alston Block and corresponding results of crush-leach analysis. 

Crush-leach analyses (µg/kg) as analysed

Location Grid Ref. Na K Li Cl Br Na/Br Cl/Br

Fluorite

AL96-1* Coldberry NY 940 292 9675 880 32 20136 41.66 232.2 483.3

AL96-2 Lodgesike NY 953 293 17509 1590 32 52412 112.89 155.1 464.3

AL96-3 Flushiemere NY 904 313 8475 1068 23 35204 77.67 109.1 453.3

AL96-4 Pike law NY 901 316 2890 143 8 8971 25.02 115.5 358.6

AL96-5 West Rigg NY 908 393 3150 201 12 11178 28.18 111.8 396.7

AL96-6 Whiteheaps NY 949 466 34904 3101 54 50013 193.8 180.1 258.1

AL96-7 Middlehope NY 895 406 33820 2950 80 56123 198.43 170.4 282.8

AL96-8 Burtree Pasture NY 858 411 35596 3425 92 58355 221.06 161.0 264.0

AL96-9 Groverake NY 895 442 12510 1006 29 65902 209.34 59.8 314.8

AL96-10/p* Frazer’s Hushes NY 890 443 8040 587 18 22392 73.73 109.0 303.7

AL96-10/p ” ” 16153 1284 23 25385 76.22 211.9 333.0

AL96-10/g* ” ” 16372 1729 35 24720 77.74 210.6 318.0

AL96-11* Scraithole NY 808 456 30306 2703 78 53942 168.33 180.0 320.5

AL96-13 Langdon NY 851 336 1210 64 2 4688 9.04 133.8 518.6

AL96-17 Dowgang NY 778 418 3730 210 12 12361 32.47 114.9 380.7

Al96-19 Nenthead NY 787 436 3120 186 14 14062 30.35 102.8 463.3

AL96-24/g Cambokeels NY 934 385 10290 1017 36 34191 37.37 275.4 914.9

AL96-24/p* ” ” 1580 78 33 4148 20.75 76.1 199.9

AL96-26* Hilton NY 763 225 10950 291 11 26422 124.38 88.0 212.4

AL96-27 Yewtree NY 995 355 14620 887 32 35560 190.34 76.8 186.8

AL96-28/b Heights NY 926 389 10950 1304 52 27267 40.26 272.0 677.3

AL96-28/g ” ” 9992 1082 41 24134 39.86 250.7 605.5

Quartz

AL96-2 Lodgesike NY 953 293 1260 114 9 3739 20 63.0 187.0

AL96-5 West Rigg NY 903 393 450 83 6 1026 7.39 60.9 138.8

AL96-6 Whiteheaps NY 949 466 2370 102 7 5226 26.45 89.6 197.6

AL96-8 Burtree Pasture NY 858 411 2010 86 5 5326 20.86 96.4 255.3

AL96-9 Groverake NY 895 442 930 91 12 1924 12 77.5 160.3

AL96-12 Cowgreen NY 810 311 4380 392 13 12299 94.37 46.4 130.3

AL96-17 Dowgang NY 778 418 1870 77 13 4037 20.29 92.2 199.0

AL96-19 Nenthead NY 787 436 2110 95 10 4670 27.8 75.9 168.0

GSV-1/c Dorth Gill NY 758 379 1950 509 10 5039 21.6 90.3 233.3

GSV-1/e ” ” 2320 519 14 5588 25.3 91.7 220.9

GSV-2/c South Tyne river NY 762 378 3150 338 16 7606 32.3 97.5 235.5

GSV-2/e ” ” 1940 264 14 4633 19.1 101.6 242.6

GSV Noonstones Hill NY 748 381 4200 379 17 9742 41.9 100.2 232.5

Calcite

AL96-19 Nenthead NY 787 436 9290 626 26 24903 146.78 63.3 169.7

Sphalerite

AL96-19 Nenthead NY 787 436 2756 176 10 7520 25.85 106.6 290.9

Barite

AL96-12 Cowgreen NY 810 311 4620 323 14 13921 83.17 55.5 167.4

AL96-13 Langdon NY 851 336 807 350 26 1597 8.35 96.6 191.3

AL96-14 Bands NY 830 322 5618 546 41 15737 72.59 77.4 216.8

AL96-15 Lady’s Rake NY 806 342 3224 365 21 10245 60.37 53.4 169.7

AL96-16 Grasshill NY 815 352 5340 318 14 16520 114.06 46.8 144.8

AL96-19 Nenthead NY 787 436 3847 374 48 16713 106.06 36.3 157.6

AL96-20 Closehouse NY 840 227 2974 240 7 8162 41.56 71.6 196.4

AL96-21 Settlingstones NY 842 642 48 12 7 1052 0.8 60.0 1315.0

AL96-22 Silverband NY 705 319 1180 53 13 3545 17.09 69.0 207.4

AL96-23 East Cowgreen NY 816 317 5221 292 7 15319 114.32 45.7 134.0
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2

