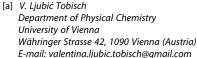
DOI: 10.1002/cplu.201900467

Highly Photosensitive Daguerreotypes and their Reproduction: Physico-chemical Elucidation of Innovative Processes in Photography Developed around 1840 in Vienna

Valentina Ljubić Tobisch*[a] and Wolfgang Kautek*[b]

A physico-chemical elucidation of the first photographic technology that allowed manifold reproduction is presented. An etched daguerreotype manufactured around 1840 in Vienna, preserved by the Technisches Museum Wien, served as a case study. Surface analysis showed that the photographic process involved the formation of colloidal Ag nanoparticles with sizes of 30–120 nm with shell layers consisting of Ag₂O, Ag₂S, and some AgCl. This breakthrough photographic technique provided a hitherto unachieved high sensitivity because of various

halogenide mixtures without the use of Hg. The image development consisted of the reduction of the Ag halides by H₂SO₃ created by the hydrolysis of S₂Cl₂ leading to the formation of Ag nanoparticles adjacent to the Ag nuclei of the latent image. The fixing of the image was performed either by KCN or by Na₂S₂O₃. The investigated plate exhibits etched areas with Ag₂O conversion layers and no Cl or S. The gum arabic use for etching preferentially wetted the exposed Ag nanoparticle regions so that unexposed areas could be etched by HNO₃.


1. Introduction

The French artist Louis Jacques Mandé Daguerre is considered the inventor of early photography. [1-6] His invention, publicly reported 1839 in Paris, marked the decisive step in the development of reproduction technology. During the preparation of the daguerreotype, a silver-plated surface was sensitized by silver iodine vapour and exposed to light in a camera. Then the plate was fumigated with mercury vapour and permanently fixed with a hot sodium thiosulfate solution.[1,7-9] At the beginning of the daguerreotype, long exposure times were a hindrance for the creation of portraits and moving scenes like street views. On the one hand, this was due to the low light optics available at the time, and on the other hand, to the relatively weak photosensitivity of the iodized silver surface. In order to reduce the exposure time and improve the photographic quality, further fundamental chemical and physical inventions had to be made.[10]

Shortly afterwards, at the beginning of 1840s, remarkable inventions in the field of early photography were made in

Vienna^[11–17] Josef Maximilian Petzval, a professor for mathematics, designed the very first photographic portrait objective lens (Figure 1).^[12–14,18,19] This was the first mathematically calculated precision objective lens in the history of photography. Petzval's revolutionary dual lens exhibited a much higher luminous intensity and was more powerful than Daguerre's camera lens allowing exposure times of less than a minute. The lens was manufactured by the Viennese optician Peter Wilhelm Friedrich von Outlanders. He developed a new camera equipped with Petzval's objective which was sold successfully worldwide.

Moreover, the Viennese photographic pioneers Franz Kratochwila and the medical doctors the brothers Johann and Josef Natterer developed new sensitization procedures in 1840/41 deviant from techniques applied in other countries.^[11–13,19] In order to improve the poor light sensitivity of

[b] Prof. Dr. W. Kautek
Department of Physical Chemistry
University of Vienna
Währinger Strasse 42, 1090 Vienna (Austria)
E-mail: wolfgang.kautek@univie.ac.at

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Figure 1. Petzval lens (objective). The first photographic portrait objective lens in the history of photography^[18]. Image credit: Szöcs Tamás.

Table 1. Daguerreotype processing steps reported in the literature.				
Processing steps Coating the Cu plate with Ag Polishing	Chemical reactions			
Sensitization with I_2 (L. Daguerre 1839) ^[1-3,10] Multiple sensitization ^[1,11-13,16] : $I_2 \rightarrow Br_2 \rightarrow I_2$ (J.F. Goddard 1840) $I_2 = Br_2$; $CI_2 = Br_2$; $I_2 = CI_2$; $I_2 \rightarrow CI_2$ (F. Kratochwila, J. & J. Natterer, E. Waidele 1840/41) $I_2 \rightarrow Br_2 \rightarrow CI_2$ (F. Kratochwila, J. & J. Natterer 1840/41)	$ \begin{array}{c} 2 \ Ag_{(s)} + I_{2(g)} {\longrightarrow} 2AgI \\ 2 \ Ag_{(s)} + CI_{2(g)} {\longrightarrow} 2AgCI \\ 2 \ Ag_{(s)} + Br_{2(g)} {\longrightarrow} 2AgBr \end{array} $	Chemical acceleration of the Ag surface. The surface is covered with Ag halogenide crystals. Halogenide mixture provides higher light sensitivity and shortens exposure time. AgCl: white appearance AgI: yellow appearance AgBr: cream yellow appearance		
Exposure of silver halides (AgX)	$10 \text{AgX} + 10 \ hv \rightarrow 2 \text{Ag}_{5(s)} + 5 \ X_{2(g)}$	Decomposition of silver halides by light and formation of silver clusters (latent image formation)		
Development by Hg vapour at ~60–120 °C (L. Daguerre 1839)	11 Ag ₅ + 45Hg _(g) \rightarrow 5Ag ₁₁ Hg ₉ 3 Ag ₅ + 20Hg _(g) \rightarrow 5Ag ₃ Hg ₄	Silver react with hot mercury droplets and form stable amalgam.		
Development without Hg (H. Becquerel 1840) ^[1]		Latent image developed by a yellow and/or red light treatment.		
Fixation by sodium thiosulfate (J. Herschel 1839) ^[1-3,13,16]	$\begin{array}{c} 2\;Na_2S_2O_3 + AgX {\rightarrow} Na_3[Ag_8S_2O_3)_2] \\ + NaX \end{array}$	Dissolution of unexposed residual silver halides.		
Post cleaning with water		Removal of the residual fixing solution		
Gilding or toning with a AuCl solution ^[1-3,13,16]	$[Au(S_2O_3)_2]^{3-} + Ag \rightarrow Au + [Ag(S_2O_3)_2]^{3-}$	Increasing contrast and brilliance of the image		
Post cleaning with water		Removal of the residual gold chloride solution		

