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Abstract
We analyse the effect of post-Newtonian gravitational fields on propagation 
of light in a cylindrical waveguide in both a straight configuration and a spool 
configuration. We derive an equation for the dependence of the wave vector 
upon the vertical location of the waveguide. It is shown that the gravitational 
field produces a small shift in the wave vector, which we determine, while 
the spooling creates additional modes which could perhaps be measurable in 
future accurate experiments.
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1.  Introduction and summary

Despite the fact that Earth-based optical experiments are by necessity performed in the pres-
ence of a large gravitating object, they barely enter regimes where gravitational effects start to 
become relevant. However, recent technological advances have sparked proposals for experi-
ments probing the effects of post-Newtonian fields on photons [1–5]. Some of these schemes 
rely on optical waveguides, in particular fibers, that are located at different heights above 
ground in an interferometric arrangement. Other experiments use optical fibers as a link in 
order to perform frequency comparisons of clocks located at different gravitational potentials 
[6, 7]. In a recent paper [5] an experiment was proposed to measure the effect of the gravita-
tional field on single photons in a waveguide. The gravitational phase shift of the photon [2] 
was calculated there by treating the photon as a particle following a prescribed trajectory in 
a post-Newtonian metric. The object of this paper is to derive the phase shift from first prin-
ciples, using the Maxwell equations in a dielectric medium in such a metric.

The first main result of our work is the formula which determines the change δβ of the 
‘wave vector’ β, defined in (4.13), as a function of the change δh of height of a straight wave-
guide experiencing a post-Newtonian constant gravitational force orthogonal to its axis:

δβ = −2ω2n2g
c4β

δh� (1.1)

see equation (4.72) below, where ω is the frequency of light, n is the refractive index, g the 
gravitational acceleration and c the speed of light in vacuum.

A naive interpretation of the formula above suggests a gravitational phase shift larger by 
a factor of two than the one derived previously using calculations based on the proper time 
of an object moving with velocity determined by the refractive index n, as done in [5] and 
other works on the subject. However, the calculation of the phase shift (see section 4.8 below) 
requires to take into account both the change of β and the change of proper length of the wave-
guide. This results in a phase shift which coincides with the one used in [5] when subleading 
corrections are ignored.

Now, in the experiment proposed in [5] the waveguide will be spooled, in order to achieve a 
travel distance of the photon of the order of hundreds of kilometers on a tabletop; see figure 1. 
This raises the question of the effects resulting from the spool configuration. Our second 
main result, derived in section 5, is the observation that the periodic gravitational potential 
effectively experienced by a photon moving in a spool creates additional modes, with wave 
vector shifted by the inverse of the radius of the spool and with amplitude by about ten orders 
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of magnitude smaller than that of the main mode for a spool with a radius of 30 cm. The effect 
appears to be out of experimental reach today, but could perhaps be detectable in future accu-
rate experiments.

In retrospect, we find that in our context (1.1) can be obtained by solving the waveguide 
problem in Minkowski space-time and then using the formula,

ω �→
(

1 − 2φ
c2

)
ω,� (1.2)

as a replacement for ω in the Minkowski-space waveguide equations. Note that this is neither 
a standard proper-time redefinition for a static observer, nor the standard gravitational redshift 
formula. In any case, the simple replacement (1.2) is not the correct way to proceed when 
gradients of φ become relevant.

Our calculations do not take into account the rotation of the earth. This effect has been cal-
culated in [5] using a particle model, and has been shown to be dominant in the experiment. A 
proper treatment of this effect along the lines of the calculations here remains to be done, we 
will address this in a near future.

Similarly we do not take into account the fact that a non-uniform gravitational field intro-
duces anisotropies in the medium which depend upon the vertical location of the waveguide. 
We expect the resulting effect to be of subleading order, but this is not completely clear. We 
plan to carry-out a careful analysis of this in the future.

Last but not least, we ignore the effects due to the bending of the coils, as they should be 
independent of the vertical location of the spool.

2.  Isotropic dielectrics in special relativity

In this section we review the Maxwell equations, in four-dimensional tensor notation, in a 
charge-free, current-free, non-magnetic, isotropic dielectric medium in Minkowski space-time.

Let

η ≡ ηαβdxαdxβ ≡ −c2dt2 + dx2 + dy2 + dz2� (2.1)

denote the Minkowski metric. Here we use the notation

Figure 1.  Schematic for two different geometries that are used to analyse the effect 
of post-Newtonian gravitational fields on light propagating in cylindrical waveguides. 
(a) In a straight, isotropic single-mode fiber within a constant gravitational potential, a 
change in the wave vector as a function of the height (δh) of the fiber above a reference 
level is to be expected. (b) For a fiber in a spool configuration with diameter ds, 
additional modes are created when subject to a non-uniform gravitational potential.
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(xµ) ≡ (x0, xi) ≡ (t, x, y, z)

for the coordinates. (In particular, in our conventions, x0  =  t and not x0  =  ct, and we are mostly 
using SI units in this work.) Thus

(ηαβ) = diag(−c2, 1, 1, 1) and (ηαβ) = diag(−c−2, 1, 1, 1).

Consider a family of inertial observers in Minkowski spacetime with four-velocity field 
uµ∂µ = c−1∂0. The Maxwell fields �E  and �B  seen by those observers can be encoded in an 
antisymmetric tensor field Fαβ by setting

F0i = c−2Ei, Fij = ε̊ijkBk,� (2.2)

where the indices on F are raised and lowered with η. The equations

∂[αFβγ] = 0 ⇐⇒ d(Fαβdxα ∧ dxβ︸ ︷︷ ︸
=:F

) = 0
� (2.3)

coincide with the following pair of Maxwell equations

∇ · �B = 0, ∂t�B = −∇× �E.� (2.4)

Let ε̊ijk  and ε̊ijk  denote totally anti-symmetric three-dimensional tensors (without any 
weights), thus

ε̊123 = 1 = ε̊123.

Introducing

F
0i
= c−2Di, Fij = c−2̊εijkHk,� (2.5)

the remaining source-free Maxwell equations  in a non-polarizable, homogenous isotropic 
dielectric, using SI units for the Maxwell fields,

∇ · �D = 0, ∂t�D = ∇× �H,� (2.6)

can be written as

∇νFνρ = 0,� (2.7)

where

Fνρ = aFνρ − 2(a − b)u[νFρ]σuσ ,� (2.8)

with

b = ε, a =
1
µc2 .� (2.9)

Indeed, using ηαβuαuβ = −1, (2.8) is equivalent to the pair of equations Fνρuρ = b Fνρuρ 
and u[νFρσ] = a u[νFρσ], which is in turn equivalent to the usual relations for a dielectric

�D = ε�E ≡ ε0n2�E, �B = µ�H ≡ µ0�H.� (2.10)

Note that we can also write

F
αβ

=
1
µc2 γ̊

αργ̊βσFρσ,� (2.11)

R Beig et alClass. Quantum Grav. 35 (2018) 244001
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where ̊γαβ is given by

γ̊αβ = ηαβ + (1 − n2)uαuβ , with n =
√
εµc.� (2.12)

When viewed as a matrix, ̊γαβ is the matrix inverse to the optical metric ̊γ ≡ γ̊αβdxαdxβ:

γ̊αβ := ηαβ + (1 − n−2)uαuβ .� (2.13)

3.  Isotropic dielectrics in curved spacetime

We invoke the correspondence principle to write the Maxwell equations  for an isotropic 
dielectric medium in a general space-time, compare [8] and references therein5. The homoge-
neous Maxwell equations contained in dF = 0 are already generally covariant and therefore 
remain unchanged. In the remaining equations the partial derivatives are replaced by covariant 
ones. If we denote by g the space-time metric and by ∇ the associated covariant derivative 
then, in the absence of sources,

0 = ∇µF̄µν ≡ 1√
− det g

∂(F̄µν
√
− det g)

∂xµ
.� (3.1)

Equation (2.11) maintains its special-relativistic form,

F̄αβ =
1
µc2 γ

αργβσFρσ,� (3.2)

with γαβ defined as

γαβ = gαβ + (1 − n2)uαuβ with n =
√
εµc.� (3.3)

Here the vector field u is taken to be the velocity four-vector defined by the motion of 
the dielectric medium in space-time. It depends of course upon g via its normalization 
g(u, u) = uαuα = −1. Equivalently, assuming that ẋ ≡ ẋα∂α is future-oriented,

uγ :=
ẋγ√

|g(ẋ, ẋ)|
≡ ẋγ√

|gαβ ẋαẋβ |
.� (3.4)

3.1.  3  +  1 decomposition

In this section we rewrite the Maxwell equations in a 3  +  1-decomposed form. For future ref-
erence we do this in a whole generality, for any metric and in any coordinate system. Note that 
for the purpose of our work here a static metric in an adapted time slicing would have sufficed. 
A geometric decomposition of the equations in this last setting can be found in the appendix.