4 Samples in bold italics are those where REY were determined. Samples marked with an asterisk are those were Sr and Nd isotopes were 

5 determined.

6

7
8 Table 2: Samples from the Askrigg Block and corresponding results of crush-leach analysis.

9
Crush-leach analyses (µg/kg) as analysed

Location Grid Ref. Na K Li Cl Br SO4 Na/Br Cl/Br

Fluorite

AS96-1 Trollers’ Gill SE 068 618 900 35 2 1864 7.9 25 113.9 235.9

AS96-2 Grassington SE 027 668 940 39 4 1965 9.5 164 98.9 206.8

AS96-4  NW Kettlewell SD 952 727 5200 177 11 11017 49.8 401 104.4 221.2

AS96-5/p NE Kettlewell SD 974 736 1670 50 2 2685 10.9 60 153.2 246.3

AS96-5* ” ” 2510 153 3 4983 25.3 180 99.2 197.0

AS96-6* Haw Bank SD 986 898 11000 528 12 20934 110.4 527 99.6 189.6

AS96-7 Coldstone Quarry SE 109 640 2120 75 2 4057 16.8 89 126.2 241.5

AS96-13* Langthwaite SD 997 026 5280 216 6 10830 43.2 40 122.2 250.7

AS96-14* Hungry Hushes NY 985 028 2230 77 3 5326 18.7 64 119.3 284.8

AS96-15 Surrender Ground NY 975 025 9460 298 8 18688 93.2 86 101.5 200.5

AS96-16 Forefield Rake NY 967 025 4710 158 5 10690 37.1 48 127.0 288.1

AS96-17 Hebden Gill SD 025 656 12320 442 13 22121 111.8 202 110.2 197.9

Quartz

AS96-4 NW Kettlewell SD 952 727 11850 405 9 23268 116.1 189 102.1 200.4

AS96-5 NE Kettlewell SD 974 736 4320 151 4 8325 45.2 63 95.6 184.2

AS96-6 Haw Bank SD 986 898 3900 566 9 10208 47.7 706 81.8 214.0

AS96-7 Coldstone Quarry SE 109 640 11790 432 9 21951 111.5 48 105.7 196.9

AS96-9 Marrick Moor NZ 063 004 1061 323 4.2 2365 16.5 64.3 143.3

AS96-14 Hungry Hushes NY 985 028 950 41 4 2775 16 271 59.4 173.4

AS96-16 Forefield Rake NY 967 025 16550 650 14 36475 186.8 212 88.6 195.3

Calcite

AS96-8 Cobscar Rake SE 060 930 206 125 4.4 170 0.83 248.2 204.8

AS96-9 Marrick Moor NZ 063 004 200 118 3.8 163 0.73 274.0 223.3

AS96-10 Hurst NZ 050 024 5280 217 10 11432 30.8 171.4 371.2

AS96-11 Stang Mine NZ 008 057 6270 279 13 17293 113.2 55.4 152.8

AS96-12 Windegg Lead level NZ 013 052 266 107 14 300 1.47 181.0 204.1

AS96-13 Langthwaite NY 997 026 150 52 10 136 0.61 245.9 223.0

AS96-16 Forefield Rake NY 967 025 94 287 5.5 125 0.61 154.1 204.9

Sphalerite

AS96-6 Haw Bank SD 986 898 6760 1401 10 23880 83.1 81.3 287.4

AS96-17 Hebden Gill SE 025 656 1680 89 3 3944 11.2 150.0 352.1

Barite

AS96-3 Grassington SE 021 657 440 68 4 1566 3.2 137.5 489.4

AS96-7 Coldstone Quarry SE 109 640 390 33 3 772 4 97.5 193.0

AS96-8 Cobscar Rake SE 060 930 507 130 33 832 2.9 174.8 286.9

AS96-9 Marrick Moor NZ 063 004 516 357 212 838 4.4 117.3 190.5

AS96-10 Hurst NZ 050 024 47 70 71 119 0.65 72.3 183.1