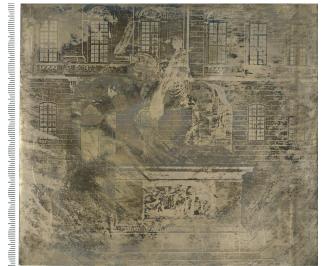
the iodized silver surface used by Daguerre, they developed sensitization procedures employing mixtures of bromine, chlorine and iodine applied in various sequences and compositions (Table 1). In this way snapshots could be taken for the first time.^[12] The first two worldwide known photographs of street scenes and people crowds originate from them.^[3,13,14] A representative fuming box and laboratory utensils for daguerre-otype are depicted in Figure 2. In addition, the Natterer brothers developed another procedure omitting mercury used in common daguerreotype.^[12]

The Austrian anatomy professor Joseph von Berres was interested in the generation of micrographs as a tool for microscopic research. [13,17] He recognized the potential of the newly discovered daguerreotype technique. [20–23] Since a daguerreotype is a unique object, Berres saw the need for the development of a reproduction technique. Already in 1840, [3] he

succeeded in producing printing plates for the first reproduction of photographs by etching daguerreotype plates. This etching technique is still widely unexplored, because no original etched daguerreotype plates have been discovered to date.

The knowledge of the physico-chemical processes associated with the above-mentioned new photographic techniques has been rudimentary to date. The present study of the fundamentals of these procedures could be based on investigations of an etched daguerreotype plate probably photographed by the Natterer brothers and etched by Berres. It was recently discovered in the collection of the Technische Museum Wien.^[24] This carrier plate is a silver-plated copper sheet typical for daguerreotypes and shows Joseph II's equestrian monument on Josefsplatz in Vienna (Figure 3, upper). Joseph II, the eldest son of the Austrian ruler Maria Theresa, was a Holy Roman Emperor and took over the Habsburg lands from his mother in 1780.

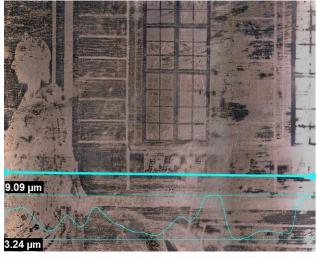
www.chempluschem.org

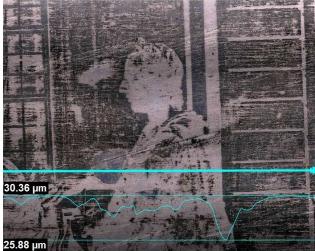

Figure 2. Left: Fuming box for daguerreotype, Inv.Nr.: 2112, Technisches Museum Wien, Austria. Right: Wooden box with laboratory utensils for daguerreotype, 1839 Giroux Paris, Inv.Nr.: 2110. Copyright Technisches Museum Wien, Austria.

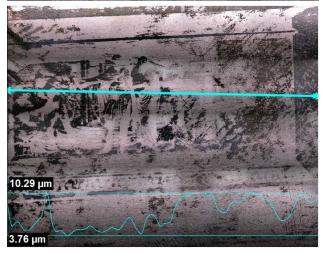
2. Results and Discussion

2.1. Surface Characterization

Surface characterization investigations were conducted in order to elucidate the manufacturing processes of daguerreotypes in Vienna of the early 1840s. The plate of the Joseph II's equestrian monument on Josefsplatz in Vienna retained its metallic brilliance (Figure 3, upper). The excellent depth of field and image quality despite the existing etched surface regions and various signs of aging can be best recognized by an inverted and horizontally mirrored photograph of the plate which


Figure 3. Joseph II's equestrian monument on Josefsplatz. Vienna. Etched Daguerreotype, Inv.Nr.: 83939/18, copyright Technisches Museum Wien, Austria. Plate size: 127×144×1 mm. Upper: photograph. Lower: inverted and horizontally mirrored photograph.


represents the actual aspect on Josefsplatz. There, the camera was set up south of the monument at a window of Augustinertrakt, a side wing of the Hofburg, the former principal imperial palace (Figure 3, lower).


Optical micrographs and surface profilometry (Figure 4) show that the daguerreotype plate represents an etched daguerreotype plate most probably designated for printing reproduction. Various profile levels - and even a flaw due to possibly an etchant splash-suggest this conclusion. The etched depressions are comparatively flat with a maximum depth of up to 6 μm .