Let us set

ei := Fi0, di := F
0i

, bk :=
1
2
ε̊ijkFij, hk :=

1
2
ε̊ijkF

ij
.� (3.5)

In Minkowski space-time and in a manifestly Minkowskian coordinate system we have, using 
SI units,

5 As emphasised e.g. in [9], Maxwell equations in media can be written in a covariant way without invoking a met-
ric. In our case the metric arises in the problem at hand through the definition of an isotropic medium.
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ei := Ei, di := c−2Di, bk := Bk, hk := c−2Hk.� (3.6)

In the notation of (3.5), the equations

∂[αFβγ] = 0� (3.7)

are equivalent to

∂0bk = −ε̊ijk∂iej, ∂kbk = 0.� (3.8)

Similarly, the equations

∇µF
µν

= 0,� (3.9)

decompose as

∂0(
√
| det g|dk) = ∂i(

√
| det g|̊εijkhj), ∂k(

√
| det g|dk) = 0.� (3.10)

Let g = gijdxidx j denote the metric induced by the space-time metric on the level sets of 
the function x0, and let D denote the associated covariant derivative. In order to make (3.8) 
manifestly covariant with respect to space-coordinate changes we introduce

εijk =
√
det g̊εijk, εijk =

1√
det g

ε̊ijk, Bk =
1
2
εijkFij =

1√
det g

bk.� (3.11)

This allows us to rewrite (3.8) as

∂0B
k = −εijkDiej −

1
2
∂0(det g)
det g

Bk, DjB
j = 0.� (3.12)

Let c be a constant related to the choice of units, which has its usual meaning in a post-Newto-
nian context (thus, in Minkowski space-time and in SI units, equals the speed of light). Setting

Dk :=
cdk

√
|g00|

, Hk :=
√
det g√
|g00|

chk ≡
√
| det g|chk,� (3.13)

where we used

det g =
det g
g00 ,� (3.14)

the space-covariant version of (3.10) reads

∂0D
k = εijkDiHj −

1
2
∂0(det g)
det g

Dk, DkD
k = 0.� (3.15)

So far the equations were completely general, and holding in any coordinate system. In 
what follows we will now assume that the four-velocity vector field uµ of the medium is 
hypersurface-orthogonal. We can then use a coordinate system in which uαdxα is proportional 
to dt and uβ∂β  is proportional to ∂t

6. Assuming (2.11) and (2.12) we then have

6 One could moreover require uα∂α = ∂t , but this is not convenient when, e.g. a post-Newtonian metric is used.
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dk = ε|g00|gk�e�, Dk = cε
√

|g00|gk�e�, Bk = µc
√
|g00|gk�H�.� (3.16)

Setting

Ek := c
√
|g00|gk�e�,� (3.17)

one is led to

∂tB
k = −εijkDi

(
Ej

c
√
|g00|

)
− 1

2
∂t(det g)
det g

Bk, DjB
j = 0,� (3.18)

∂t
(
εEk) = εijkDi

(
Bj

µc
√
|g00|

)
− ε

2
∂t(det g)
det g

Ek, Dk
(
εEk) = 0;� (3.19)

recall that all indices are raised and lowered with respect to the space-metric gijdxidx j.
Note that both ε and μ are allowed to depend upon coordinates as well as all other fields.

3.2.  Linearised gravity

In the weak-field approximation the metric tensor gµν is written as

gµν = ηµν + hµν ,� (3.20)

where ηµν is the Minkowski metric and hµν is a small deviation. By definition, there exists a 
small number ̊ε > 0 (not to be confused with the vacuum permittivity ε0) such that

|h|+ |∂h|+ |∂∂h| � ε̊ � 1.� (3.21)

In the calculations that follow we will ignore all terms involving products of h and its deriva-
tives, i.e. any terms of order 2 or higher in ̊ε. In such an approximation it holds that

gµν = ηµν − hµν + O(ε̊2),� (3.22)

while the determinant of the metric gµν can be written as

det g = −c2(1 + hα
α + O(ε̊2)) =⇒

√
| det g| = c(1 +

1
2

hα
α + O(ε̊2)).

�

(3.23)

3.3.  Post-Newtonian approximation

We consider (3.18) and (3.19) in the weak-field post-Newtonian metric gµν = ηµν + hµν, thus

h00 = −2φ, hij = −2φ
c2 ηij, h0i = 0,

1√
|g00|

= c
(

1 +
φ

c2

)
, εijk = (1 +

3φ
c2 )̊ε

ijk,� (3.24)

where φ is the Newtonian potential; in our conventions,

φ = −MG/r

in spherical symmetry. This is equivalent to using a Schwarzschild metric, and calculating to 
leading order in the inverse-distance. In this section we assume that the dielectric is at rest 
in the coordinates above. Using Ei = gijE

j = (1 − 2φc−2)Ei, etc, and using the summation 
convention on repeated pairs of indices even if they are in identical positions, in the regions 
where μ and ε are constant from (3.18) and (3.19) we find

R Beig et alClass. Quantum Grav. 35 (2018) 244001
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∂tB
k = −(1 +

3φ
c2 )̊ε

ijk∂i

(
(1 − φ

c2 )E
j
)

, ∂j

(
(1 − 3φ

c2 )B
j
)

= 0,� (3.25)

εµ∂tE
k = (1 +

3φ
c2 )̊ε

ijk∂i

(
(1 − φ

c2 )B
j
)

, ∂j

(
(1 − 3φ

c2 )E
j
)

= 0.� (3.26)

To leading order we obtain
(

1 − 2φ
c2

)
∂tB

k = −ε̊ijk∂iE
j + ε̊ijk ∂iφ

c2 E j, ∂j

(
(1 − 3φ

c2 )B
j
)

= 0,� (3.27)

(
1 − 2φ

c2

)
εµ∂tE

k = ε̊ijk∂iB
j − ε̊ijk ∂iφ

c2 B j, ∂j

(
(1 − 3φ

c2 )E
j
)

= 0.� (3.28)

Assuming that φ is constant throughout the dielectric, we find the usual equations  for a 
dielectric with the original n but with a redefinition of time,

t �→
(

1 +
2φ
c2

)
t .

Note that this differs by a factor of two from the usual time-dilation arising from a redefinition 
of coordinate time t to proper time of static observers, which corresponds to (in leading order 
in φ/c2)

t �→
(

1 +
φ

c2

)
t.

For practical purposes it is advantageous to introduce new fields

E j = (1 − 3φ
c2 )E

j, B j = (1 − 3φ
c2 )B

j,� (3.29)

which have vanishing Euclidean divergence.
(Note that the notation is in line with that of section 2 when φ ≡ 0.)
In terms of these we find

(
1 − 2φ

c2

)
∂tBk = −ε̊ijk∂iE j − 2̊εijk ∂iφ

c2 E j, ∂jB j = 0,� (3.30)

(
1 − 2φ

c2

)
εµ∂tEk = ε̊ijk∂iB j + 2̊εijk ∂iφ

c2 B j, ∂jE j = 0.� (3.31)

The boxed part of the equation is the relevant one when φ is assumed to be constant through-
out the dielectric.

We emphasise that above we use E j and B j as the basic fields because they have vanishing 
divergence.

Differentiating with respect to t and neglecting terms involving more than one factor of φ 
one finds, in Euclidean coordinates on 3,

R Beig et alClass. Quantum Grav. 35 (2018) 244001



9

(
1 − 2φ

c2

)2

εµ∂2
t Bk = ∆̊Bk +

2
c2 (B

k∆̊φ− Bi∂k∂iφ) +
1
c2 ∂

iφ(6∂iBk − 4∂kBi),� (3.32)

(
1 − 2φ

c2

)2

εµ∂2
t Ek = ∆̊Ek +

2
c2 (E

k∆̊φ− Ei∂k∂iφ) +
1
c2 ∂

iφ(6∂iEk − 4∂kEi),� (3.33)

where ∆̊ is the flat-space Laplace operator ∂2
x + ∂2

y + ∂2
z .

Neglecting terms involving one or more derivatives of φ, we obtain the usual second-order 
propagation equation in the medium with n replaced by an ‘effective refractive index’ 

neff := (1 − 2φ
c2 )

√
εµc >

√
εµc.� (3.34)

However, this is not the right interpretation for (3.30) and (3.31).

3.4.  Orders of magnitude

On the surface of the earth we have: mass M♁ ≈5.97 × 1024 kg, radius R♁ ≈6.37 × 106 m , 

Newton’s constant G ≈ 6.67 × 10−11 m3 kg−1 s−2 , speed of light c ≈ 3 × 108 m s−1, giving
2φ
c2 ≈ −1.39 × 10−9.� (3.35)

For the purpose of comparing waveguides at different heights this is by itself not relevant 
(compare the beginning of section 4.2 below), what matters is only the difference of the poten-
tial between the waveguides, and hence the gradient of φ. Denoting by g♁ ≈ 9.81 m s−2 the 
gravitational acceleration at the surface of the earth, we find

|∇φ|
c2 = g♁c−2 ≈ 1.09 × 10−16 m−1.� (3.36)

When used together with (3.34), one obtains the relative change of effective refractive 
index when a second waveguide is located one meter above the first one. Note that this rela-
tive change can be increased by two orders of magnitude by placing the upper waveguide at 
the top of the ZARM tower in Bremen, with the lower arm at the bottom. (Here the ZARM 
tower is used as an example for its height, and not for its free-fall facilities; our waveguides 
are suspended at given height.)

Note that, in view of (3.35), corrections in the equations of relative order beyond 10−18 
might require taking into account second-order post-Newtonian corrections.

In order to estimate the relative effect of the gradient terms in (3.27) and (3.28), the gradi-
ent (3.36) should be compared with |∇�B|/|�B|. Now, the diameter d of a typical waveguide is 
of the order of d ∼ 10−5 m. Estimating |∇�B|/|�B| by d−1, this gives a contribution of the ∂iφ 
terms in the equations smaller by a factor of 10−21 than the dominating terms in the equations.

Recall that the standard optical fibers are silica fibers, which have very high attenuation for 
high frequencies. There are two low loss windows around

1.94 × 1014 s−1 and 2.29 × 1014 s−1.� (3.37)

(One should explore the possibility of using photonic crystal fibers, but those do not seem to 
be available at this stage at the required lengths, and are likely to be much more expensive than 
the silica fibers which are off-the-shelf.)
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Now, one can alternatively estimate |∇�B|/|�B| by the inverse wave-length λ−1 of the light in 
a typical dielectric, which in view of (3.37) is of order

λ ∼ 10−6 m.� (3.38)

This leads to a contribution of the gradient terms of φ smaller by a factor 10−22 than the domi-
nant ones, which is of the same order as the corrections in the equations arising from a ‘very 
strong’ gravitational wave of astrophysical origin.

