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1. Introduction

The so-called Borwein conjectures, due to Peter Borwein (circa 1990), were
popularized by Andrews [1]. The first of these concerns the expansion of finite
products of the form

(1 − q)(1 − q2)(1 − q4)(1 − q5)(1 − q7)(1 − q8) . . .

into a power series in q and the sign pattern displayed by the coefficients. In
June 2018, in a conference at Penn State celebrating Andrews’ 80th birthday,
Chen Wang, a young Ph.D. student studying at the University of Vienna,
announced that he has vanquished the first of the Borwein conjectures. In this
paper, we propose another set of Borwein-type conjectures. The conjectures
here are consistent with the first two Borwein conjectures, and one given by
Ismail et al. [5,11]. At the same time, they do not appear to be very far from
these conjectures in form and content. However, they are on different lines from
other extensions of Borwein conjectures considered in [2,3,5,10,11,13,14].

Borwein’s first conjecture may be stated as follows: the polynomials
An(q), Bn(q), and Cn(q) defined by
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n−1∏

i=0

(1 − q3i+1)(1 − q3i+2) = An(q3) − qBn(q3) − q2Cn(q3), (1.1)

each have non-negative coefficients. This is the one now settled by Wang [12].
We say that the polynomial on the left-hand side satisfies the Borwein + − −
condition.

Our first conjecture considers products of the form
n−1∏

i=0

(1 − q3i+1)(1 − q3i+2)
m∏

j=1

n−1∏

i=−n

(1 − pjq3i+1)(1 − pjq3i+2).

Computational evidence suggests that for fixed k, the coefficient of pk (a Lau-
rent polynomial in q) satisfies the Borwein +−− condition for n large enough.
For m = 0, this reduces to the left-hand side of (1.1).

This paper is organized as follows. In Sect. 2 we present a precise state-
ment of this conjecture and outline the computational evidence for this con-
jecture. We also make another—even more general—conjecture, which is mo-
tivated by the first two Borwein conjectures, and Andrews’ refinement of these
conjectures. Our third and most general conjecture is motivated by Ismail,
Kim and Stanton [5, Conjecture 1] (see also Stanton [11, Conjecture 3]). In
Sect. 3, we make some remarks concerning the connection to multiple basic
hypergeometric series with Macdonald polynomial argument.

2. The Conjectures

Let a, p and q be formal variables. We shall work in the ring of Laurent
polynomials in q. For n being a non-negative integer or infinity, the q-shifted
factorial is defined as follows:

(a; q)n =
n−1∏

j=0

(1 − aqj).

For convenience, we write

(a1, . . . , am; q)n =
m∏

k=1

(ak; q)n

for products of q-shifted factorials. With this notation, our first conjecture can
be stated as follows.

Conjecture 2.1. Let m and k be non-negative integers. Let the Laurent poly-
nomials Am,n,k(q), Bm,n,k(q), and Cm,n,k(q) be defined by

(q, q2; q3)n

m∏

j=1

(pjq, pjq2; q3)n(pjq−1, pjq−2; q−3)n

=
∑

k≥0

pk
[
Am,n,k(q3) − qBm,n,k(q3) − q2Cm,n,k(q3)

]
. (2.1)
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Then for each m, k ≥ 0, there is a non-negative integer Nm,k such that if
n ≥ Nm,k then the Laurent polynomials Am,n,k(q), Bm,n,k(q), and Cm,n,k(q)
have non-negative coefficients.

Further, for m = 1 we have N1,k = 0 for k ≤ 4, and N1,k = �k
4 � for

k ≥ 5, while for m > 1, Nm,k ≡ Nk is independent of m.

Notes

1. The case m = 0 or k = 0 of Conjecture 2.1 is consistent with the first
Borwein conjecture, see [1, Equation (1.1)].

2. For given m and n, the summation index k is bounded by

k ≤ 4n

(
m + 1

2

)
= 2m(m + 1)n.

3. For m = 1, we must have n ≥ k/4. Indeed, n = �k
4 � are the values of

Nm,k in Table 1 for m = 1 for k ≥ 5. For k < 5, �k
4 � = 1, so we have

Nm,k = 0, since for n = 0 the statement of the conjecture holds trivially.
4. We examined the products for m = 1, 2, . . . , 10; k = 0, 1, 2, . . . , 15; and

n = 0, 1, 2, . . . , 25. For fixed m and k, the value of Nm,k such that the
coefficient of pk in the products satisfies the Borwein + − − condition
for Nm,k ≤ n ≤ 25 (for m ≤ 5) is recorded in Table 1. The values for
m = 6, 7, . . . , 10 were the same as for m = 5. Thus for m > 1, the values
of Nm,k appear to be independent of m.