A scanning secondary electron micrograph of the plate is shown in Figure 5. In an EDX analysis, the primary electron beam interacts with the sample by repeated random scattering leading to a teardrop-shaped volume extending from less than 100 nm to approximately 5 μm into the near-surface region. The depth of this interaction volume depends on the electron's landing energy, the atomic number of the specimen and the

www.chempluschem.org

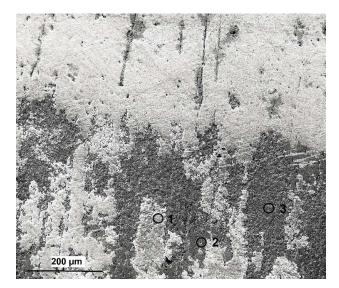
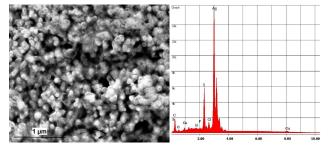


Figure 4. Optical micrographs with profilometry of the etched daguerreotype shown in Figure 3. Three profile lines are shown. Horizontal image edge: 513 mm (upper), 387 mm (middle), 272 mm (bottom).

specimen's density. The depth of the X-ray (EDX) activation, h can be appreciated by Equation (1)^[25]

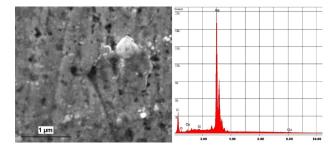
Figure 5. Scanning secondary electron micrograph of the etched daguerreotype (Figure 3), showing detail of the hoof front of the horse's right hindquarter. Three SEM/EDX measurement point are indicated.

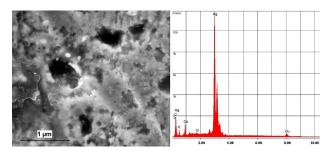

$$h = 0.0276 \ m_a \ V^{1.67}/z^{0.89} \ \rho \ [\mu m] \tag{1}$$

where $m_a=$ atomic weight (g/mole), $\rho=$ density (g/cm³), z=atomic number, and V=electron acceleration voltage (kV). With a V of 20 kV and the respective values of Ag this relationship results in an EDX activation depth of ca. 1.4 μ m. The silver coating on the copper substrate plate showed an average thickness of $7.3\pm1.1~\mu$ m determined by an array of 36 x-ray fluorescence measurements spots. That shows that solely the Ag coating with an average thickness of $7.3\pm1.1~\mu$ m has been analysed by EDX. A case with finite Cu signals would suggest pores and/or inhomogeneities (e.g. due to etching) in the Ag layer.

Three SEM/EDX measurement points were chosen in the area of the hoof front of the horse's right hindquarter (Figure 5). Three distinct morphological regions could be identified. Region 1 shows the highest secondary electron signal in contrast to region 2 and 3. This may suggest that the work function of this surface is lower than that of region 3, or/and that its lower conductivity leads to electron charging. A work function difference can be due to a different chemical composition of area 1 at variance to 2 and 3. The morphology of region 3 is typical for an etched surface which corresponds to low light exposure in contrast to the high exposure area 1 which does not exhibit etching features.

Region 1 represents a well light-exposed area where the photographic process based on silver halogenides led to the photon-catalysed reduction to colloidal silver nanoparticles (AgNPs). This photoproduct can be clearly seen in Figure 6 left. The observed particle size distribution is between 30 nm and 120 nm, which is less than in characteristic daguerreotype highlight image microstructures between 100 nm and 2.5 $\mu m.^{[1,5]}$ Particularly the top AgNPs appear light and blurred indicating electronic charging possibly due to core-shell NP morphologies with insulating shell compositions. Such chemical


www.chempluschem.org


Figure 6. Scanning secondary electron micrograph (left) and EDX spectrum (right) of the etched daguerreotype (Figure 3). Measurement point 1 in the white highlight (Figure 5).

conversions of the Ag core can be recognized by the EDX analysis resulting in a significant sulfur and a moderate chlorine signal besides oxygen (Figure 6 right, Table 2). This finding suggests that the colloidal particles exhibited a conversion shell layer consisting of Ag_2O , Ag_2S , and some AgCI with low conductivity.

These AgNPs and their conversion shells are practically absent in the midtone (Region 2) and dark tone (Region 3) areas (Figure 5). The midtone region shows only some scratches from the original polishing treatment and some etching bits with diameters of <100 nm (Figure 7 left). The dark tone areas, in contrast, are dominated by larger etching bits with diameters of 200–400 nm (Figure 8 left). Original polishing scratches are still observable despite extensive etching, however widened. The EDX analysis showed that any conversion layers involving CI or S are absent (Figure 7 right, 8 right, Table 2). The increased

Figure 7. Scanning secondary electron micrograph (left) and EDX spectrum (right) of the etched daguerreotype (Figure 3). Measurement point 2 in the midtone area (Figure 5).

Figure 8. Scanning secondary electron micrograph (left) and EDX spectrum (right) of the etched daguerreotype (Figure 3). Measurement point 3 in the shadow area (Figure 5).

Table 2. EDX results (at%) of the regions 1–3 indicated in Figure 5. Heliogravure on etched Daguerreotype.

	•		
	Region 1	Region 2	Region 3
S	14.39	0	0
CI	1.10	0	0
Cu	1.35	1.27	3.63
0	4.37	8.05	20.86
Ag	38.72	52.74	37.56
C	38.97	37.26	37.37
Si	0.57	0.68	0.57
P	0.53	0	0

oxygen signal of the most extensively etched surface (Region 3, Figure 8 right, Table 2) indicates a more abundant Ag₂O layer. The etching process exposed some copper substrate which is indicated by a somewhat higher Cu signal.