Consider, next, the curvature of a coil. If the spool has a diameter of the order of 10−1 m, a 
naive guess is that the relative curvature effects might be of the order wavelength/diameter, and 
hence 10−5. This is much bigger than the gravitational effect, and therefore a careful analysis of 
the contribution would be desirable. It is known that curvature of the fibers leads to losses, but 
an exhaustive analysis at the desired level of accuracy would be useful. One should nevertheless 
note that the effect should be the same in each arm of an interferometer, and therefore the fibre-
curvature effects should not affect the outcome of the experiment proposed in [5].

4.  Cylindrical waveguide in a constant post-Newtonian potential

We want to calculate the change of phase of photons traveling in waveguides placed at dif-
ferent heights and forming separate arms of an interferometer. As a first approximation,  
we model this as a cylindrical waveguide stretched horizontally in a weak uniform transverse 
gravitational field as in the left of figure 1.

4.1.  Assumptions and setup

We want to find the modes of an optical fiber in the presence of a weak gravitational field. We 
will make the following assumptions about the dielectric:

	 •	�a linear, isotropic, non-magnetic dielectric, without free charges or currents, and without 
surface currents; 

	 •	�the dielectric constant ε does not depend upon the vertical location of the waveguide in 
the lab; 

	 •	�a perfect step-index fiber, which is homogeneous in the core and in the cladding. The only 
discontinuity is at the core-cladding interface; 

	 •	�we will use cylindrical coordinates, where the z-axis is aligned along the symmetry axis 
of the optical fiber; 

	 •	�the medium is lossless.

We consider a dielectric with the simplest possible constitutive equations:

�D(�r, t) = ε0n(r)2�E(�r, t),� (4.1)

�B(�r, t) = µ0�H(�r, t)� (4.2)

where n(r) denotes the (piecewise-constant) refractive index as a function of the radial 
coordinate.

4.2.  Post-Newtonian Maxwell equations

We start with a gravitational potential that is constant throughout the fiber, as this will be 
needed for analysis later in any case. The calculations in this section  are a straightfoward 
adaptation of the textbook ones to the problem at hand, see e.g. [10].
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We will work in SI units where the modified Maxwell equations (ME) for the material as 
specified above, and for a constant potential, are given by the following, reference-normalised 
version, of (3.30) and (3.31):

∇× �E(�r, t) = −ψ∂t�B(�r, t),� (4.3)

∇× �H(�r, t) = ψ∂t�D(�r, t),� (4.4)

∇ · �D(�r, t) = 0,� (4.5)

∇ · �B(�r, t) = 0.� (4.6)

Here we defined

ψ :=
1 − 2φ

c2

1 − 2φ̊
c2

,� (4.7)

with the gravitational potential, for R � R♁,

φ = −
GM♁

R
,

where R is the distance to the center of the Earth. Here φ̊ is a normalising constant arising 
from our choice of coordinates so that the metric takes the manifestly Minkowskian form at 
the location of a reference waveguide which is used to calibrate the constants at hand.

Some comments on (4.7) are in order. A direct application of the equations  (3.30) and 
(3.31), derived in the post-Newtonian approximation, where we neglect now the gradients of 

the gravitational potential, would give ψ = 1 − 2φ
c2 . Now, if we denote by x̊ the position of 

the center of the lab, and introduce local inertial coordinates associated with the center of the 
lab, then to compare with special relativity it is useful to rescale the coordinates in the usual 
post-Newtonian line element,

ds2 = −
(
1 +

2φ
c2

)
c2dt2 +

(
1 − 2φ

c2

)(
dx2 + dy2 + dz2),

so that the metric takes the Minkowskian values diag(−c2, 1, 1, 1) at the center of the lab:

t �→ (1 +
2φ̊
c2

)−1/2
t, xi �→ (1 − 2φ̊

c2

)−1/2
xi,� (4.8)

where φ̊ = φ(̊x). Applying this rescaling to (3.30) and (3.31) one obtains formula (4.7) for ψ.
Now, in a first approximation we will be interested in the effect resulting from the depend

ence of ψ upon the height h, measured with respect to the reference waveguide used to nor-
malise ψ, at which the dielectric has been placed, in which case one can take

ψ = ψ(h) = 1 + 2g♁c−2h,� (4.9)

where g♁ denotes again the gravitational acceleration at the surface of the earth.
An alternative way of viewing (4.7) is to rewrite this equation as

ψ =
1 − 2φ

c2

1 − 2φ̊
c2

= 1 − 2(φ− φ̊)

c2 + O(
φ̊(φ− φ̊)

c4 ),� (4.10)
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which makes it clear in which sense one can, and we will, write φ for φ− φ̊ in the equa-
tions that follow.

4.3. The z-components of the fields

Each Cartesian component Ei and Hi of �E  and �H  satisfies the wave equation (3.33). We will 
seek solutions of the form

�E(t,�x) = eiωt�E(�x), �H(t,�x) = eiωt�H(�x),� (4.11)

with

ω ≡ kc =
k

√
ε0µ0

,� (4.12)

for a constant k. (We beg the indulgence of the reader with our use of the same symbol �E  for 
fields depending upon different independent variables; similarly for �H .)

For the component Ez we use the ansatz

Ez(t,�x) = ei(ωt−βz−mθ)R(r),� (4.13)

and note that a similar ansatz will be used for Ex and Ey. Here β is the component of the wave 
vector along the direction of propagation and needs to be determined by the problem at hand. 
Using cylindrical coordinates, (3.33) becomes the following equation for R(r):

d2R
dr2 +

1
r

dR
dr

+

(
ψ2n2

1k2 − β2 − m2

r2

)
R = 0, core,� (4.14)

d2R
dr2 +

1
r

dR
dr

+

(
ψ2n2

2k2 − β2 − m2

r2

)
R = 0, cladding.� (4.15)

For guided modes we must have that the propagation constant in the z-direction is smaller than 
the wave number in the core, β < ψn1k, and greater than the wave number in the cladding, 
β > ψn2k.

Let a denote the coordinate-radius of the core, which is related to its physical radius ap as

ap =
√
ψa.� (4.16)

It is customary to define two new quantities,

U2 := a2(ψ2n2
1k2 − β2),� (4.17)

W2 := a2(β2 − ψ2n2
2k2),� (4.18)

which leads to the following form of the equations in the core and the cladding:

d2R
dr2 +

1
r

dR
dr

+

(
U2

a2 − m2

r2

)
R = 0, core,� (4.19)

d2R
dr2 +

1
r

dR
dr

−
(

W2

a2 +
m2

r2

)
R = 0, cladding.� (4.20)

The solutions of (4.19) are linear combinations of Bessel functions of the first (Jm(Ur/a)) and 
second (Ym(Ur/a)) kind, where we need to reject the Ym(Ur/a) solution due to their divergence 
at r  =  0. The solutions of (4.20) can similarly be written as linear combinations of modified 
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Bessel functions of the first (Im(Wr/a)) and second kind (Km(Wr/a)), where we must reject the 
Im(Wr/a)’s because they diverge as r → ∞, which would lead to infinite energy. The continu-
ous solutions take the form

Ez(r, θ) =

{
A Jm(Ur/a)

Jm(U) eimθ, core,

A Km(Wr/a)
Km(W) eimθ, cladding

� (4.21)

where we have assumed that the denominators do not vanish:

Jm(U), Km(W) �= 0.� (4.22)

Using the same ansatz for the z-component of the magnetic field we can write the solutions as

Hz(r, θ) =

{
B Jm(Ur/a)

Jm(U) eimθ, core,

B Km(Wr/a)
Km(W) eimθ, cladding.

� (4.23)

4.4. The remaining components of the fields

We use the post-Newtonian Maxwell equations with constant gravitational potential,

ψµ0∂tHk = −ε̊ijk∂iE j, ψn2ε0∂tEk = ε̊ijk∂iH j,� (4.24)

to determine the remaining Cartesian components of �E  and �B . The ansatz (4.11) leads to the 
following equations for the time-independent part of the fields:

Hx =
i
ψk

√
ε0

µ0
(∂yEz − ∂zEy) , Hy =

i
ψk

√
ε0

µ0
(∂zEx − ∂xEz) ,� (4.25)

Ex = − i
ψkn2

√
µ0

ε0
(∂yHz − ∂zHy) , Ey = − i

ψkn2

√
µ0

ε0
(∂zHx − ∂xHz) .

� (4.26)
Inserting (4.26) into (4.25) to obtain equations for Hx and Hy, and proceeding similarly for the 
electric field, one finds the following ODEs in z:

Hx +
1
ψk

∂z

(
∂zHx

ψkn2

)
=

i
ψk

√
ε0

µ0
∂yEz +

1
ψk

∂z

(
∂xHz

ψkn2

)
,� (4.27)

Hy +
1
ψk

∂z

(
∂zHy

ψkn2

)
= − i

ψk

√
ε0

µ0
∂xEz +

1
ψk

∂z

(
∂yHz

ψkn2

)
,� (4.28)

Ex +
1

ψkn2 ∂z

(
∂zEx

ψk

)
= − i

ψkn2

√
µ0

ε0
∂yHz +

1
ψkn2 ∂z

(
∂xEz

ψk

)
,� (4.29)

Ey +
1

ψkn2 ∂z

(
∂zEy

ψk

)
=

i
ψkn2

√
µ0

ε0
∂xHz +

1
ψkn2 ∂z

(
∂yEz

ψk

)
.� (4.30)

As particular solutions of the inhomogeneous ODEs we choose

Hx =
i

ψ2k2n2 − β2

(
ψkn2

√
ε0

µ0
∂yEz − β∂xHz

)
,� (4.31)

Hy = − i
ψ2k2n2 − β2

(
ψkn2

√
ε0

µ0
∂xEz + β∂yHz

)
,� (4.32)
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Ex = − i
ψ2k2n2 − β2

(
ψkn2

√
µ0

ε0
∂yHz + β∂xEz

)
,� (4.33)

Ey =
i

ψ2k2n2 − β2

(
ψkn2

√
µ0

ε0
∂xHz − β∂yEz

)
.� (4.34)

4.5.  Determining β

As is well known (see, e.g. [10]), the requirement of continuity of relevant fields imposes a 
condition on β and leads to a relation between the constants A and B of (4.21) and (4.23). A 
convenient way to proceed is to calculate first the cylindrical-frame components of the fields:

Er :=
xEx + yEy

r
= − i

ψ2k2n2 − β2

(
β∂rEz +

√
µ0

ε0

ψk
r
∂θHz

)
,� (4.35)

Eθ :=
xEy − yEx

r
= − i

ψ2k2n2 − β2

(
β

r
∂θEz −

√
µ0

ε0
ψk∂rHz

)
,� (4.36)

Hr = − i
ψ2k2n2 − β2

(
β∂rHz −

√
ε0

µ0

ψkn2

r
∂θEz

)
,� (4.37)

Hθ = − i
ψ2k2n2 − β2

(
β

r
∂θHz +

√
ε0

µ0
ψkn2∂rEz

)
.� (4.38)

The vanishing of surface currents imposes the requirement of continuity of Eθ and Hθ at the 
core-cladding interface7.