5. The coefficients of Am,n,k(q) were non-negative for all the values of m,n,
and k that we computed.

6. The coefficients of powers of q in q2Cm,n,k(q3) are the same as those of
qBm,n,k(q3), but in reverse order, that is, we have,

qn2−1Bm,n,k(q−1) = Cm,n,k(q).

This can be seen by replacing q by q−1 in (2.1) and comparing the two
sides.

7. One can ask, as did Stanton for [11, Conjecture 3], whether Conjecture 2.1
holds for n = ∞. However, this question is not applicable here, since the
product on the left-hand side of (2.1) is not defined at n = ∞.
We now make a few remarks about the form of Conjecture 2.1. The

modified theta function is defined as

θ(a; p) = (a; p)∞(p/a; p)∞.

Here we take n = ∞ and replace q by p in the definition of the q-shifted
factorial. This product is convergent if |p| < 1. Consider the theta-shifted
factorials defined as [4, Eq. (11.2.5)]

(a; q, p)n =
n−1∏

i=0

θ(aqi; p) =
n−1∏

i=0

∞∏

j=0

(
1 − apjqi

)(
1 − pj+1q−i/a

)
.

As a natural extension of the Borwein Conjecture, consider

(q; q3, p)n(q2; q3, p)n,
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or,

n−1∏

i=0

∞∏

j=0

(
1 − pjq3i+1

)(
1 − pjq3i+2

)(
1 − pj+1q−3i−1

)(
1 − pj+1q−3i−2

)
.

The product in Conjecture 2.1 should now be transparent. It is obtained by
truncating the infinite products indexed by j. Indeed, one can try even more
general ways to truncate the products.

Conjecture 2.2. Let m1, m2, n1, n2, n3, and k be non-negative integers. Let the
Laurent polynomials A(q) = Am1,m2,n1,n2,n3,k(q), B(q) = Bm1,m2,n1,n2,n3,k(q)
and C(q) = Cm1,m2,n1,n2,n3,k(q) be defined by

(q, q2; q3)n1

m1∏

j=1

(pjq, pjq2; q3)n2

m2∏

j=1

(pjq−1, pjq−2; q−3)n3

=
∑

k≥0

pk
[
A(q3) − qB(q3) − q2C(q3)

]
. (2.2)

For given k, if m1,m2 ≥ 1, and n1, n2 and n3 are large enough, then the
polynomials A(q), B(q), and C(q) have non-negative coefficients.

Notes

1. Borwein’s second conjecture [1, Eq. (1.3)] states that

(q, q2; q3)2n

satisfies the Borwein + − − condition. If we take m1 = 1, m2 = 0,
n2 = n1, p = 1, and ignore the condition m1,m2 ≥ 1, then the statement
of Conjecture 2.2, reduces to Borwein’s second conjecture.

2. Andrews’ refinement of Borwein’s first two conjectures [1, eq. (1.5), x = p]
states that for each k, the coefficient of pk in

(q, q2; q3)n1(pq, pq2; q3)n2

satisfies the Borwein + − − condition. Ae Ja Yee kindly informed us
(private communication, January 2019), that Andrews’ refinement does
not hold. For example, it fails for n1 = 1, n2 = 40, and k = 40. Again, if
we take m1 = 1 and m2 = 0, the statement of Conjecture 2.2 reduces to
Andrews’ refinement of Borwein’s first two conjectures.

3. Our numerical experiments suggest that we must have m1,m2 ≥ 1 in
Conjecture 2.2. But the data we generated do not contradict Borwein’s
second conjecture. Further, it may still be true that Andrews’ refinement
of Borwein’s conjectures is true for large enough values of n1 and n2.