2.2. Reconstruction of the Photographic Procedure

The following findings are based on a detailed study of the relevant historical original literature (published in Vienna from 1840 until 1852) and the above-described experimental studies.

2.2.1. Silver Coating of the Copper Plate

Solid silver plates were rarely used.^[12] In the beginning of the 1840s, galvanic silver plating was employed^[1] and were available at relatively high costs in Vienna. Therefore, Kratochvila and the Natterer brothers chose also electroless plating.^[26,27] AgCl was dissolved in a NaCl solution.^[28] Solid AgCl can form a chloroanion in the presence of highly concentrated Cl^{-[29,30]} [Eq. (2)]:

$$AgCI + CI^{-} \rightarrow [AgCI_{2}]^{-}$$
 (2)

The electroless reaction was the cementation of Ag from the dichloro silver anion on the copper plate. This is thermodynamically driven by the oxidative power of the silver electrode [Eq. (3)]:^[31]

$$Ag \rightleftharpoons Ag^{+} + e^{-}(U_0 = +0.80 \text{ V})$$
 (3)

with a standard potential U_0 which is much more positive than that of the Cu dissolution reactions [Eqs. (4) and (5)]:

$$Cu \rightleftharpoons Cu_2^+ + 2 e^-(U_0 = +0.34 V)$$
 (4)

$$Cu \rightleftharpoons Cu^{+} + e^{-}\underline{\ }(U_{0} = +0.52 \,V) \tag{5}$$

The overall electroless silver plating reaction (a cementation reaction) is therefore:

$$[\mathsf{AgCI}_2]^- + \mathsf{Cu} \to \mathsf{Cu}^+ + 2 \ \mathsf{CI}^- + \mathsf{Ag} \tag{6}$$

2
$$[AgCl_2]^- + Cu \rightarrow Cu_2^+ + 4 Cl^- + 2 Ag$$
 (7)

2.2.2. Sensitization

The first sensitization process based on the Daguerre's experience was the fumigation of the polished silver surface with iodine vapour $^{[1-3,13]}$ in a special fuming box (Figure 2 left). There, photosensitive Agl was generated by the oxidation of the Ag substrate $^{[5]}$ (Table 1). However, iodine does not exhibit a sufficiently positive electrochemical potential for this reaction. An indirect route via the oxidant iodate can be suggested. It is well established that aqueous iodine chemistry is mainly governed by three reactions, $^{[10,32]}$ namely the disproportionation of iodine to hypoiodous acid HIO, or hypoiodide IO^- anions (oxidation state +1), and to iodide [Eq. (8)],

$$I_2 + H_2O \rightarrow I^- + IO^- + 2 H^+.$$
 (8)

Hypoiodide is not stable and disproportionates to iodate (oxidation state + V) and iodide [Eq. (9)]:

$$3 \text{ IO}^- \rightarrow 2 \text{ I}^- + \text{IO}_3^-$$
 (9)

The overall reaction is given in Equation (10):

$$3 I_2 + 3 H_2O \rightarrow 2 I^- + IO_3^- + 6 H^+$$
 (10)

The oxidative power of the IO_3^- ion is sufficient at all applied pH values (mostly near neutrality)^[33,34] to oxidize the Ag surface so that AgI can be formed as a photosensitive film [Eq. (11)]:

$$6 \text{ Ag} + \text{IO}_3^- + 6 \text{ H}^+ \rightarrow 6 \text{ AgI} + 3 \text{ H}_2 \text{O}$$
 (11)

Agl exhibited a very low sensitivity. [1,3]

A multiple sensitization by fumigation with bromine in addition to iodine was introduced practically in parallel by laboratories in England and Austria yielding an improved sensitivity. [2,3,11,13]. Bromine, in contrast to iodine shows a sufficiently positive standard potential [31]:

$$Br_2 + 2 e^- \rightleftharpoons 2 Br^- (U_0 = +1.0873 V)$$
 (12)

so that Ag ($U_0 = +0.80 \text{ V}$) can be oxidized directly to the photosensitive phase AgBr.

The Viennese pioneers, F. Kratochwila, the Natterer brothers, and E. Waidele, extended the multiple sensitization procedures of photographic plates with chlorine gas. [11-13,15] They employed Cl₂ and Br₂ or l₂ concurrently, or in a series, first l₂ followed by Cl₂, or first l₂ followed by Br₂ and finally Cl₂.

The iodized surface was exposed to Cl_2 gas produced by a chlorinated lime ("Chlorkalk"), a mixture of calcium hypochlorite, $Ca(OCl)_2$, $CaCl_2$ and a $Ca(OH)_2$ solution^[11]. The reactant of this mixture is CaCl(OCl). It can react with an acid such as carbonic acid from the atmospheric CO_2 producing Cl_3 :

CHEMPLUSCHEM Full Papers

$$CaCI(OCI) + CO2 \rightarrow CaCO3 + CI2.$$
(13)

 Cl_2 easily can oxidize the Ag surface due to its very positive potential

$$Cl_2 + 2 e^- \rightleftharpoons 2 Cl^- (U_0 = +1.36 V)$$
 (14)

resulting in an AgCl film.