We insert our solutions for Ez and Hz into (4.36) and (4.38), which results for r  =  a in

1
U2

(
imβA −

√
µ0

ε0
ψkBU

J′m(U)

Jm(U)

)
+

1
W2

(
imβA −

√
µ0

ε0
ψkBW

K′
m(W)

Km(W)

)
= 0,

�

(4.39)

1
U2

(
imβB +

√
ε0

µ0
ψkn2

1AU
J′m(U)

Jm(U)

)
+

1
W2

(
imβB +

√
ε0

µ0
ψkn2

2AW
K′

m(W)

Km(W)

)
= 0,� (4.40)

where the derivative is with respect to the argument, i.e. J′m(U) = dJm(U)
dU .

We can also write (4.39) and (4.40) in matrix form:

 imβ

( 1
U2 +

1
W2

)
−
√

µ0
ε0
ψk

(
1
U

J′m(U)
Jm(U) +

1
W

K′
m(W)

Km(W)

)
√

ε0
µ0
ψk

(
n2

1
U

J′m(U)
Jm(U) +

n2
2

W
K′

m(W)
Km(W)

)
imβ

( 1
U2 +

1
W2

)



(
A
B

)
= 0.

�

(4.41)

For a solution other than A  =  B  =  0 we need a vanishing determinant, which results in

m2β2

ψ2k2

(
1

U2 +
1

W2

)2

=

(
1
U

J′m(U)

Jm(U)
+

1
W

K′
m(W)

Km(W)

)(
n2

1

U
J′m(U)

Jm(U)
+

n2
2

W
K′

m(W)

Km(W)

)
.

�

(4.42)

7 We check below (see (4.46) and (4.47)) that the requirement of continuity of Br, as needed for non-existence of 
magnetic charges, is equivalent to continuity of Eθ. We also note that the non-occurrence of surface charges, which 
is equivalent to continuity of Dr, turns out to be equivalent to continuity of Hθ.
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This is the key equation that determines β as a function of φ. While it cannot be solved in an 
explicit form using elementary functions, its solution gives the exact formula for β in a step 
index fiber in terms of the remaining data.

In order to get insight into (4.42), we use the definitions of U and W, equations (4.17) and 
(4.18), to get the relations

β2

k2 = ψ2n2
1 −

U2

a2k2 ,� (4.43)

β2

k2 = ψ2n2
2 +

W2

a2k2 .� (4.44)

Dividing the first equation by U2, the second by W2, and adding the results gives the relation

β2

ψ2k2

(
1

U2 +
1

W2

)
=

(
n2

1

U2 +
n2

2

W2

)
.� (4.45)

We note that the requirement of continuity of Br = µ0Hr  reads

iβ
(

1
W

K′
m(W)

Km(W)
+

1
U

J′m(U)

Km(U)

)
B +

√
ε0

µ0
ψkm

(
n2

1

U2 +
n2

2

W2

)
A = 0,� (4.46)

which by (4.45) is equivalent to

i
√

µ0

ε0

(
1
W

K′
m(W)

Km(W)
+

1
U

J′m(U)

Km(U)

)
B +

βm
ψk

(
1

U2 +
1

W2

)
A = 0.� (4.47)

Comparing with the second line of (4.39), we see that continuity of Eθ is equivalent to that of 
Br. As already pointed out, one checks similarly that continuity of Hθ turns out to be equiva-
lent to continuity of Dr.

Inserting (4.45) into (4.42) and dividing both sides by n2
1 gives

m2
(

1
U2 +

1
W2

)(
1

U2 +
n2

2

n2
1

1
W2

)

=

(
1
U

J′m(U)

Jm(U)
+

1
W

K′
m(W)

Km(W)

)(
1
U

J′m(U)

Jm(U)
+

n2
2

n2
1

1
W

K′
m(W)

Km(W)

)
,

�

(4.48)

independently of ψ when U and W are viewed as independent variables. We write this equa-
tion in the symbolic form

Fm(U, W) = 0,� (4.49)

and remark that β enters this equation through U and W only. Further, neglecting momentarily 
the dependence of the physical radius of the core upon φ and of n upon the wavelength, the 
gravitational potential φ enters (4.49) only through the dependence of U and W upon

k̄ := ψk.� (4.50)

Now, we are interested in the change of β, say δβ, after a change of height δh, for small δh. 
One can normalise all fields of interest so that φ = 0 at h  =  0, and approximate

β ≈ β|φ=0 +

(
∂β

∂φ

∂φ

∂h

) ∣∣∣
φ=0

δh =: β0 + β′g♁δh =: β0 + δβ.� (4.51)

(Recall that we use the symbol g♁ to denote the gravitational acceleration at the surface of the 
earth.) Differentiating (4.49), we obtain
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(
∂UFm

∂U
∂β

+ ∂WFm
∂W
∂β

)∂β
∂φ

+
(
∂UFm

∂U
∂k̄

+ ∂WFm
∂W
∂k̄

) ∂k̄
∂φ

= 0.� (4.52)

Using ∂k̄/∂φ|φ=0 = −2c−2k , together with

∂U
∂β

= −a2β

U
,

∂W
∂β

=
a2β

W
,

∂U
∂k̄

=
a2n2

1k̄
U

,
∂W
∂k̄

= −a2n2
2k̄

W
,� (4.53)

we can rewrite (4.52) as
(

U−1∂UFm − W−1∂WFm

)
β
∂β

∂φ
= −2c−2

(
n2

1U−1∂UFm − n2
2W−1∂WFm

)
k2.

� (4.54)
Equivalently,

δβ = −2
n2

1W∂UFm − n2
2U∂WFm

W∂UFm − U∂WFm

∣∣∣
ψ=1

g♁k2

c2β
δh.� (4.55)

Equation (4.55) allows one to determine δβ after solving numerically (4.42).
As an example, consider a waveguide with

n1 = 1.4712, n2 = 1.4659, a = 4.1 × 10−6 m, k ≈ 4.053 67 × 106 m−1,
� (4.56)

where m stands for meters, not to be confused with the parameter m in (4.21), (4.23) and else-
where in the paper. The numerical solution of (4.42) with δh equal to one meter and with the 
radial order parameter m equal to one8 reads

β ≈ 5.951 705 634 994 889 611 × 106 m−1.� (4.57)

Comparing with the value at δh = 0, the change of β which results from elevating the 
waveguide by one meter leads to a change of β equal to

δβ ≈ −1.301 × 10−9 m−1,� (4.58)

calculated either from (4.55), or directly from (4.42), with the difference between the values 
of δβ occurring only at the fourteenth significant digit.

4.6.  Variations of the diameter of the core

We continue to ignore the fact that n1 and n2 depend upon φ, and repeat the calculations above 
by taking into account that a does. Differentiating again (4.49), instead of (4.52) we obtain 
now
(
∂UFm

∂U
∂β

+ ∂WFm
∂W
∂β

)∂β
∂φ

+
(
∂UFm

∂U
∂k̄

+ ∂WFm
∂W
∂k̄

) ∂k̄
∂φ

+
(
∂UFm

∂U
∂a

+ ∂WFm
∂W
∂a

) ∂a
∂φ

= 0.

�

(4.59)

Using ∂a/∂φ|ψ=1 = c−2ap|ψ=1 = c−2a, together with

8 We are very grateful to Maciej Maliborski for carrying out the Mathematica calculation to the accuracy needed, 
and for generating figure 2. The calculation turns out to be unreliable unless performed at very high precision.
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∂U
∂a

=
U
a

,
∂W
∂a

=
W
a

,� (4.60)

we rewrite (4.59) as

c2
(

U−1∂UFm − W−1∂WFm

)
β
∂β

∂φ

= −2
(

n2
1U−1∂UFm − n2

2W−1∂WFm

)
k2 +

(
U∂UFm + W∂WFm

)
a−2.

� (4.61)
Instead of (4.55) we thus have

δβ ≡ (δβ)k + (δβ)a

=
−2

(
n2

1W∂UFm − n2
2U∂WFm

)
k2 + UW

(
U∂UFm + W∂WFm

)
a−2

W∂UFm − U∂WFm

∣∣∣
ψ=1

g♁
c2β

δh.

�

(4.62)

where (δβ)k is the change of β arising from the k2-term in the second line of (4.62), already 
seen in (4.55).

The contribution from the a−2-term in (4.62), denoted by (δβ)a , can be calculated to be

(δβ)a ≈ 1.507 × 10−12 m−1,� (4.63)

thus by about three orders of magnitude smaller than (4.58).