4. It appears that Table 1 is relevant to Conjecture 2.2 too. We observed the
following from the data we generated. Let k be fixed, and m1,m2 ≥ 2.
Let n = min{n1, n2, n3}. Now if n ≥ Nk, where Nk ≡ N2,k is taken from
Table 1, the coefficients of pk in the expansion of the products in question
satisfy the Borwein + − − condition.
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Next, on the suggestion of Dennis Stanton, we examine a conjecture due
to Ismail, Kim and Stanton [5, Conjecture 1] (see also Stanton [11, Conjec-
ture 3]), who considered

(qa, qK−a; qK)n =
∞∑

m=0

amqm,

where a and K are relatively prime integers with a < K/2. These authors
conjectured:

If K is odd, then

am ≥ 0 if m ≡ ±aj mod K, for some non-negative even integer j < K/2,

and,

am ≤ 0 if m ≡ ±aj mod K, for some positive odd integer j < K/2.

In [11], this conjecture is followed by the statement: If K is even, then
(−1)mam ≥ 0. The unfortunate placement of this statement suggests that it
is part of the conjecture. In fact, it is easy to prove. Since a is relatively prime
to K, and K is even, both a and K − a are odd. Thus all the factors in the
product are of the form (1 − qodd). Now to obtain a term qm with m even, we
will need to multiply an even number of monomials of the form (−qodd), so
the sign will be positive. Similarly, if m is odd, the sign will be negative.

As in Conjecture 2.2, we consider the formal expression

(qa; qK , p)n(qK−a; qK , p)n,

truncate the infinite products, and check whether the coefficients satisfy a
similar sign pattern. For K even, it is easy to see that an analogous statement
holds for the coefficient of pk for all non-negative integers k.

For K odd, we found that the sign pattern is the same as mentioned
above, but only when a = �K/2	. In this case, the pattern is an elegant
extension of Borwein’s +−−. When K is of the form 4l +1 or 4l +3, the sign
pattern is as follows:

K = 4l + 1 : + + · · · +︸ ︷︷ ︸
l+1

− − · · · −︸ ︷︷ ︸
2l

+ + · · · +︸ ︷︷ ︸
l

K = 4l + 3 : + + · · · +︸ ︷︷ ︸
l+1

− − · · · −︸ ︷︷ ︸
2l+2

+ + · · · +︸ ︷︷ ︸
l

For example, when K = 5, then the pattern is ++−−+, and when K = 7, then
the pattern is ++−−−−+. (As before, the + sign represents a non-negative,
and the − sign represents a non-positive coefficient.)

In what follows, we have replaced K by 2K +1; we consider only the odd
powers of the base q.

Conjecture 2.3. Let m1, m2, n1, n2, n3, and k be non-negative integers. Let K
be any positive number. Let the Laurent polynomials Ak(q) =
Am1,m2,n1,n2,n3,k,K(q) be defined by
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(qK , qK+1; q2K+1)n1

m1∏

j=1

(pjqK , pjqK+1; q2K+1)n2

×
m2∏

j=1

(pjq−K , pjq−K−1; q−2K−1)n3 =
∑

k≥0

pkAk(q), (2.3)

where Ak(q) is a Laurent polynomial of the form

Ak(q) =
∑

M

aM,kqM .

Let l = � 2K+1
4 	. For given k and K, if m1,m2 ≥ 1, and n1, n2 and n3 are

large enough, then the coefficients aM,k satisfy the following sign pattern:

aM,k =

{
≥ 0, if M ≡ 0,±i mod 2K + 1, for i = 1, 2, . . . , l,

≤ 0, otherwise.

Notes

1. If m1 = 0 = m2, then the products on the left-hand side of (2.3) are a
special case of those considered in [5, Conjecture 1].

2. When K = 1, Conjecture 2.3 reduces to Conjecture 2.2.
3. We gathered data for the following values of the variables systematically:

m1,m2 ∈ {2, 3},

n1, n2, n3 ∈ {1, 2, . . . , 5},

k ∈ {1, 2, . . . , 10},

K ∈ {2, 3, 4, . . . , 14}.

In addition, we considered many random values, with

m1,m2, n1, n2, n3 ∈ {0, 1, . . . , 10},

k ∈ {0, 1, . . . , 30},

K ∈ {1, 2, 3, 4, . . . , 20}.

In case we obtained a set of values that did not satisfy the required sign
pattern, we performed further computations with larger values of n1, n2

or n3.
4. In our experiments, we found only a few values where the predicted sign

pattern does not hold, even for large values of n1, n2 and n3. All of these
were with either m1 = 0 or m2 = 0. For example, when m1 = 4,m2 =
0,K = 3, k = 18. In particular the coefficient of p18q26 is predicted to be
negative, but is in fact 1, when n1 and n2 are large. This is the reason for
the condition m1,m2 ≥ 1 in the statements of Conjectures 2.2 and 2.3.