AS96-14 Hungry Hushes NY 985 028 1163 50 15 2035 5.9 197.1 344.9

AS96-15 Surrender Ground NY 975 025 1675 63 91 3357 16.6 100.9 202.2

AS96-16 Forefield Rake NY 967 025 5500 333 15 13078 62 88.7 210.9

AS96-17 Hebden Gill SE 025 656 1050 64 9 2452 12.2 86.1 201.0

AS96-18 Yarnbury SE 020 654 3740 383 13 11769 88.3 42.4 133.3

10
11 Samples in bold italics are those where REY were determined. Samples marked with an asterisk are those were Sr and Nd isotopes were 

12 determined.
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3

14

15

Table 3: Microthermometry data retrieved from fluid inclusion assemblages in Alston and Askrigg Block mineralization.

Region Mineral Te Thyd Tice Th Salinity [wt% NaCl equiv]

Alston Block Fluorite -52 to -80°C -23 to -26°C -15.5 to -21°C 105 to 159°C 19.7-22.7 

Quartz -50 to -70°C -17.5 to -22.7°C 105 to 158°C 20.5-23

Barite -56 to -60°C -14.5 to -17°C 110 to 160°C 18.4-20.4

Calcite -50°C -17.8 to -19.7°C 104-134°C 21.2-22.5

Askrigg Block Fluorite -36 to -59°c -21.7 to -31°C -18.1 to -26°C 99-160°C 19-26

Barite -42 to -74°C -19 to -24°C -9.7 to -19°C 110-173°C 12.4-21.6
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Table 4: Barium, rare earth element and Y concentrations in fluorite specimen from the Alston Block.

mg kg-1 AL96-

1

AL96-

2

AL96-

3

AL96-

4

AL96-

5

AL96-

6

AL96-

7

AL96-

8

AL96-

10/p

AL96-

10/g

AL96- 

11

AL96-

13

AL96-

17

AL96-

19

AL96-

24/p

AL96-

26

Ba 6.83 14.9 2.09 5.64 31.9 1.52 0.987 4.57 13.8 2.31 5.98 7.99 6.51 7.55 1.13 1850

La 6.19 6.39 4.49 4.48 8.76 32.4 9.81 25.5 28.4 56.6 14 15.9 37.9 20 4.43 1.15

Ce 13.8 19 10.8 15.6 18.3 68.5 19.2 47.3 59.3 102 34.6 32.3 75.3 44.8 12.4 3.62

Pr 2.35 3.17 1.76 3.31 2.79 9.4 2.83 6.28 9.34 12.2 5.85 5.2 10.3 7.11 2.28 0.637

Nd 13 19.3 9.23 21.8 16.1 43.7 14.7 29.1 49.3 54.8 31.8 28.3 49.6 36.3 13 4.06

Sm 7.76 11 5.78 14.8 12.9 21.8 10.9 12 25.9 27.6 17 14.9 22.6 20.4 7.97 2.88

Eu 14.9 23.2 5.41 38.9 21.9 22.2 19.2 27.6 62.8 65.6 47.2 41.8 52.3 54.6 2.89 0.868

Gd 18.8 25.6 13.4 35.5 35.6 44.5 29.8 24.9 56 50.6 40.4 32.3 44.5 47.5 15.8 7.2

Tb 3.15 4.12 2.38 6.13 7.01 9.2 5.83 4.53 8.05 7.97 6.64 5.2 7.44 7.43 2.95 1.37

Dy 18.2 22.2 11.9 33.8 42.3 47.6 32.2 23.8 43.7 47.2 31 28.9 38.2 39.2 17.1 8.97

Y 252 294 152 363 381 551 311 200 552 382 372 351 356 436 222 135

Ho 2.79 3.35 1.56 5.05 6.62 7.07 4.88 3.37 6.72 6.61 4.68 4.14 5.49 6.18 2.57 1.48

Er 5.96 7.11 3.28 10.4 14.9 17.1 11 7.92 14.6 14.1 10.4 8.75 12.1 13.2 6.21 3.39

Tm 0.549 0.663 0.296 0.997 1.46 1.94 1.11 0.838 1.27 1.29 0.96 0.861 1.16 1.18 0.714 0.334

