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Summary

We propose a multivariate dynamic intensity peaks‐over‐threshold model to

capture extremes in multivariate return processes. The random occurrence of

extremes is modeled by a multivariate dynamic intensity model, while tempo-

ral clustering of their size is captured by an autoregressive multiplicative error

model. Applying the model to daily returns of three major stock indexes yields

strong empirical support for a temporal clustering of both the occurrence and

the size of extremes. Backtesting value‐at‐risk and expected shortfall forecasts

shows that the consideration of clustering effects and of feedback between

the magnitudes and the intensity of extremes results in better forecasts of risk.
1 | INTRODUCTION

Financial risk management has become a ubiquitous task for banks, companies, and financial institutions, especially
during the last subprime mortgage crisis. The global crisis of 2008 has demonstrated the importance of modeling and
forecasting of extreme events and their dynamic behavior during crisis periods. Classical extreme value theory (EVT)
constitutes the mathematical and statistical foundation for the description of the distribution of extreme events. Tradi-
tional concepts to describe the tail of a loss distribution are value‐at‐risk (VaR) and expected shortfall (ES); see, for
example, McNeil and Frey (2000), Cotter and Dowd (2006), or Chavez‐Demoulin, Embrechts, and Sardy (2014). On
the other hand, point process methods allow the dynamic behavior of (extreme) events to be captured and are typically
applied in the context of portfolio credit risk, market microstructure analysis, contagion analysis, or jump‐diffusion
models; see, for example, Engle and Russell (1998), Bauwens and Hautsch (2006), Errais, Giesecke, and Goldberg
(2010), Bacry and Muzy (2014), or Aït‐Sahalia, Cacho‐Diaz, and Laeven (2015). Moreover, point process theory provides
an elegant formulation for the characterization of the limiting distribution of extreme value distributions, see Pickands
(1971) or Smith (1989), and therefore builds a natural complementary framework to extreme value analysis.

In this paper, we aim at bringing together both branches of the literature and propose a dynamic multivariate model
capturing the occurrence and size of extremes in a multivariate time series. Important features of the proposed frame-
work are to allow for (i) temporal clustering of both the occurrence of extremes and the size thereof, (ii) cross‐sectional
feedback between individual exceedance intensities, and (iii) feedback between the magnitude of exceedances and their
intensity. On the one hand, we introduce an autoregressive conditional intensity peaks‐over‐threshold (ACI‐POT)
model, which, in its most basic form, corresponds to the combination of two known models: the ACI model introduced
by Russell (1999) and the POT model by Davison and Smith (1990). Moreover, we propose a multivariate extension of a
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Hawkes‐POT model, introduced in a univariate context by Chavez‐Demoulin, Davison, and McNeil (2005) and recently
reviewed in different applications by Chavez‐Demoulin and McGill (2012), Herrera and Schipp (2014), and Gresnigt,
Kole, and Franses (2015).

Our approach complements the multivariate Hawkes‐POT model proposed by Grothe, Korniichuk, and Manner
(2014). They treat the multivariate process of extreme events as a superposition of individual self‐exciting Hawkes pro-
cesses, whose exceedance times and exceedance magnitudes are coupled together using an extreme‐value copula. The
form of the latter is implied by specific parametric assumptions for the decay function and the impact function, captur-
ing the effect of the marks of exceedances onto the conditional rate of future exceedances. Although the resulting model
yields a unifying and parsimonious framework for the modeling of multivariate extremes, its drawback is that the uni-
variate processes do not allow for dynamic spillovers and that dynamic interdependence results from the copula only.
Consequently, the multivariate point processes are exclusively coupled through contemporaneous effects but do not
allow for spillovers across time and processes, making its use in the context of risk forecasting a difficult task.

The major difference in our setting is to explicitly allow for dynamic spillovers across the processes of extreme events.
The key element of our framework is a feedback mechanism, accommodating temporal and cross‐sectional interdepen-
dence between the arrival rates of extreme events and their magnitudes, thus allowing not only for self‐excitation but also
cross‐excitation. The proposed class of processes generates a flexible and computationally tractable multivariate depen-
dence structure—properties that in recent years have been empirically well documented in other contexts by Bowsher
(2007), Bacry, Dayri, and Muzy (2012), Bacry, Delattre, Hoffmann, and Muzy (2013), Aït‐Sahalia, Laeven, and Pelizzon
(2014), and Aït‐Sahalia et al. (2015), among others. Accordingly, our framework allows us to analyze how the effect of
the occurrence of an extreme event is traced through the system and dynamically affects the other processes.