3. Multiple Series Representations

In this section we extend Andrews’ explicit expressions for the polynomials
An(q), Bn(q) and Cn(q) of (1.1) appearing in the first Borwein conjecture.
Andrews [1, Eqs. (3.4)–(3.6)] showed that
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An(q) =
∞∑

λ=−∞
(−1)λqλ(9λ+1)/2

[
2n

n + 3λ

]
, (3.1a)

Bn(q) =
∞∑

λ=−∞
(−1)λqλ(9λ−5)/2

[
2n

n + 3λ − 1

]
, (3.1b)

Cn(q) =
∞∑

λ=−∞
(−1)λqλ(9λ+7)/2

[
2n

n + 3λ + 1

]
, (3.1c)

where
[
m
j

]
=

⎧
⎨

⎩

0, if j < 0 or j > m,
(q; q)m

(q; q)j(q; q)m−j
, otherwise,

denotes the q-binomial coefficient. We use a result of Kaneko [7] from the
theory of basic hypergeometric series with Macdonald polynomial argument
(see [6,8]) to give analogous expressions for the functions involved in Conjec-
ture 2.1.

Let Fm,n(p, q) denote the left-hand side of (2.1). We first dissect it as
follows:

Fm,n(p, q) = F 0
m,n(p, q3) − qF 1

m,n(p, q3) − q2F 2
m,n(p, q3).

Thus, we have the definitions:

F 0
m,n(p, q) =

2m(m+1)n∑

k=0

pkAm,n,k(q),

F 1
m,n(p, q) =

2m(m+1)n∑

k=0

pkBm,n,k(q),

F 2
m,n(p, q) =

2m(m+1)n∑

k=0

pkCm,n,k(q).

We extend Andrews’ identities by writing each F l
m,n(p, q) (for l = 0, 1, 2) as a

(2m + 1)-fold sum.
In the following, λ is an integer partition. That is, λ is any sequence

λ = (λ1, λ2, . . . , λn, . . . )

of non-negative integers such that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · , and contains
only finitely many non-zero terms, called the parts of λ. We use the symbol
|λ| = λ1 + λ2 + · · · and say λ is a partition of |λ|. In slight misuse of notation
we shall also use λ to denote finite non-increasing sequences of integers which
are not necessarily all non-negative. For such sequences λ the symbol |λ| is
understood to denote the sum of the elements of λ, as one would expect.
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Theorem 3.1. For l = 0, 1, 2 we have

F l
m,n(p, q) = (−1)(

l+1
2 ) pm(m+1)nq−mn2

×
∑

n≥λ1≥λ2≥···≥λ2m+1≥−n
|λ| ≡ −l (mod 3)

⎛

⎝
∏

1≤i<j≤2m+1

(1 − pj−iqλi−λj )(pj−i+1; q)λi−λj

(1 − pj−i)(pj−i−1q; q)λi−λj

×
2m+1∏

i=1

(pi−1q; q)2n

(pi−1q; q)n−λi
(p2m+1−iq; q)n+λi

× (−1)|λ|p
∑2m+1

i=1 (i−1−m)λi × q(
λ1+1

2 )+···+(λ2m+1+1
2 )− |λ|+l

3

⎞

⎠ .

Remark 3.2. From the expression in Theorem 3.1, it is not obvious that the
functions F l

m,n(p, q) are actually polynomials in p of degree 2m(m + 1)n.

Before proving the theorem, we outline some background information
from the theory of basic hypergeometric series with Macdonald polynomial
argument. For the definition of the Macdonald polynomials Pλ(x1, . . . , xn; q, t)
together with their most essential properties, we refer to Macdonald’s book [9].

In particular, the Pλ(x1, . . . , xn; q, t) are homogenous in x1, . . . , xn of de-
gree |λ|; we have, after scaling each xi by z,

Pλ(zx1, . . . , zxn; q, t) = z|λ|Pλ(x1, . . . , xn; q, t). (3.2)

We also make use of the principal specialization formula [9, p. 343, Ex. 5]: Let

Pλ(1, t, . . . , tn−1; q, t) = tn(λ)
∏

1≤i<j≤n

(tj−i+1; q)λi−λj

(tj−i; q)λi−λj

, (3.3)

where λ has at most n parts, and n(λ) =
∑n

i=1(i − 1)λi.
We require the following lemma.