4.7.  λ-dependent index of refraction

We consider finally the effect arising from the dependence of the indices of refraction n1 and 
n2 upon the vacuum wavelength λp of light,

λp := cTp ≡ 2πc
ωp

,

where Tp is the proper-time period of the wave and ωp its proper-time frequency. The latter is 
related to the coordinate frequency ω as

ωp =
ω√

1 + 2c−2φ
≈ ω

(
1 − φ

c2

)
.

Thus

λp ≈ 2π
k

(
1 +

φ

c2

)
.� (4.64)

We will use Sellmeier’s formula [11]

n(λp) =

√√√√C0 +

N∑
i=1

ciλ2
p

λ2
p − ki

,� (4.65)

with N  =  3 where, for pure silica glass, the phenomenological constants are [12, p 92] C0  =  1 
and

c1 = 0.696 5325, k1 = (6.609 32 × 10−8 m)2,

c2 = 0.408 3099, k2 = (1.1811 × 10−7 m)2,

c3 = 0.896 8766, k3 = (9.896 16 × 10−6 m)2.

� (4.66)
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Hence

∂n
∂φ

∣∣∣
ψ=1

=
2π
kc2

∂n
∂λp

∣∣∣
ψ=1

,� (4.67)

with

∂n
∂λp

∣∣∣
ψ=1

= −
λp

n

N∑
i=1

ciki

(λ2
p − ki)2 ≈ −1.7285 × 104

n
× m−1.� (4.68)

Adapting the calculations so far to take into account the dependence of n upon φ, and set-
ting n = (n1 + n2)/2, one finds in the right-hand side of (4.62) a supplementary term

(δβ)λp :=
n1W∂UFm

∂n1
∂λp

− n2U∂WFm
∂n2
∂λp

W∂UFm − U∂WFm

∣∣∣
ψ=1

2πkg♁
c2β

δh

≈ n1W∂UFm − n2U∂WFm

W∂UFm − U∂WFm

∣∣∣
ψ=1︸ ︷︷ ︸

≈1.469 92

∂n
∂λp

∣∣∣
ψ=1

2πkg♁
c2β︸ ︷︷ ︸

≈4.659 77×10−16 m−1

δh

∼ 10−11 m−2δh,

�

(4.69)

which is two orders of magnitude smaller than the dominant effect (δβ)k.

4.8.  Change of phase

Summarising, we have shown that the overall effect is, for small δh,

(δβ)k + (δβ)a + (δβ)λp ≈ (δβ)k ≈ −1.30 × 10−9 m−1 × δh.� (4.70)

Consider two identical waveguides extended horizontally, of physical length Lp and there-
fore coordinate length

L = ψ−1/2Lp,

located at heights differing by δh, with coordinates normalised so that ψ = 1 at the location of 
the lower waveguide. We assume that the coordinate frequency ω is the same for both wave-
guides, which will be the case if the incoming light comes from the same laser. The phase 
difference between the light arriving at the far end of the waveguides will be, in the linear 
approximation, taking Lp to be 105 m ,

δ(β × ψ−1/2Lp)|ψ=1 =
(
δβ|ψ=1 +

g♁
c2 β︸︷︷︸

∼6.487×10−10 m−2

δh
)
× L ≈ δβ|ψ=1 × L

≈ −6.52 × 10−5 m−1 × δh.
�

(4.71)

An experiment, with one arm of the interferometer in the basement of the Bremen ZARM 
tower and the other at the top, would thus observe a phase shift of the order of 10−3 radians.

4.9.  Weakly guiding approximation

In most practical fibers used, the difference of the refractive indices n1 and n2 is small, so we 
can assume n1 � n2 =: n in some relations. This is usually referred to as the weakly guiding 
approximation, due to the fact that the waveguide is almost homogeneous when n1 almost 
equals n2. Taking the limit n1 → n2 ≈ n in (4.55) one obtains
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δβ ≈ (δβ)k = −2k2n2

c2β
δφ = −2ω2n2g

c4β
δh.� (4.72)

If we use the parameters (4.56), and set again n = (n1 + n2)/2, (4.72) becomes

(δβ)k = −1.297 × 10−9 m−2 × δh,� (4.73)

which agrees reasonably well with the linear approximation to the exact result (4.58).
The simplicity of (4.72) might appear surprising at first sight, but its derivation is actually 

much more straightforward than the calculations so far. Indeed, since

ψn2k < β < ψn1k,

the weakly guiding limit n1, n2 → n gives

β = ψnk,� (4.74)

and (4.72) immediately follows.

5.  Gravitational potential varying along the waveguide

To account for a non-constant gravitational potential we start with the full form (3.30) and 
(3.31) of the post-Newtonian Maxwell equations. Setting

Hi = µ−1
0 Bi� (5.1)

we have to analyze the following system of equations:

ψµ0∂t�H(�r, t) = −∇× �E(�r, t)− 2
c2

(
∇φ× �E(�r, t)

)
,� (5.2)

ψε0n2(r)∂t�E(�r, t) = ∇× �H(�r, t) +
2
c2

(
∇φ× �H(�r, t)

)
,� (5.3)

∇ · �E(�r, t) = 0,� (5.4)

∇ · �H(�r, t) = 0.� (5.5)

Consider the second-order wave equation (3.32). Estimating |∆̊�B| by |�B|λ−2, |∇φ| by g♁, 
|∇∇φ| by g♁/R♁, where λ is the wavelength of the photon in the waveguide, we find that

|∇φ|c−2|∇�B| ≈ 10−22 |∆̊�B|, |∇∇φ|c−2|�B| ≈ λ

R♁
|∇φ|c−2|∇�B| ≈ 10−35 |∆̊�B|.� (5.6)

Thus the corrections arising from second derivatives of φ are much smaller than those coming 
from the gradient-φ terms. We therefore neglect the second derivatives of φ in (3.32), obtain-
ing the following wave equations for the Cartesian components Hi of �H:

(
1 − 2φ

c2

)2

εµ∂2
t Hk = ∆̊Hk +

1
c2 ∂

iφ(6∂iHk − 4∂kHi),� (5.7)
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where ∆̊ is the flat-space Laplace operator ∂2
x + ∂2

y + ∂2
z . The Cartesian components of �E  

satisfy an identical equation. Here φ is the gravitational potential normalised to zero at some 
chosen reference point in the lab, compare (4.10).

We want to determine the change of β that arises in a coil of radius ds ≈ 10−1 m with axis 
of symmetry aligned with the horizontal direction in the lab, see figure 1(b). We consider the 
most common geometrical arrangement for optical fibers, which is that of a cylindrical fiber 
spool of length �. As a first approximation we consider a rigid spool in Euclidean space. The 
total Euclidean length of the fiber is denoted by L = 2πNsds.

It is convenient to distinguish between the gravitational potential at a reference point in the 
lab, which we denote by φ̊, and the gravitational potential on the axis of the spool, which we 
will denote by φ0.

When the difference between points on the waveguide and the reference point in the lab is 
at most of the order of meters we have, by (4.10),

ψ = 1 − 2(φ− φ̊)

c2︸ ︷︷ ︸
O(10−16)

+O(10−25).
� (5.8)

A comment about the validity of the first post-Newtonian approximation is in order. Since 
2φc−2 ≈ −1.39 × 10−9 at the surface of the earth, the second-order Newtonian approx
imation introduces further terms in the Maxwell equations which are expected to be of relative 
size (2φc−2)2 ≈ 10−18. This seems to be much bigger than the first-derivative correction as 
estimated in (5.6), and the effect of which we are about to determine. However, when compar-
ing the results of the calculations at different heights h, the relevant effect on the equations is 
not that arising from the actual values of the metric components at the surface of the earth, but 
from their gradients, which will be smaller by a factor 1/R♁, hence a contribution O(10−24) 
from the second-order post-Newtonian corrections, and thus smaller than (5.6).

It appears rather daunting to try to find an explicit solution of the Maxwell equa-
tions describing the above geometry. A simplified model is therefore needed. To proceed, let s 
be a Euclidean-length parameter along a waveguide. We choose the z-axis to be aligned with 
the axis of the spool, the waveguide is then described as the following curve in 3:

[0, L] � s �→
(

ds cos
( s − s0

ds

)
, ds sin

( s − s0

ds

)
,
�

L
s
)

,� (5.9)

where s0 describes the entry-point of the waveguide. If we take the x-axis to be the vertical, 
the (suitably normalised) gravitational potential at a point of the waveguide parameterised by 
s is equal to

φ0−φ̊+ g♁ds cos
( s − s0

ds

)
.� (5.10)

We now ‘unwind’ the waveguide to a straight-one lying along the z-axis, replacing the 
parameter s in (5.10) by z, and think of the potential (5.10) as a function along the waveguide:

φ(z) = φ0−φ̊+ g♁ds cos
( z − zs

ds

)
.� (5.11)

The question then arises, how to handle the gradient-φ terms in (5.7) after this ‘unwinding’. 
By inspection of orders of magnitude, as just discussed above as well as in section 3.4, or a 
posteriori by inspection of the final calculations, one finds that the dominant effect of a non-
constant φ on the solution comes from the undifferentiated term in (5.7).
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In any case, the components of the gradient terms in the equations in directions transversal 
to the fibre mix the tangential and the transverse components of the Maxwell fields, which 
complicates considerably the analysis without affecting the dominant, already small, effect. 
On the other hand, tangential gradients do not introduce any supplementary complications. 
Thus, for the sake of a future more detailed analysis, and as a tool for cross-checking the sub-
dominant effect of the gradient terms, we will keep the terms arising from the z-gradient of φ 
in our calculations, ignoring the transverse ones.

In view of the above, using the time-periodic ansatz (4.11) and (4.12) in (5.7) leads to

−ψ2n2k2Hz = ∆̊Hz +
2
c2 ∂zφ∂zHz.