2.2.3. Exposure

The Viennese authors thus employed a silver halogenide (AgX) mixture as photosensitive phase.^[11] The absorption of a photon results in the formation of a latent image based on Ag₅ clusters^[35]. A photoreaction can be assumed as follows:

$$10 \ AgX + 10 \ h\nu \rightarrow 2 \ Ag_5 + 5 \ X_2 \eqno(15)$$

The exposure time in a Voigtländer's Camera Obscura was only within 5 s to 6 s in cloudy weather, within 2 s on a bright day, and in direct sunlight in an "unmeasurable" time. This novel technology allowed the unblurred high quality imaging of moving motifs such as portraits and street scenes for the first time.

2.2.4. Development

The common development procedure for daguerreotypes was the formation of Ag amalgam particles next to the latent image Ag clusters.^[1,36] The heated Ag plate was treated by Hg vapour.

Edmond Becquerel reported a development procedure based on Agl without the use of mercury in 1840. This method is related to the famous "Becquerel effect" where Agl was exposed resulting in a latent image. This was further developed by a yellow and/or red light treatment. However, this ground-breaking invention did not yet assert itself against the method of Daguerre employing mercury. [1,3,13]

In the following year, in 1841, also the Viennese Natterer brothers developed a method without mercury^[12]. This novel procedure represented a breakthrough photographic technique due to the high sensitivity of the employed halogenide mixture. In the case of the least sensitive layer of AgI, a development procedure was reported.^[15] This development process can be reconstructed as shown in Equation (16) (compare references [38,39]):

$$2 S_2 CI_2 + 2 H_2 O \rightarrow SO_2 + 4 HCI + 3/8 S_8.$$
 (16)

The resulting SO₂ vapour reacts at the surface in humid atmosphere to sulfurous acid [Eq. (17)]:

$$SO_2 + H_2O \rightarrow H_2SO_3. \tag{17}$$

www.chempluschem.org

It is remarkable that the deposition of the developer substance, sulphurous acid, was applied before the exposure. The sulphurous acid obviously acted as a reductant for the Ag halide (AgX) leading to AgNPs around the latent image Ag nuclei [Eq. (18)]:

$$2 \text{ AgX} + \text{H}_2\text{SO}_3 + \text{H}_2\text{O} \rightarrow 2 \text{ Ag} + 2 \text{ HX} + \text{H}_2\text{SO}_4$$
 (18)

The development process already took place in the camera. [28]

A superb sensitivity was claimed by the usage of sulfur bromide instead of sulfur chloride.^[19] [Eq. (19)],

$$2 S_2 Br_2 + 2 H_2 O \rightarrow SO_2 + 4 HBr + 3/8 S_8,$$
 (19)

and claimed a superb sensitivity.[19]

2.2.5. Fixing

Josef Natterer performed the fixing either by potassium cyanide, KCN, or by sodium thiosulphate, $^{[19]}$ Na₂S₂O₃. The fixing consisted of the dissolution of remnant halides [Eqs. (20 and 21]:

$$2 \text{ Na}_2S_2O_3 + AgX \rightarrow \text{Na}_3[Ag(S_2O_3)_2] + \text{Na}X$$
 (20)

$$4 \text{ KCN} + 2 \text{ AgX} \rightarrow 2 \text{ K}[\text{Ag}(\text{CN})_2] + 2 \text{ KX}$$
 (21)

2.2.6. Etching

The Viennese Joseph Berres succeeded in developing an etching technique in 1840 enabling first reproductions of the newly invented photographs. He observed that the exposed Hg/Ag areas showed a high resistance towards etching with nitric acid. The unexposed areas covered by unreacted AgX could be attacked by the acid. His treatment of the exposed plates consisted of two operations, (1) the permanent fixation of the image and (2) the etching. The special image fixation procedure is passed down as follows. [21]

Berres' fixation deviated from Natterer's procedure in that it prepared the follow-up etching step. The treatment of the plates in HNO₃ led to some dissolution of Cu at the reverse side and Ag on the exposed front side [Eqs. (22) and (23)]:

$$3 \text{ Cu} + 2 \text{ NO}_3^- + 8 \text{ H}^+ \rightarrow 3 \text{ Cu}_2^+ + 4 \text{ H}_2\text{O} + 2 \text{ NO}$$
 (22)

$$3 \text{ Ag} + \text{NO}_3^- + 6 \text{ H}^+ \rightarrow 3 \text{ Ag}^+ + 3 \text{ H}_2 \text{O} + \text{NO}$$
 (23)

Due to its corrosive and oxidative effect, nitric acid is often used in printing technology for etching and is the oldest known mordant.

After fixing the image, Berres continues with the etching process. $^{[21]}$

In this second operation step (the "etching" step), a gum arabic solution was applied on the fixed image surface. Gum

arabic, a mixture of glycoproteins and polysaccharides mainly consisting of arabinose and galactose, showed different wetting on the exposed AgNP regions and the unexposed bulk Ag regions. Obviously, the wetting was drastically reduced on the unexposed polycrystalline Ag region so that the follow-up etching step preferentially attacked the substrate. The formed depressions could accept the printing ink in the follow-up reproduction step. On the other hand, the exposed AgNP regions were much more wetted and thus protected by a stable gum arabic film.