A further contribution, from an empirical perspective, is to identify and discuss typical features of cluster behavior of
extreme events in financial markets. In our empirical application, we consider the stock market indexes DAX, S&P 500,
and FTSE 100. By means of the multivariate ACI‐POT approaches, we show that we can well capture these stylized facts
and can produce reliable forecasts of VaR and ES. Corresponding results for Hawkes‐POT approaches are presented in a
Supporting Information Appendix.

The remainder of the paper is organized as follows. In Section 2, we discuss some stylized facts associated with clus-
ter behavior of extreme events in financial time series. Section 3 summarizes the concepts in EVT from the viewpoint of
point process theory and introduces the proposed dynamic intensity POT models. In Section 4, we illustrate how to
apply the proposed models to produce conditional risk measures such as VaR and ES. Section 5 discusses estimation
results and diagnostics, which are based on applications of the proposed models to the daily returns of international
stock indexes. Section 6 provides VaR and ES in‐sample and out‐of‐sample backtesting results. Section 7 concludes.
2 | CLUSTERING OF EXTREME EVENTS

The clustering of extreme events is recognized as a prevalent feature in financial time series. To illustrate this stylized
fact, we consider daily data of an equal‐weighted portfolio based on the DAX, S&P 500, and FTSE 100 indices over the
period January 3, 1994, to December 30, 2014. A flexible nonparametric tool for capturing different types of extremal
dependence is the extremogram introduced by Davis and Mikosch (2009), which can be considered as an analog of

the autocorrelation function for extreme events. Let Xt be a strictly stationary Rd
‐valued time series. Then, the

extremogram for lag h is defined by

ρAB hð Þ ¼ lim
x→∞

Pr x−1Xh ∈ Ajx−1X0 ∈ B
� �

;

for h=0,1,2,…, provided that the limit exists for two sets A and B and are bounded away from 0.1 Similarly, we can define
the cross‐extremogram as

ϕAB hð Þ ¼ lim
x→∞

Pr x−1Yh ∈ Ajx−1X0 ∈ B
� �

;

which can be straightforwardly extended to higher dimensions. In practice, the limits for x are typically replaced by cor-
responding quantiles of the processes.
1Usually, in univariate time series, the choice of the sets is defined by A ¼ B ¼ 1; ∞½ Þ, and thus the extremogram corresponds to the upper tail depen-
dence coefficient between X0 and Xh.



FIGURE 1 8.5% of the most extreme losses (top left) and gains (bottom left) for an equal‐weighted portfolio based on the DAX, S&P 500,

and FTSE 100 indexes from January 3, 1994, to December 30, 2014. The sample extremograms are shown in the middle figures with losses at

the top and gains at the bottom. The right‐hand figures show the cross‐extremograms for losses conditional on gains (top right) and gains

conditional on losses (bottom right) at different lags. The dashed line corresponds to the value of the extremogram under the null hypothesis

of independence at a 95% confidence level obtained based on 100 permutations. The sampling distribution of the (cross‐)extremogram and

confidence intervals are obtained based on 10,000 bootstrap replications
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Figure 1 displays extremograms and cross‐extremograms with x chosen as the 91.5% empirical quantile of the port-
folio returns.2 We observe that the (cross‐)extremograms decay hyperbolically as lags increase. The extremogram of
losses and the cross‐extremograms for losses conditional on gains reveal the most significant dependence on higher lags.
Hence losses are more strongly clustered than gains, confirming findings (e.g., by Hamidieh, Stoev, & Michailidis, 2009;
Jondeau and Rockinger, 2003; Olmo, 2005).

Moreover, we also observe temporal clustering of extremes across markets. The two first panels of Figure 2 display
the time series of 9% of the most negative log returns of the three indices as well as the associated intensities. The latter
are estimated based on a ACI‐POT model as proposed in the remainder of this paper. We observe a considerable amount
of co‐clustering of extremes. This is even more evident by analyzing trivariate cross‐extremograms for negative log
returns of the three indices. Denote the negative log returns of the DAX, S&P 500, and FTSE 100 index by Xt,Yt, and
Zt, respectively. Then, the third panel displays the cross‐extremogram

cϕ1
A hð Þ ¼ lim

x→∞
P x−1Yh ∈ A ∪ x−1Zh ∈ Ajx−1X0 ∈ A
� �

;

with x being the 91% empirical quantiles of the negative log returns and A ¼ 1; ∞ð Þ. Likewise, in the bottom panel of
Figure 2, we depict the cross‐extremogram

cϕ2
A hð Þ ¼ lim

x→∞
P x−1X0 ∈ Ajx−1Yh ∈ A ∪ x−1Zh ∈ A
� �

:

We observe clear evidence for both types of cross‐extremal dependence among extreme negative events, confirming, for
example, Longin and Solnik (2001), Byström (2004), and Herrera and Eichler (2011). Clustering in extreme events,
moreover, can be observed in the properties of the time between exceedances. Classical EVT assumes independent
and identically distributed (i.i.d.) observations, implying that the timing of exceedances follows a Poisson point process,
and thus that inter‐exceedance times are exponentially distributed. The first panel of Figure 3 shows quantile–quantile
plots, reflecting that the exponential distribution is clearly at odds with empirical observations. Moreover, autocorrela-
tions in inter‐exceedance times, as shown in the second panel, reveal a high degree of persistence. Finally, the bottom
2For all (cross‐)extremograms shown in this paper, we utilize a stationary bootstrap based on 10,000 bootstrap replications to construct confidence
intervals with block sizes given by an independent geometric distribution with mean 250 (which closely corresponds to the number of yearly trading
days). For details on the estimation and construction of confidence intervals for extremograms, we refer to Davis, Mikosch, and Cribben (2012).



FIGURE 2 From top to bottom: Time series of 9% of the most extreme losses (91% empirical quantiles of the negative log returns),

conditional intensity for the occurrence of losses, and trivariate sample cross‐extremograms corresponding to cϕ1
A hð Þ and cϕ2

A hð Þ,
respectively. From left to right for DAX, S&P 500, and FTSE 100 indexes
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panel provides univariate empirical extremograms measuring the impact of a large loss on future extremes in the same
market. All estimates are highly significant and thus confirm findings, for example, from Davis et al. (2012) or Chang,
Geman, Hsieh, and Hwang (2013).

We thus find strong empirical evidence for co‐clustering, self‐excitation, and cross‐excitation in extreme events. In
the next section, we present an econometric model to capture this feature.
3 | DYNAMIC INTENSITY PEAKS ‐OVER ‐THRESHOLD MODELS

Denote by zt : ¼ z1t ; …; zMt
� �

the M×1 vector of negative log returns at time t, each with an unknown cumulative dis-

tribution function Fm with upper endpoint with distribution function ϵmF : ¼ sup Ym
t ∈ R:Fm < 1

� �
≤ ∞ and sample

maxima Mm
n ¼ max z11; …; z1n

� �
. Under some suitable normalization of the maxima, it can be shown that Fm is in

the domain of attraction of the generalized extreme value (GEV) distribution

H zmð Þ ¼
exp − 1þ ξ

zm−μ
σ

� �−1=ξ

þ

( )
; ξ ≠ 0

exp −exp −
zm − μ

σ

� �� 	
; ξ ¼ 0;

8>>>><>>>>: (1)

where μ, ξ ∈ R and σ>0, corresponding to location, shape, and scale parameters, respectively, and aþ ¼ max a; 0ð Þ.



FIGURE 3 QQ‐plots for inter‐exceedance times, autocorrelation of inter‐exceedance times, and sample extremograms for the 9% most

extreme losses of the DAX, S&P 500, and FTSE 100 daily log returns
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Define ymt : ¼ zmt − um as the so‐called exceedance beyond a high threshold 0 < um < ϵmF . By denoting the occurrence
time of the jth exceedance in process m by tmj , we define the corresponding magnitude ymj : ¼ zmtj − umas a mark. Fur-

thermore, xmj : ¼ tmj − tmj−1 represents the inter‐exceedance time between consecutive m‐type extreme events, while

xmðtÞ: ¼ t − tmj denotes the backward recurrence time to the most previous extreme event j. According to the

Pickands–Balkema–de Haan theorem, when um→ϵmF the distribution of i.i.d. marks converges to a generalized Pareto
distribution (GPD), whose density function is given by

g ymjHtð Þ ¼
1
β

1þ ξ
ym

β

� �−1=ξ−1

þ
; ξ ≠ 0

1
β
exp −

ym

β

� �
; ξ ¼ 0;

8>>><>>>: (2)

where β ¼ σ þ ξ u − μð Þ is a reparametrized scale parameter.
Define Nm(t) as the right‐continuous function, counting the number of events for which ymj > 0 until and including t.