� (5.12)
The equation for the z-component of the electric field is identical.
Let us introduce a small dimensionless constant ε by setting

ε =
g♁ds

c2 ∼ 10−17 � 1,� (5.13)

and let

β1 := d−1
s ∼ 10 m−1 � β ∼ 106 m−1, ψ0 := 1 − 2(φ0 − φ̊)

c2 ≈ 1.� (5.14)

These values will be assumed below whenever numerical estimates are used.
Shifting z by zs, and neglecting terms which are higher-order in ε, (5.12) becomes

∂2
r Hz +

1
r
∂rHz +

1
r2 ∂

2
θHz + ∂2

z Hz +
(
ψ2

0−4ε cos(β1z)
)
k2n2Hz−2εβ1 sin(β1z)∂zHz = 0.� (5.15)

We seek a solution of the form

Hz(r, θ, z) = eimθ
∑
�∈

hz
�(r)e

i(�β1−β)z.� (5.16)

Inserting in (5.15), for each � we obtain

∂2
r h

z
� +

1
r
∂rh

z
� −

m2

r2 hz
� − (β − �β1)

2hz
�

= (β − �β1)εβ1(h
z
�+1 − hz

�−1)− k2n2(ψ2
0h

z
�−2ε(hz

�+1 + hz
�−1)

)

−εβ2
1

(
hz
�+1 + hz

�−1

)
.

�

(5.17)

Some comments about the structure of the equations, and of the error terms, are in order.
First, since (5.12) is linear in Hz, we have the freedom to rescale Hz, and the influence of all 

error terms on the solution scales accordingly.
Next, when passing from (5.12) to (5.15) we have ignored terms of the order of ε2|Hz|, 

and thus all the equations that follow will not be more accurate than this. In other words, the 
right-hand side of (5.15) is not really zero but O(ε2|Hz|). Here, and in what follows, f = O(h) 
means that there is a constant C such that

| f | � C|h|.

Care must be taken because the constant C could depend upon � in the calculations that follow, 
and could grow without bound as � increases. This issue needs to, and will be, addressed in 
our analysis below.
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Similarly the right-hand side of (5.17) should contain a supplementary term O(ε2|Hz|). 
Let us momentarily ignore this and take this equation at face value. Then (5.17) forms an 
infinite system of coupled equations for the ‘hz

�-modes’, where the mixing between different 
�’s involves a small constant ε. Anticipating a more detailed analysis that will be presented 
shortly, a coefficient B̊0, which will determine the size of |Hz|, can be chosen arbitrarily after a 
suitable choice of β. Next, each of the equations (5.17) is a PDE for hz

� when the ‘neighbour-
ing’ fields hz

�±1 are known. This implies that, after solving, B̊0 propagates to hz
±1 as ε times 

a factor, say ζ � 1, which needs to be determined and which turns out to be large. Then B̊0 
propagates to hz

±2 as ε2 times another numerical factor, and so on. Assuming that the associ-
ated numerical factors are of the same order at each step, and denoting by

ε1 = ζε

the product of ε with a typical factor arising in this rough argument, and further assuming that 
ε1 remains much smaller than one, one is led to expect that B̊0 will give a contribution to hz

� 

which is of order O(ε
|�|
1 |̊B0|).

Now, viewing again the right-hand side of (5.17) as known, there is a freedom of adding 
to hz

� a solution of the homogeneous PDE. We will exploit this freedom to ensure continuity 
of the remaining fields of interest, with the precise value of the associated free coefficients 
determined at the end of the calculation. Hoping that the resulting contribution to hz

� remains 

O(ε
|�|
1 |̊B0|), we should end up with a solution such that

hz
� = O(ε

|�|
1 |̊B0|).� (5.18)

We expect that the existence of solutions of (5.17) satisfying (5.18) can be established rig-
orously, but we have not checked all details of the proof.

It turns out to be convenient to write hz
� as

hz
�(r) = h̊z

�(r) + εδhz
�(r),� (5.19)

where ̊hz
� satisfies

(
∂2

r +
1
r
∂r −

m2

r2

)̊
hz
� =

(
(β − �β1)

2 − ψ2
0k2n2)̊hz

�.� (5.20)

Then, ignoring again terms involving ε2, the functions δhz
� are solutions of the equations

∂2
r δh

z
� +

1
r
∂rδh

z
� +

(
k2n2ψ2

0 − (β − �β1)
2 − m2

r2

)
δhz

�

= (β − �β1)β1(̊h
z
�+1 − h̊z

�−1) + (2k2n2−β2
1)(̊h

z
�+1 + h̊z

�−1).
�

(5.21)

A detailed discussion of the terms neglected is again in order. Keeping in mind the term 
O(ε2|H̊z|) = O(ε2 |̊B0|) omitted in (5.17), as well as our expectation

δhz
� = O(ε−1ε

|�|
1 |̊B0|), |�| > 0, δhz

0 = O(ε−1ε2
1 |̊B0|)� (5.22)

(compare (5.18)) and the relation ε1 = ζε, the terms ignored when passing from (5.17) to the 
right-hand side of (5.21) are




O(ε|̊B0|) + O(k2ε1 |̊B0|), � = 0;
O(ε|̊B0|) + O(k2ε2

1 |̊B0|), � = ±1;

O(ε|̊B0|) + O(k2ε
|�|−1
1 |̊B0|), otherwise.

� (5.23)

For |�| � 2, arguing as before, we expect this to lead to an error in δh� of order

R Beig et alClass. Quantum Grav. 35 (2018) 244001



23

ζ
(
O(ε|̊B0|) + O(ε

|�|−1
1 |̊B0|)

)
= O(ε1 |̊B0|) + O(ζε

|�|−1
1 |̊B0|),

which is consistent with (5.18). Here ζ needs to be chosen large enough to absorb the contrib
ution from k2 in the error terms.

Similarly the error arising in hz
0 is

ε
(
O(ε1 |̊B0|) + O(ζε1 |̊B0|)

)
= O(εε1 |̊B0|) + O(ε2

1 |̊B0|)
)
.

A similar calculation applies for � = ±1. This confirms consistency of the scheme, and also 
implies that no accuracy will be gained in going beyond � = ±1 in further calculations.

Equation (5.20) can be solved as in (4.23):

h̊z
�(r) = B�̊g�(r), with g̊�(r) =

{ Jm(U�r/a)
Jm(U�)

, core,
Km(W�r/a)

Km(W�)
, cladding,

� (5.24)

where B� is a constant and

U2
� := a2(ψ2

0k2n2
1 − (β − �β1)

2),� (5.25)

W2
� := a2((β − �β1)

2 − ψ2
0k2n2

2

)
,� (5.26)

provided that the right-hand sides of (5.25) and (5.26) are positive, and that the denominators 
in (5.24) do not vanish. (Thus, the constants A0 and B0 here correspond to the constants A and 
B of section 4.3.) Using (5.20), a particular solution of (5.21) is obtained by setting

δhz
� = ζ�,−h̊

z
�−1 + ζ�,+h̊

z
�+1,� (5.27)

with

ζ�,− =

(
−β + (�− 1)β1

)
β1+2k2n2

β1(2β−(2�− 1)β1)
, ζ�,+ =

(
−β + (�+ 1)β1

)
β1−2k2n2

β1(2β − (2�+ 1)β1)
,

�

(5.28)

assuming again that the denumerators do not vanish. Using the values of the parameters (4.56), 
(4.57) and (5.14) we find for small �

ζ�,− ≈ −ζ�,+ ≈ k2n2

β1β
∼ 2.761 × 105n2 ⇒ εζ�,± ≈ ∓6.514 × 10−11ds

(
n
n1

)2

.

�

(5.29)

In view of (5.29), we can choose

ε1 ∼ 10−10.� (5.30)

Returning to our equations, ignoring terms involving ε2
1 we find

hz
�(r) =





B̊0̊g0(r), � = 0;
ε
(̊
B1̊g1(r) + ζ1,−B̊0̊g0(r)

)
, � = 1;

ε
(̊
B−1̊g−1(r) + ζ−1,+B̊0̊g0(r)

)
, � = −1,

� (5.31)

(so that B0 = B̊0, B±1 = εB̊±1) with

|̊B±1|ε � ε1 |̊B0|, |ζ±1,∓|ε � ε1.� (5.32)

We have also assumed that
∀ � ∈ {0,±1} Jm(U�) �= 0, Km(W�) �= 0, 2β + �β1 �= 0, ψ2

0k2n2
2 < (β + �β1)

2 < ψ2
0k2n2

1.
�

(5.33)
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Equation (5.31) can be streamlined by setting

ζ̊� =





0, � = 0;
ζ1,−, � = 1;
ζ−1,+, � = −1,

� (5.34)

whence,

for � ∈ {0,±1}, hz
�(r) = ε|�|

(
B̊�̊g�(r) + ζ̊�B̊0̊g0(r)

)
.� (5.35)

Letting

Ez(r, θ, z) = eimθ
∑
�∈

ez
�(r)e

i(�β1−β)z,� (5.36)

an identical calculation gives

for � ∈ {0,±1}, ez
�(r) = ε|�|

(
Å�̊g�(r) + ζ̊�Å0̊g0(r)

)
,� (5.37)

with constants Å� satisfying

|̊A±1|ε � ε1 |̊A0|.� (5.38)

We return to (5.2) and (5.3), which for time-periodic fields take the form

iωψ(z)µ0�H(�r, t) = −∇× �E(�r, t)− 2
c2

(
∇φ× �E(�r, t)

)
,� (5.39)

iωψ(z)ε0n2(r)�E(�r, t) = ∇× �H(�r, t) +
2
c2

(
∇φ× �H(�r, t)

)
.� (5.40)

Using Cartesian coordinates, this can be rewritten as

Hx = − i
ψk

√
ε0

µ0

(
∂zEy − ∂yEz +

2∂zφ

c2 Ey
)

,� (5.41)

Hy = − i
ψk

√
ε0

µ0

(
∂xEz − ∂zEx − 2∂zφ

c2 Ex
)

,� (5.42)