In his report on the new developments in daguerreotype, [19] Berres pointed to an important detail in the preparation of daguerreotype plates destined for later etching. Although it has been claimed that any carefully applied cleaning method or any cleaning agent could achieve a pure plate and a satisfactory image, he pointed out that the challenge of the daguerreotype process lies in the cleaning of the plates. Two techniques by Kratochwila and the physicist Anton Martin (1812-1882) were rated by him as the most reliable ones. Kratochwila simplified and shortened the time-consuming cleaning process by cleaning the polished plate with a distilled turpentine oil and cotton, followed by polishing with a bale of deerskin. Martin cleaned the plates with ethyl alcohol, distilled water, and powdered sheep bones on a soft deerskin. According to Berres, Martin's images exhibit an unsurpassed clarity and sharpness, and are recommended for the production of heliographies destined for printing. The turpentine-treated plates often still had a mist that made the image less pure and, due to a fine resin coating, prevented deeper penetration of the etching process.[19]

Berres improved his etching procedure.^[19] Obviously, Berres experimented also with amalgamated images.^[19] The etch process was repeated until a sufficient depth was reached and was finished by rinsing in distilled water. He was able to achieve hundreds of prints.^[19] Berres further reproduced original etched photographs by a process in which an auxiliary intermediate film of Au was electroplated from AuCl₃, and numerous Cu replica could be generated by electrotyping. Thus, innumerable photographic reproductions were possible for the first time.

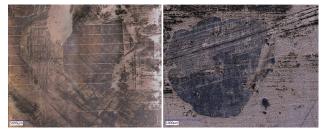
2.3. Deterioration

Deterioration processes generally observed with common daguerreotypes which contain Hg are absent in the present case. Moreover, due to the absence of cover glasses – as were used with daguerreotypes – no influence of glass corrosion exists. Since the plate was kept completely open and without any protection during the long period of about 180 years, other corrosion processes could be observed in the present study.

The front side of the plate appears yellow-brownish in the middle and blue-greyish at the blurry edges (Figure 3, upper). It is not known whether the plate was smudged during the manufacture and etching process, or at a later stage, due to inadequate storage and handling. Particularly the left edge of the plate and the pavement area were strongly blurred. In addition, scratches, finger smudges and other blurred areas are visible as fine, dark and grey lines and spots. Due to the

www.chempluschem.org

numerous grey scales and blurred areas, it was very difficult to distinguish between the physical damages and the chemical alterations of the surface. This suggests that complex deterioration mechanisms took place. [1,7]


Unevennesses are visible on the back of the plate (Figure 9). In the recesses there are residues of a dark coating (probably asphalt).

Along the right front side (Figure 3, upper), approx. 15 mm from the edge, a dark stripe can be observed, which probably comes from a mechanical fixture.

Examples of mechanical damage, such as scratches and wiped areas, are presented in Figure 10. Such damages are most probably old and may date back to the time of image production. Several deteriorations exist which look like remnants of splashes. A representative example on the hoof front of the horse's left hindquarter (comp. Figure 4 right) is depicted in Figure 10. A SEM image of another splatter reveals the etched morphology within that area (Figure 11). This may allow the conclusion that the splashes may have been created during or shortly after the production process unintendedly by an etching liquid such as HNO₃.

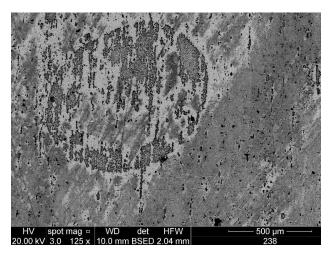

Figure 9. Reverse side of the etched daguerreotype shown in Figure 3.

Figure 10. Optical micrographs of a spot-like deteriorated area of the etched daguerreotype (Figure 3).

Figure 11. Scanning secondary electron micrograph of a spot-like deteriorated area of the etched daguerreotype (Figure 3).

Table 3. Photographic procedure reconstruction.		
Process	Reaction	
Ag coating of the Cu plate	2 $[AgCl_2]^- + Cu \rightarrow Cu_2^+ + 4 Cl^- + 2 Ag$	
Sensitization	$2 Ag + X_2 \rightarrow 2 AgX$	
Exposure	$8 \text{ AgX} + 4 \text{ hv} \rightarrow 2 \text{ Ag}_4 + 4 \text{ X}_2$	
Development	2 AgX + $H_2SO_3 + H_2O \rightarrow 2$ Ag + 2 HX + H_2SO_4	
Fixation	$2 \text{ Na}_{2}S_{2}O_{3} + \text{AgX} \rightarrow \text{Na}_{3}[\text{Ag}(S_{2}O_{3})_{2}] + \text{NaX}$	
	$4 \text{ KCN} + 2 \text{ AgX} \rightarrow 2 \text{ K[Ag(CN)}_2] + 2 \text{ KX}$	
Etching	$3 \text{ Ag} + \text{NO}_3^- + 6 \text{ H}^+ \rightarrow 3 \text{ Ag}^+ + 3 \text{ H}_2\text{O} + \text{NO}$	

2.4. Summary

A detailed study of the historical original literature and the surface investigations of the silver-plated copper plate daguerreotype (Figure 3) led to the elucidation of the photographic processes and reproduction technique of the early 1840s (Table 3).