We therefore have NmðtÞ ¼ Nmðtmj Þ ¼ j if tmj ≤ t < tmjþ1. Thus j=1,2,… is a counting subindex for each dimension

m ∈ 1; …; Mf g. Accordingly, �NmðtÞ denotes the corresponding left‐continuous function, counting the number of events
for which ymj > 0 until but excluding t. Then, NðtÞ: ¼ N1ðtÞ; …; NMðtÞ� �

defines a multivariate marked point process

(MPP) of exceedances. For each dimension m ∈ 1; …; Mf g the process is characterized by a double sequence

tmj ; y
m
j


 �n o
j≥1

∈ Ω ¼ 0; 1ð � × um; ∞ð Þof unpooled arrival times and marks, where time is, for convenience, measured

on a rescaled interval 0; 1ð �. Finally, let us define �N ðtÞ as the left‐continuous counting function of the pooled arrival
times ti of extreme events regardless of the event type, and therefore i=1,2,… corresponds to a counting subindex for
the pooled process.

The multivariate process of exceedance times and marks can be specified via anM‐variate vector of conditional inten-
sities:



FIGURE 4 Graphical presentation of a bivariate MPP of exceedances. Observe that j is a counting subindex for each dimension

m ∈ 1; 2; …f g, while i is the subindex for the pooled process
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λm t; yjHtð Þdtdy ¼ E Nm t; t þ dt½ � × y; yþ dy½ �ð ÞjHt½ �
¼ E Nm dt × dyð ÞjHt½ �; (3)

where Ht ¼ tmj ; y
m
j


 �
∀ m; jð Þ: tmj < t

n o
denotes the internal history of N(t), while dt and dy reflect an infinitesimal

amount around the time t and mark y, respectively. Following Daley and Vere‐Jones (2003), the conditional intensity
(Equation (3)) can be decomposed into two parts: one component characterizing the so‐called ground intensity
λmg tjHtð Þ, capturing the intensity of the occurrence of extreme events, and the conditional probability density function

of the size of exceedances, gm yjHt; tð Þ; that is,

λm t; yjHtð Þ ¼ λmg tjHtð Þgm yjHt; tð Þ: (4)

Figure 4 gives a graphical representation of this framework for two dimensions. The two top panels describe two sto-
chastic processes of exceedances with their respective arrival times and exceedances, while the two bottom panels show
their corresponding conditional ground intensities, which are updated at each event of the pooled process.

In order to capture the dynamics in the magnitude of exceedances, we propose a multiplicative error model in the

spirit of Engle (2002). Let ψm
j : ¼ lnE ymj jHt


 �
define the log of the conditional expectation of the execeedance ymj . Then,

the size of exceedances in the mth component follows a logarithmic multiplicative error model (MEM) given by

ymj ¼ exp φm
j


 �
ϵmj ;

φm
j ¼ ψm

j − lnð1 − ξmÞ;
ψm
j ¼ wm þ ρmlny

m
j−1 þ βmψ

m
j−1 þ γmx

m
j ;

where xmj : ¼ tmj − tmj−1 is the time elapsed since the last event, ξm ∈ Rþ is the shape parameter of the GPD, and ρm, βm,
γm are parameters. This conditional autoregressive specification introduces a feedback between the inter‐exceedance
times and the conditional expectation of the size of exceedances, as governed by the parameter γm. The logarithmic
specification ensures the nonnegativity of the process without explicitly imposing corresponding parameter restrictions.
The error terms ϵmj are i.i.d. generalized Pareto random variables with parameters ξm and scale parameter one, with

probability density function given by
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gϵðϵmj Þ ¼ 1þ ξmϵ
m
j


 �−1=ξm−1
: (5)

The conditional density of the exceedance ymj is therefore given by

gm yjHt; tð Þ ¼ 1

exp φm
j


 � 1þ ξm
ymj

exp φm
j


 �
0@ 1A−1=ξm−1

; (6)

corresponding to a generalized Pareto density with time‐varying scale parameter exp φm
j


 �
. Inserting Equations (8) and

(6) into Equation (4) yields the intensity representation of the mth component of a multivariate ACI‐POT model:

λm t; yjHtð Þ ¼
exp Φm

�N ðtÞþ1
þ ~ym�NmðtÞδm


 �
λm0 tð Þ

exp φm
�NmðtÞ


 � 1þ ξm
ym�NmðtÞ

exp φm
�NmðtÞ


 �
0@ 1A−1=ξm−1

: (7)

Dynamic specifications of λmg tjHtð Þ will be provided in the next section.
3.1 | The multivariate ACI‐POT model

Capturing self‐ and cross‐excitations in the ground intensity λmg tjHtð Þ in terms of an ACI process yields

λmg tjHtð Þ ¼ exp Φm
�N ðtÞþ1 þ ~ym�NmðtÞδm


 �
λm0 tð Þ: (8)

Here, Φm
�N ðtÞþ1 is a discrete‐time dynamic process that is updated instantaneously after the occurrence of an extreme

event of the pooled process and does not change until the next event. Note that Φm
�N ðtÞþ1 ¼ Φm

i if ti−1<t≤ ti and

Φm
�N ðtÞþ1 ¼ Φm

iþ1 if t>ti. Furthermore, ~ym�NmðtÞ : ¼ ym�NmðtÞ=u
m ¼ ðzm�NmðtÞ − umÞ=um denotes the “standardized” exceedance of

the most recentm‐type extreme event.3 Its effect on λmg tjHtð Þ is captured by the parameter δm. Finally,λm0 ðtÞ ¼ λm0 xmðtÞ½ �
corresponds to a baseline intensity that changes continuously in the time elapsed since the previous m‐type extreme
event.

By stacking the components Φm
i in a M×1 vector Φi : ¼ Φ1

i ; …;ΦM
i

� �′
, a VARMA(p,q)‐type specification of the form

Φm
i ¼ ∑

M

k¼1
∑
p

ℓ¼1
bℓmkΦ

k
i−ℓ þ ∑

M

k¼1
∑
q

r¼1
armkðεi−rdki−rÞ (9)

is obtained. The model can also be written in a more compact matrix notation:

Φi ¼ ∑
p

ℓ¼1
BℓΦi−ℓ þ ∑

q

r¼1
Arðεi−rdi−rÞ;

where Ar : ¼ armk

� �
corresponds to an M×M coefficient matrix denoting the impact of r−lagged innovation term εj−r on

the ground intensity, Bℓ : ¼ bℓmk

� �
is an M×M coefficient matrix of persistence parameters, and di : ¼ d1i ; …; dMi

� �⊤
is a

vector of indicator variables taking on the value one if the ith event of the pooled process is of type m, and zero
otherwise.

One fundamental result of point process theory is the random time change theorem by Meyer (1971). Through this
theorem we can transform a wide class of point process to a homogeneous Poisson process. Based on this idea we build
the scalar innovation term εi. This is computed based on the integrated intensity of the process for which we observed
the most recent exceedance:
3Using a standardized exceedance instead of ym�NmðtÞis advantageous to avoid numerical instabilities of estimates in the case of very high exceedances.
Such standardizations are commonly used in EVT; see, for example, Resnick (2006).
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ε �N ðtÞ : ¼ ∑
M

m¼1
1 − Λm t �NmðtÞ−1; t �NmðtÞ


 �n o
dm�N ðtÞ ¼ ∑

M

m¼1
1 − ∫

t �NmðtÞ
t �NmðtÞ−1

λmg sjHsð Þds
n o

dm�N ðtÞ; (10)

where Λm tmj−1; t
m
j


 �
denotes the m‐type integrated intensity. Accordingly, εi corresponds to a mixture of centered expo-

nential random variables with E εi½ � ¼ 0.
The processΦi is mean reverting withE Φi½ � ¼ 0 if all the eigenvalues of det Φij jlie inside the unit circle (see proposition

2 in Russell, 1999, and the discussion in Hautsch, 2012). In the VARMA(1,1)‐type specification, Φi follows an MA ∞ð Þ
representationΦi ¼ ∑∞

k¼1B
k−1Aðεi−kdi−kÞ, allowing to construct impulse‐response functions to study how extreme events

propagate through the multivariate process. Indeed, under the initial condition Φ0=0, the vector of impulse responses h
periods forward, induced by a marginal change in εi that is triggered by an event in process m, is given by

IRFmðhÞ ¼ Bh−1Aem; (11)

where em denotes themth column of anM×M identity matrix. Finally, the baseline intensity function λm0 tð Þis specified in
the form of a parametric function representing the shape of a hazard function. In this paper, we utilize the generalized
gamma distribution with hazard function given by