Hz = − i
ψk

√
ε0

µ0
(∂yEx−∂xEy) ,� (5.43)

Ex =
i

ψkn2

√
µ0

ε0

(
∂zHy − ∂yHz +

2∂zφ

c2 Hy
)

,� (5.44)

Ey =
i

ψkn2

√
µ0

ε0

(
∂xHz − ∂zHx − 2∂zφ

c2 Hx
)

,� (5.45)

Ez =
i

ψkn2

√
µ0

ε0
(∂yHx−∂xHy) .� (5.46)
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Proceeding as in section 4.4, we are led to9

Hx+
1
ψk

∂z

(
∂zHx

ψkn2

)
+

2
ψkc2 ∂z

(
∂zφHx

ψkn2

)

=
i
ψk

√
ε0

µ0

(
∂yEz − 2∂zφ

c2 Ey
)
+

1
ψk

∂z

(
∂xHz

ψkn2

)
,

�
(5.47)

Hy+
1
ψk

∂z

(
∂zHy

ψkn2

)
+

2
ψkc2 ∂z

(
∂zφHy

ψkn2

)

= − i
ψk

√
ε0

µ0

(
∂xEz − 2∂zφ

c2 Ex
)
+

1
ψk

∂z

(
∂yHz

ψkn2

)
,

�

(5.48)

Ex+
1

ψkn2 ∂z

(
∂zEx

ψk

)
+

2
ψkn2c2 ∂z

(
∂zφEx

ψk

)

= − i
ψkn2

√
µ0

ε0

(
∂yHz − 2∂zφ

c2 Hy
)
+

1
ψkn2 ∂z

(
∂xEz

ψk

)
,

�

(5.49)

Ey+
1

ψkn2 ∂z

(
∂zEy

ψk

)
+

2
ψkc2n2 ∂z

(
∂zφEy

ψk

)

=
i

ψkn2

√
µ0

ε0

(
∂xHz − 2∂zφ

c2 Hx
)
+

1
ψkn2 ∂z

(
∂yEz

ψk

)
.

�

(5.50)

Similarly to (5.16) and to (5.36), we choose m ∈  and we seek a solution of the form

�H(r, θ, z) =
∑
�∈

�h�(r, θ)ei(�β1−β)z ≡ eimθ
∑
�∈

�h�(r)ei(�β1−β)z,� (5.51)

�E(r, θ, z) =
∑
�∈

�e�(r, θ)ei(�β1−β)z ≡ eimθ
∑
�∈

�e�(r)ei(�β1−β)z.� (5.52)

As before, we will consider solutions such that

hi
� = O(ε

min(|�|,2)
1 |̊B0|), ei

� = O(ε
min(|�|,2)
1 |̊A0|).� (5.53)

In all calculations that follow, hi
� and ei

� will stand for hi
�(r, θ) and ei

�(r, θ).
Inserting (5.51)–(5.53) into (5.47)–(5.50) one immediately finds that the equations for the 

fields ̊hi
0 and ̊ei

0 can be handled in a manner identical to that of section 4.5, resulting in β being 
determined by the value of the gravitational potential on the axis of the spool. In particular 
all the formulae derived there for the dependence of β upon the height h of the axis of the 
spool relative to a reference location apply. Moreover, the calculations there suggest strongly 
that we can safely ignore the periodic variation of the coordinate radius of the core along the 
waveguide, and thus assume that the physical radius coincides with the coordinate radius a 
and is constant throughout the waveguide.

With our values of parameters, when ψ0 = 1 we find

B̊0 = −0.003 8891 i Å0.� (5.54)

To determine the remaining components of the fields, it is convenient to multiply all equa-
tions (5.47)–(5.50) by ψ2k2n2. After this multiplication, the operator appearing at the left-hand 

9 One could streamlime somewhat the equations that follow by getting rid of the field Ey in the right-hand side of 
(5.47) using (5.45), similarly for the remaining equations. This gives more elegant but somewhat longer equations.
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side of (5.47) becomes, neglecting as usual O(ε2) or higher order terms and second derivatives 
of φ,

ψ2k2n2Hx + ψ∂z

(
∂zHx

ψ

)
+

2ψ
c2 ∂z

(
∂zφHx

ψ

)

≈
(

1 − 2φ
c2

)2

k2n2Hx + ∂2
z Hx +

4∂zφ

c2 ∂zHx

≈ ∂2
z Hx−4εβ1 sin(β1z)∂zHx +

(
ψ2

0−4ε cos(β1z)
)
k2n2Hx

=
∑
�∈

[ (
ψ2

0k2n2 − (β − �β1)
2
)
hx
�+2β1ε(�β1−β)

(
hx
�+1 − hx

�−1

)

+ 2εβ2
1(h

x
�−1 + hx

�+1)− 2εn2k2 (hx
�−1 + hx

�+1

) ]
ei(�β1−β)z.

�

(5.55)

At the same level of accuracy, the right-hand side of (5.47) becomes

iψkn2
√

ε0

µ0

(
∂yEz − 2∂zφ

c2 Ey
)
+ ψ∂z

(
∂xHz

ψ

)

≈ ikn2
√

ε0

µ0

(
(ψ0 − 2ε cos(β1z))∂yEz − 2∂zφ

c2 Ey
)
+ ψ∂z

(
∂xHz

ψ

)

≈ ∂z∂xHz + ikn2
√

ε0

µ0
(ψ0 − 2ε cos(β1z))∂yEz − 2εβ1 sin(β1z)

(
∂xHz − ikn2

√
ε0

µ0
Ey
)

= i
∑
�∈

[
(�β1−β)∂xh

z
� + kn2

√
ε0

µ0
ψ0∂ye

z
� + εβ1

(
∂xh

z
�−1 − ∂xh

z
�+1 − ikn2

√
ε0

µ0
(ey

�−1 − ey
�+1)

)

−εkn2
√

ε0

µ0

(
∂ye

z
�−1 + ∂ye

z
�+1

)]
ei(�β1−β)z.

�

(5.56)

Hence
(
ψ2

0k2n2 − (β − �β1)
2
)
hx
�+2β1ε(�β1−β)

(
hx
�+1 − hx

�−1

)
+ 2εβ2

1(h
x
�−1 + hx

�+1)

− 2εn2k2 (hx
�−1 + hx

�+1

)
= i

[
(�β1−β)∂xh

z
� + kn2

√
ε0

µ0
ψ0∂ye

z
�

+ εβ1
(
∂xh

z
�−1 − ∂xh

z
�+1 − ikn2

√
ε0

µ0
(ey

�−1 − ey
�+1)

)
−εkn2

√
ε0

µ0

(
∂ye

z
�−1 + ∂ye

z
�+1

)]
.

�

(5.57)

In particular, ignoring terms of order O(ε2
1),

(
ψ2

0k2n2 − (β1 − β)2) hx
1 = i(−β + β1)∂xh

z
1 + ikn2

√
ε0

µ0
ψ0∂ye

z
1

+ ε
(

2(k2n2 − β2
1+β1 (−β + β1))h

x
0 + iβ1

(
∂xh

z
0 − ikn2

√
ε0

µ0
ey

0

)
−ikn2

√
ε0

µ0
∂ye

z
0

)
,

�

(5.58)

(
ψ2

0k2n2 − (β1 + β)2) hx
−1 = i(−β − β1)∂xh

z
−1 + ikn2

√
ε0

µ0
ψ0∂ye

z
−1

+ ε
(

2(k2n2 − β2
1+β1 (β + β1))h

x
0 − iβ1

(
∂xh

z
0 − ikn2

√
ε0

µ0
ey

0

)
−ikn2

√
ε0

µ0
∂ye

z
0

)
,

�

(5.59)

which determines hx
±1. Similarly one finds, for � = ±1,
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(
ψ2

0k2n2 − (β − �β1)
2) hy

� = i(−β + �β1)∂yh
z
� − ikn2

√
ε0

µ0
ψ0∂xe

z
�

+ ε
(

2(k2n2 − β2
1 − β1 (�β − β1))h

y
0 + �iβ1

(
∂yh

z
0 + ikn2

√
ε0

µ0
ex

0

)
+ikn2

√
ε0

µ0
∂xe

z
0

)
.

�
(5.60)

Equivalently, in an orthonormal frame adapted to cylindrical symmetry (compare (4.35) and 
(4.36)),

(
ψ2

0k2n2 − (β − �β1)
2) hr

� = i(−β + �β1)∂rh
z
� + ikn2

√
ε0

µ0
ψ0

1
r
∂θe

z
�

+ ε
(

2(k2n2 − β2
1 − β1 (�β − β1))h

r
0 + �iβ1

(
∂rh

z
0−ikn2

√
ε0

µ0
eθ0
)
−ikn2

√
ε0

µ0

1
r
∂θe

z
0

)
,

�

(5.61)

(
ψ2

0k2n2 − (β − �β1)
2) hθ� = i(−β + �β1)

1
r
∂θh

z
� − ikn2

√
ε0

µ0
ψ0∂re

z
�

+ ε
(

2(k2n2 − β2
1 − β1 (�β − β1))h

θ
0 + �iβ1

(1
r
∂θh

z
0+ikn2

√
ε0

µ0
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0

)
+ikn2

√
ε0

µ0
∂re

z
0

)
.

�

(5.62)
Following the same steps for the electric field components one finds, again for � = ±1,

(
ψ2

0k2n2 − (β − �β1)
2) er

� = i(−β + �β1)∂re
z
� − ik

√
µ0

ε0
ψ0

1
r
∂θh

z
�

+ ε
(

2(k2n2 − β2
1 − β1 (�β − β1))e

r
0 + �iβ1

(
∂re

z
0+ik

√
µ0

ε0
hθ0
)
+ik

√
µ0

ε0

1
r
∂θh

z
0

)
,

�

(5.63)

(
ψ2

0k2n2 − (β − �β1)
2) eθ� = i(−β + �β1)

1
r
∂θe

z
� + ik

√
µ0

ε0
ψ0∂rh

z
�

+ ε
(

2(k2n2 − β2
1 − β1 (�β − β1))e

θ
0 + �iβ1

(1
r
∂θe

z
0−ik

√
µ0

ε0
hr

0

)
−ik

√
µ0

ε0
∂rh

z
0

)
.