In 1841, the Viennese Natterer brothers, medical students working together with their colleague Erwin Waidele developed breakthrough photographic procedures providing a hitherto unachieved high sensitivity. These and the first calculated objectives designed by the mathematician Josef Petzval enabled the earliest known photographs of moving street scenes.

The first developed sensitization process based on Daguerre's process was iodization that resulted in a photosensitive film of Agl. The remarkable invention by the Viennese pioneers, F. Kratochwila, the Natterer brothers, and E. Waidele, involved the multiple sensitization of the photographic plates also with chlorine and bromine.

The common development procedure for daguerreotypes was the formation of Ag amalgam particles next to the latent image Ag clusters. Edmont Becquerel reported a development procedure based on Agl without the use of mercury in 1840, where Agl was converted to latent images (by the "Becquerel effect"). The development technique of the Viennese Natterer brothers in 1841 could be reconstructed as the hydrolysis of S_2Cl_2 resulting in SO_2 and H_2SO_3 , which acted as a reductant for

www.chempluschem.org

the Ag halides. The Natterer brothers also used S_2Br_2 instead of S_2Cl_2 and claimed a superb sensitivity. Josef Natterer performed the fixation of the developed image either by potassium cyanide, KCN, or by sodium thiosulphate, $Na_2S_2O_3$ that dissolved the remnant halides.

Joseph Berres succeeded in developing an etching technique in 1840 for the common daguerreotypes involving Ag amalgams. Thus enabled first reproductions of daguerreotypes. Original literature suggests that the exposed amalgam areas showed a high resistance towards etching with nitric acid. The unreacted AgX could be attacked by the acid. Berres applied a gum arabic solution on the fixed image surface before the etching step. Berres further reproduced original etched photographs by a process in which an auxiliary intermediate film of Au was electroplated from AuCl₃. Thus, innumerable photographic copper replica could be generated by electrotyping for the first time.

3. Conclusion

Detailed physico-chemical investigations of the unique silverplated copper plate daguerreotype depicting emperor Joseph Il's equestrian monument on Josefsplatz in Vienna - recently discovered in the collection of the Technisches Museum Wien together with original reports of the involved pioneerssupported the elucidation of the world-first high-sensitivity photographic and reproduction processes (Table 3).

On the investigated plate, only chlorine was detected by EDX. This suggests that in this case solely a chlorine gas treatment was applied for the sensitization, so that Ag was oxidized to AgCl. No Hg could be detected by EDX.

In the light-exposed area of the plate, a photon-catalysed reduction led to colloidal silver nanoparticles (AgNPs) with a size distribution between 30 nm and 120 nm. This is definitely less than the Ag amalgam particle sizes typical for highlight image microstructures of daguerreotypes, which are between 100 nm and 2.5 μ m. The colloidal particles exhibited a conversion shell layer consisting of Ag₂O, Ag₂S, and some AgCl.

Profilometry with an optical microscope and SEM suggested that the plate was etched. The etched surface regions correspond to low light exposure. In contrast, the high exposure area does not exhibit etching features. The AgNPs are practically absent in the midtone and dark tone areas. They, in contrast, are dominated by larger etching bits with diameters of 200–400 nm. EDX showed that any conversion layers involving CI or S are absent while Ag₂O layers are abundant.

Deterioration processes generally observed with common daguerreotypes which contain Hg are absent in the present case. Scratches, finger smudges and blurred areas visible as fine, dark and grey lines and spots are most probably old damages and may date back to the time of image production. Remnants of splashes may have been caused unintendedly during the etching process.

These findings may serve for the future technological elucidation of early photographs from the first half of the 19th

CHEMPLUSCHEM Full Papers

century. Moreover, this will support the recognition and verification of prints manufactured by etched daquerreotypes.

Experimental Section

A systematic materials analysis of the daguerreotype plate showing the Joseph II's equestrian monument on Josefsplatz in Vienna (Figure 3, upper) has been undertaken. An average Ag-layer thickness was evaluated by x-ray fluorescence (XRF; Roentgenanalytik Systeme GmbH & Co. KG, maXXi 5/PIN). Optical micrographs of the surface topography were recorded with a digital microscope (Keyence, VHX-5000) together with the z-scan techniques. Scanning electron microscopy (SEM) was combined with energy-dispersive X-ray spectroscopy (EDX; Zeiss Supra 55 VP). The topography was imaged with secondary electron signals. Since secondary electrons are emitted from very close to the specimen surface, very high-resolution images could be achieved. The composition was analysed with energy-dispersive X-ray spectroscopy (EDX).

Acknowledgements

The authors thank the Institute of Physics and Materials Science of the University of Natural Resources and Life Sciences (BOKU Vienna) for access to the optical microscopy equipment and the Institute of Art and Technology of the University for Applied Arts, Vienna, for the SEM/EDX analysis.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: daguerreotypes · heritage science photochemistry · photography · nanoparticles