Yb 2.48 3.02 1.24 4.4 7.46 10.5 5.54 4.21 5.6 7.14 3.96 4.02 5.67 5.47 4.26 1.83

Lu 0.239 0.29 0.107 0.417 0.748 1.12 0.592 0.422 0.598 0.772 0.416 0.397 0.587 0.582 0.433 0.168

∑REY 362.2 442.4 223.6 558.6 577.9 888.0 478.6 417.8 923.6 836.5 620.9 574 719.1 740 315.0 173

Y/Ho 90.3 87.8 97.4 71.9 57.6 77.9 63.7 59.3 82.1 57.8 79.5 84.8 64.8 70.6 86.4 91.2

CeSN/Ce*
SN 1.36 1.96 1.24 2.43 1.74 1.16 1.34 1.19 1.30 1.26 1.31 1.38 1.24 1.20 1.39 2.35

EuSN/Eu*
SN 5.55 6.40 2.68 7.51 4.07 2.88 4.27 6.95 8.17 8.33 8.22 8.87 7.56 8.25 1.11 0.79
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Table 5: Barium, rare earth element and Y concentrations in fluorite specimen from the Askrigg Block.

mg kg-1 AS96-1 AS96-5/p AS96-6 AS96-7 AS96-7 

Rep

AS96-13 AS96-14 AS96-17

Ba 3.38 37600 <d.l. 71.7 66.5 <d.l. 392 72200

La 0.227 0.642 0.508 0.306 0.318 0.514 0.25 0.864

Ce 0.469 1.19 1.63 0.684 0.751 1.55 0.855 2.02

Pr 0.1 0.23 0.379 0.143 0.152 0.298 0.222 0.428

Nd 0.519 1.19 2.16 0.83 0.823 1.59 1.42 2.36

Sm 0.223 0.448 0.845 0.358 0.35 0.683 0.748 1.02

Eu 0.0939 BaO 0.282 0.133 0.144 0.249 0.291 BaO

Gd 0.579 0.837 1.82 0.86 0.951 1.33 1.8 2.24

Tb 0.078 0.112 0.326 0.131 0.129 0.225 0.348 0.365

Dy 0.555 0.721 2.21 0.986 0.944 1.73 2.29 2.42

Y 18.2 18.9 41.4 31 28.9 37.5 43.2 54.3

Ho 0.118 0.142 0.427 0.21 0.222 0.352 0.434 0.488

Er 0.285 0.331 1.13 0.5 0.554 0.892 1.13 1.32

Tm 0.0218 0.0256 0.13 0.0444 0.0472 0.0849 0.123 0.131

Yb 0.094 0.119 0.632 0.192 0.199 0.474 0.63 0.635

Lu 0.0103 0.0135 0.0701 0.0207 0.0232 0.0592 0.0706 0.0801

∑REY
21.6 24.9 54.0 36.4 34.5 47.5 53.8 68.7

Y/Ho 154.2 133.1 97.0 147.6 130.2 106.5 99.5 111.3

CeSN/Ce*
SN 0.93 1.01 1.10 1.29 1.08 1.10 1.63 1.09

EuSN/Eu*
SN 1.33 0.99 1.14 1.26 1.19 1.03
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Table 6: Sr and Nd isotopes in fluorite specimen from the NPO. JDo-1 and IF-G were used as CRM. Reference value for 87Sr/86Sr obtained 

from Ohno & Hirata (2007) and 143Nd/144Nd obtained from Alexander et al. (2009).

SAMPLE [Nd] [Sr] 143Nd/144Nd  +/-2σ 87Sr/86Sr  +/-2σ

mg kg-1 mg kg-1

AL96-1 13.0 40.8 0.512153 5 0.711420 4

AL96-10/p 49.3 58.6 0.512050 4 0.713896 4

AL96-10/g 54.8 55.9 0.512201 3 0.711330 5

AL96-11 31.8 71.6 0.512206 5 0.711399 4

AL96-24 13.0 26.3 0.512541 5 0.712295 4

AL96-26 4.06 44.8 0.512456 4 0.710751 4

AS96-5 1.19 243 0.511903 22 0.710639 4

AS96-6 2.16 92.1 0.511943 21 0.710772 3

AS96-13 1.59 84.0 0.511959 8 0.710813 4

AS96-14 1.42 49.7 0.512007 29 0.710807 7

JDo-1 - - 0.512248 5

0.707548

(Ref: 0.70752) 5

IF-G - -

0.511379 

(Ref: 0.511258) 6 0.719517 6
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