�

(5.64)

For any choice of Å� and B̊� we can use (5.61)–(5.64) to determine hr
�, h

θ
�, e

r
� and eθ� . However, 

the resulting fields will not be continuous in general. We thus need to make sure that there is 
a choice (̊A�, B̊�) which renders the relevant fields continuous, as necessary for a solution of 
all equations. The vanishing of surface currents requires continuity of Hθ and Eθ. For this, let 
us write (5.62) and (5.64) as

(
eθ�
hθ�

)
= L(̊A�, B̊�) + s�,� (5.65)

where L is the part of the solution which involves (̊A�, B̊�). For any function f we set

f+ := lim
r↘a

f (r), f− := lim
r↗a

f (r), [ f ] = f+ − f−.� (5.66)

In subsequent calculations the following relations are useful:

(β − �β1)
2

k2 = ψ2
0n2

1 −
U2

�

a2k2 ,� (5.67)

(β − �β1)
2

k2 = ψ2
0n2

2 +
W2

�

a2k2 ,� (5.68)
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(β − �β1)
2

ψ2
0k2

(
1

U2
�

+
1

W2
�

)
=

(
n2

1

U2
�

+
n2

2

W2
�

)
.� (5.69)

The requirement of continuity of eθ�  and hθ� leads to the system of equations

aεi


 im(β − �β1)

(
1

U2
�

+ 1
W2

�

)
−
√

µ0
ε0
ψ0k

(
1

U�

J′m(U�)
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+ 1
W�

K′
m(W�)

Km(W�)
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√

ε0
µ0
ψ0k

(
n2

1
U�

J′m(U�)
Jm(U�)

+
n2

2
W�

K′
m(W�)

Km(W�)

)
im(β − �β1)

(
1

U2
�

+ 1
W2

�

)



(
Å�

B̊�

)
+ [s�] = 0.

� (5.70)
A unique solution will exist for any jump [s] of the source term s provided the matrix above 
has a non-vanishing determinant. The latter reads, with � ∈ {0,±1}:

F�(β − �β1) :=

{
m2(β − �β1)

2
(

1
U2

�

+
1

W2
�

)2

− ψ2
0k2

(
1

U�

J′m(U�)

Jm(U�)
+

1
W�

K′
m(W�)

Km(W�)

)(
n2

1

U�

J′m(U�)

Jm(U�)
+

n2
2

W�

K′
m(W�)

Km(W�)

)}
.

�

(5.71)

Recall that F0(β) = 0 by (4.42), and that β1 is small compared to β. A Mathematica plot4 
presented in figure 2 shows that F�(β − �β1), with m  =  1, � = ±1, and with parameter values 
(4.56), (4.57) and (5.14), does not vanish. We conclude that (5.70) with � ∈ {±1} can indeed 
be solved.

Consistency of our scheme requires that the constants (̊A±1, B̊±1) calculated above are of 
sufficiently controlled order. We have implemented the above calculation, with m  =  1 and the 
values of parameters given above, in Mathematica, leading to

εÅ1 ≈ −1.747 91 × 10−13Å0,

εB̊1 ≈ 6.793 88 × 10−16i Å0,

εÅ−1 ≈ 1.256 71 × 10−13Å0,

εB̊−1 ≈ −4.884 66 × 10−16 i̊A0,

�

(5.72)

where (5.54) has also been used. We note that for ds ∈ [10−1 m, 10 m] the fields scale approx-
imately linearly with ds. Thus, changing ds within this range has the effect of multiplying the 
above by 10ds/m.

Summarising, we have obtained, after truncating to two significant digits,

Ez ≈ Å0 × ei(ωt+θ−βz)
[
g̊0(r)

+ (6.64 g̊0(r)− 0.17 g̊1(r)) 10−12 × eiβ1z

− (6.64 g̊0(r)− 0.13 g̊−1(r)) 10−12 × e−iβ1z
]
,

�

(5.73)

Hz ≈ −3.9 × 10−3 i × Å0 × ei(ωt+θ−βz)
[
g̊0(r)

− (6.64 g̊0(r) + 0.17 g̊1(r)) 10−12 × eiβ1z

+ (6.64 g̊0(r) + 0.13 g̊−1(r)) 10−12 × e−iβ1z
]

�

(5.74)

with β given by (4.57), β1 = 1/ds, where ds is the radius of the spool, ̊g� given by (5.24), and 
Å0 is a free constant determined by the amplitude of the entrant laser beam.
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We see that the amplitude of the new modes created by the interaction with the gravita-
tional potential is of the order of 10−11 times the amplitude of the main m  =  1 modes for a 
spool with a radius of 30 centimeters. The possibility of measuring these additional modes in a 
laboratory on earth using current technology is unclear, given the power constraints in optical 
waveguides and the small difference in propagation constants.

We have checked that (5.72) guarantees continuity of Br up to four significant digits. One 
can likewise calculate explicitly the remaining fields, but the formulae are not very enlighten-
ing. In order to get an idea of the order of the solutions we calculate their values at the center 
of the waveguide, i.e. r  =  0. One finds:

Er ≈ Å0 × ei(ωt+θ−βz)i(−27.78 + 9.06 × 10−11e−iβ1z − 8.99 × 10−11eiβ1z),
�

(5.75)

Eθ ≈ Å0 × ei(ωt+θ−βz)(27.78 − 9.04 × 10−11e−iβ1z + 8.97 × 10−11eiβ1z),
�

(5.76)

Hr ≈ Å0 × ei(ωt+θ−βz)(−0.11 + 3.59 × 10−13e−iβ1z − 3.50 × 10−13eiβ1z),
�

(5.77)

Hθ ≈ Å0 × ei(ωt+θ−βz)i(−0.11 + 3.61 × 10−13e−iβ1z − 3.61 × 10−13eiβ1z).
�

(5.78)
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Figure 2.  The determinant function F−1(β + β1), plotted as a function of β + β1, has 
an isolated zero at β + β1 = β. Note that F−1(β + β1) = F1(β − β1), so that the plot 
also proves that F1(β − β1) vanishes only at β1 = 0 in the interval of interest. The 
function F−1 is unitless and β is measured in inverse meters.
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Appendix.  Static metrics

In this appendix we provide a geometric decomposition of the Maxwell equations in terms of 
electric and magnetic fields for general static metrics.

Let uα be a unit vector collinear with a timelike static Killing vector ξα, thus it holds that

ξ[α∇βξγ] = 0.� (A.1)

A standard calculation based on this equation shows that

∇αuβ = −uαaβ ,� (A.2)

with

aα = ∇uuα = (−ξ2)−
1
2 Dα(−ξ2)

1
2 = Dα log((−ξ2)

1
2 ),

where Dα is the covariant derivative operator of the metric in the horizontal space, i.e. the 
space orthogonal to u.

The Maxwell field can be uniquely written as the sum of an associated electric and magn
etic contribution, as follows:

Fαβ = 2u[αEβ] + Bαβ , Eαuα = 0, Bαβuα = 0,� (A.3)

where

Eα = Fαβuβ , Bαβ = −3F[αβuγ]uγ .� (A.4)

The Maxwell equations read

∇[αFβγ] = ∇[α(Bβγ] + 2uβEγ]) = 0,� (A.5)

and, assuming that both ε and μ are point-independent,

∇α[Fαβ − 2(1 − n2)u[αFβ]
ρuρ] = ∇αBαβ + 2n2∇α(u[αE β]) = 0.� (A.6)

Using (A.2) and the vanishing of the divergence of u, (A.6) can be written as

∇αBαβ + 2n2u[α∇αE β] = 0.� (A.7)

Taking the horizontal projection of (A.5) (which means: contracting with hα
β := δαβ + uαuβ 

on all indices) gives

D[αBβγ] = 0.� (A.8)

Next, contracting (A.7) with uβ yields

0 = iu d(B + u ∧ E ) = LuB + a ∧ E + a ∧ E + dE + u ∧ (iudE ).� (A.9)

Equivalently, writing

Ḃ := LξB, thus LuBαβ = (−ξ2)−
1
2 Ḃαβ ,� (A.10)

where L denotes the Lie-derivative in space-time, we have

Ḃαβ = −2D[α((−ξ2)
1
2 Eβ]).� (A.11)
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(We emphasise that the identity Luα = (−ξ2)−
1
2 Lξα, used in (A.10), holds for horizontal 

differential forms, and that care must be taken when other tensor fields are considered.)
We finally take the horizontal projection of (A.7). Using

LuEα ≡ hαβLuEβ = hαβ∇uEβ� (A.12)

and

hβγ∇αBαγ = DαBαβ + aαBαβ = (−ξ2)−
1
2 Dα((−ξ2)

1
2 Bαβ)� (A.13)

we find that

n2Ėα = Dβ((−ξ2)
1
2 Bαβ).� (A.14)

Summarising, in the notation of (A.4) the Maxwell constraint equations read

D[αBβγ] = 0, DαE α = 0,� (A.15)

while the evolution equations take the form

Ḃαβ = −2D[α((−ξ2)
1
2 Eβ]), n2Ėα = Dβ((−ξ2)

1
2 Bαβ),� (A.16)

and recall that D is the covariant derivative operator of the metric induced by the space-time 
metric on the leaves of the foliation orthogonal to the static Killing vector.

In a coordinate system in which ξα∂α = ∂t  and uβdxβ is proportional to dt, equations (A.16) 
coincide with (3.18) and (3.19) using the correspondence

Ek = c−1Ek, Bi =
1
2
εijkBjk,� (A.17)

with E0 = 0 = B0α.
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