- M. S. Barger, W. B. White, The Daguerreotype Nineteenth-Century Technology and Modern Science, Johns Hopkins University Press, 2000.
- [2] H. Gernsheim, A. Gernsheim, The History Of Photography from the Camera Obscura to the Beginning of the Modern Era, Oxford University Press, 1955.
- [3] J. Hannavy, Ed., *Encyclopedia of Nineteenth-Century Photography*, Taylor & Francis Group, New York, **2008**.
- [4] M. Osterman, G. B. Romer, Focal Encycl. Photogr. 2007, 27–157.
- [5] P. Ravines, L. Li, L. Chan, R. McElroy, Nanosci. Cult. Herit. (Ed.: I. Dillmann, Philippe, Bellot-Gurlet, Ludovic, Nenner), Atlantis Press, 2016, pp. 123– 158.
- [6] G. A. Wickliff, Tech. Commun. Q. 2006, 15, 293-313.
- [7] A. S. Centeno, F. Schulte, W. N. Kennedy, G. A. Schrott, Appl. Phys. A 2011, 105, 55–63.
- [8] P. Ravines, L. Lingjia, R. McElroy, J. Imaging Sci. Technol. 2016, 60, 30504–1-30504–10.

www.chempluschem.org

- [9] A. E. Schlather, P. Gieri, M. Robinson, S. A. Centeno, A. Manjavacas, *Proc. Natl. Acad. Sci. USA* 2019, *116*, 13791–13798.
- [10] S. Dushman, J. Phys. Chem. 1904, 8, 453-482.
- [11] Anonymus, Polytech. J. 1841, 80, 229–232.
- [12] J. Berres, Polytech. J. 1841, 81, 149-157.
- [13] J. M. Eder, Geschichte Der Photographie, Verlag Von Wilhelm Knapp, Halle (Saale), 1932.
- [14] M. Gröning, M. Faber, Inkunabeln Einer Neuen Zeit: Pioniere Der Daguerreotypie in Österreich 1839–1850, Christian Brandstätter Verlag, Albertina, Wien, 2006.
- [15] A. Martin, Vollständige Anleitung Zur Photographie Auf Metall Nebst Den Neuesten Fortschritten Der Photographie Auf Papier, Carl Gerold, Wien, 1848.
- [16] A. Martin, Repertorium Der Photographie: 1. Vollständige Anleitung Zur Photographie Auf Papier. 2. Literatur Der Photographie Auf Metall, Carl Gerold, Wien, 1846.
- [17] T. Starl, Lexikon Zur Fotografie in Österreich 1839–1945, Album Verlag, Wien, 2005.
- [18] T. Szőcs, "Petzval lens," can be found under https://commons.wikime-dia.org/w/index.php?title=File:Petzval.png&oldid=152184740, 2009.
- [19] J. Natterer, Polytech. J. 1852, 125, 25-27.
- [20] J. Berres, J. Belles Lettres, Art, Sci. &c. 1840, 1233, 581–82.
- [21] Anonymus, Polytech. J. 1840, 77, 159.
- [22] J. Berres, Polytech. J. 1841, 79, 388-392.
- [23] M. Jürgens, I. Vasallos, L. Fernandes, Rijksmus. Bull. 2018, 66.
- [24] V. Ljubic Tobisch, H. Weitensfelder, W. Kautek, *Blätter für Tech.* **2011**, *74*, 135–161.
- [25] Steinbrecher Stefan, A Unified Monte Carlo Approach for Quantitative Standardless X-Ray Fluorescence and Electron Probe Microanalysis inside the Scanning Electron Microscope, Eberhard-Karls-Universität Tübingen, 2004.
- [26] F. Kobell, Polytech. J. 1845, 95, 186-191.
- [27] K. Taucher, Handbuch Der Galvanoplastik, Rieger'sche Verlagsbuchhandlung, Stuttgart, 1893.
- [28] Anonymus, Polytech. J. 1842, 83, 385-387.
- [29] V. Gutmann, E. Hengge, Allgemeine Und Anorganische Chemie, Verlag Chemie GmbH, Weinheim, 1971.
- [30] W. T. Thompson, M. H. Kaye, C. W. Bale, A. D. Pelton, *Uhlig's Corrosion Handbook*, John Wiley & Sons, New Jersey, 2011.
- [31] W. M. Haynes, Ed., CRC Handbook of Chemistry and Physics, CRC Press, 1974.
- [32] D. A. Palmer, R. W. Ramette, R. E. Mesmer, J. Nucl. Mater. 1985, 130, 280– 286.
- [33] A. Tigeras, M. Bachet, H. Catalette, E. Simoni, Prog. Nucl. Energy 2011, 53, 504–515.
- [34] A. J. Bard, R. Parsons, J. Jordan, Eds., Standard Potentials in Aqueous Solution, Marcel Dekker, New York, 1985.
- [35] T. Tani, J. Soc. Photogr. Sci. Technol. Japan 1990, 53, 87–94.
- [36] E. A. Marquis, Y. Chen, J. Kohanek, Y. Dong, S. A. Centeno, Corros. Sci. 2015, 94, 438–444.
- [37] E. Becquerel, Impr. R. C. R. Académie des Sci. 1842, 12.
- [38] H. Böhme, E. Schneider, Ber. Dtsch. Chem. Ges. 1943, 5, 483.
- [39] D. L. Cason, H. M. Neumann, J. Am. Chem. Soc. 1961, 83, 1822-1828.
- [40] N. Overney, G. Overney, "The History of Photomicrography," can be found under http://www.microscopy-uk.org.uk/mag/artmar10/history_ photomicrography_ed3.pdf, 2011.

Manuscript received: July 30, 2019

Revised manuscript received: October 4, 2019

Accepted manuscript online: October 7, 2019