Lemma 3.3. Let N be a non-negative integer. Then

n∏

i=1

(zt1−i, z−1qti−1; q)N

=
∑

N≥λ1≥λ2≥···≥λn≥−N

⎛

⎝
∏

1≤i<j≤n

(1 − qλi−λj tj−i)(tj−i+1; q)λi−λj

(1 − tj−i)(qtj−i−1; q)λi−λj

×
n∏

i=1

(qti−1; q)2N

(qti−1; q)N−λi
(qtn−i; q)N+λi

× q(
λ1+1

2 )+···+(λn+1
2 )t

∑n
i=1(i−1)λi(−z−1)|λ|

⎞

⎠ .
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Proof. We use a reformulation of a result by Kaneko [7, Lemma 2]. Let N be
a non-negative integer. Then

n∏

i=1

(−xiq,−x−1
i ; q)N

=
∑

N≥λ1≥λ2≥···≥λn≥−N

⎛

⎝
∏

1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

×
n∏

i=1

(qti−1; q)2N

(qti−1; q)N−λi
(qtn−i; q)N+λi

× q

(
λ1+1

2

)
+···+

(
λn+1

2

)

× (x1 · · ·xn)
λnPλ−λn(x1, . . . , xn; q, t)

⎞

⎠ ,

where λ − λn stands for the partition (λ1 − λn, . . . , λn − λn).
In Kaneko’s identity, we take xi = −z−1ti−1, for 1 ≤ i ≤ n, and make use

of the homogeneity (3.2) and the principal specialization in (3.3), to obtain
the lemma. �

Proof of Theorem 3.1. We first observe that the product on the left-hand side
of (2.1) can be written as

m∏

j=0

(pjq, pjq2; q3)n

m∏

j=1

(pjq−1, pjq−2; q−3)n

= pm(m+1)nq−3mn2
2m+1∏

i=1

(p−m+i−1q2, pm−i+1q; q3)n.

Next, we apply the (n,N, z, q, t) �→ (2m + 1, n, pmq, q3, p) case of Lemma 3.3
to arrive at

m∏

j=0

(pjq, pjq2; q3)n

m∏

j=1

(pjq−1, pjq−2; q−3)n

= pm(m+1)nq−3mn2 ∑

n≥λ1≥λ2≥···≥λ2m+1≥−n

×
⎛

⎝
∏

1≤i<j≤2m+1

(1 − pj−iq3λi−3λj )(pj−i+1; q3)λi−λj

(1 − pj−i)(pj−i−1q3; q3)λi−λj

×
2m+1∏

i=1

(pi−1q3; q3)2n

(pi−1q3; q3)n−λi
(p2m+1−iq3; q3)n+λi

× (−1)|λ|p
∑2m+1

i=1 (i−1−m)λi

× q
3
(

λ1+1
2

)
+···+3

(
λ2m+1+1

2

)
−|λ|

⎞

⎠ .

By picking the coefficients of ql with l belonging to a residue class modulo
3, we obtain the theorem. �



A Partial Theta Function Borwein Conjecture 571

Remark 3.4. We can obtain a more general multiseries expression for the prod-
ucts

m∏

j=0

(pjqa, pjq2K+1−a; q2K+1)n

m∏

j=1

(pjq−a, pjqa−1−2K ; q−2K−1)n

by following a similar analysis as carried out in the proof of Theorem 3.1, where
we apply the (n,N, z, q, t) �→ (2m + 1, n, pmqa, q2K+1, p) case of Lemma 3.3.
The case a = K gives the products on the left-hand side of (2.3), with n =
n1 = n2 = n3 and m = m1 = m2.
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Norm. Sup. (4) 29(5), 583–637 (1996)

[7] Kaneko, J.: A triple product identity for Macdonald polynomials. J. Math. Anal.
Appl. 200(2), 355–367 (1996)

[8] Macdonald, I.G.: Hypergeometric functions II (q-analogues). Unpublished man-
uscript (1988). arXiv:1309.5208 (2013)

[9] Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Second Edtion.
Reprint of the 2008 paperback edition. Oxford University Press, New York (2015)
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