λm0 tð Þ ¼ qmj j
σmxmðtÞΓ q−2m

� �
SmðtÞϱmðtÞ

q−2m exp −ϱmðtÞ½ �; (12)

with location νm, scale σm>0 and shape qm, where ϱmðtÞ: ¼ q−2m e−νmxmðtÞ½ �q−2m . Here Γ t; γð Þ: ¼ ∫
t

0x
γ−1e−xdx=Γ γð Þand Sm(t)

denotes the survival function of the generalized gamma distribution given by

SmðtÞ ¼ 1 − Γ ϱmðtÞ; q−2m
� �

if qm < 0

Γ ϱmðtÞ; q−2m
� �

if qm > 0:

(

This type of hazard function is commonly used in the empirical literature since it exhibits both monotonic and
nonmonotonic behavior. An explicit derivation of conditional moments ofλmg tjHtð Þ is generally not feasible due to a non-
linear relationship between the conditional intensity at time tmj and the expected time until the next extreme event tmjþ1.
3.2 | The multivariate Hawkes‐POT model

A Hawkes process is a self‐exciting point process, which is primarily applied in seismology (e.g., Hawkes & Oakes, 1974;
Ogata, 1988), but more recently also in finance (e.g., Aït‐Sahalia et al., 2014, Aït‐Sahalia et al., 2015; Bowsher, 2007). In
the context of EVT, a univariate Hawkes‐POT process is introduced by Chavez‐Demoulin et al. (2005), and more
recently used in Chavez‐Demoulin and McGill (2012) and Grothe et al. (2014). The latter authors show that a superpo-
sition of individual self‐exciting Hawkes processes with specific decay and impact functions yield exceedance times and
exceedance magnitudes that can be coupled together using an extreme value copula. This yields a parsimonious frame-
work, which, however, does not allow for spillovers across time and processes.

Using a Hawkes framework, the conditional intensity of arrival times in the mth component is given by

λmg ðtjHtÞ ¼ μm þ ∑
M

k¼1
bmk ∑

NmðtÞ

j¼1
hmk t − tkj

 �

; (13)

where μm>0 corresponds to the immigrant rate (or baseline intensity), h:R→Rþ is a decay kernel describing the
instantaneous influence of the kth component, and how this deviates from the baseline μm through time. Finally,
the parameters bmk>0 are coefficients defining the M×M branching matrix B ¼ bmkf g. We assume that the decay
kernel function corresponds to the product of two exponential functions: One puts exponential weights on the time
elapsed since the last event. The other function scales the kernel by the size of the most recent standardized excess,

~ymj−1 ¼ ymj−1=u
m. Then, hmk t − tkj


 �
is given by
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hmk t − tkj

 �

¼ akexp δk~ykj − ak t − tkj

 �h i

;

with ak>0 and δk ∈ R. The impact of spillovers between the individual processes is captured by the parameters bmk.
Thus the intensities rise in response to the self‐ (bmm) and cross‐excitation (bmk for m≠k) mechanisms introduced by
past extreme events in the own market and the other markets, respectively. In addition, the feedback between inten-
sities and the size of exceedances is captured by the parameter δk. Unlike in the copula approach by Grothe et al.
(2014), spillover dynamics between markets are not necessarily symmetric (i.e., bmk≠bkm in general).

Specifying the size of m‐type exceedances based on the MEM specification according to Section 3 yields the multivar-
iate Hawkes‐POT model given by

λm t; yjHtð Þ ¼
μm þ ∑

M

k¼1
bmk ∑

NmðtÞ

j¼1
akexp δk~ykj − ak t − tkj


 �h i
exp φm

�NmðtÞ


 � 1þ ξm
ym�NmðtÞ

exp φm
�NmðtÞ


 �
0@ 1A−1=ξm−1

: (14)

As shown in the following proposition, the mean stationarity of the ground intensity of the nonmarked Hawkes‐POT
model (δk=0) requires the eigenvalues of the branching matrix B to lie inside the unit circle.4

Proposition 1. The ground intensity of the Hawkes‐POT model is mean stationary, if and only if
4Provin
spr Bð Þ ¼ max φj j:det B − φIMð Þ ¼ 0f g < 1, where IM is the identity matrix, spr Bð Þand φ denote the spectral
radius and the eigenvalues vector of B, respectively.
Proof See Supporting Information Appendix.
3.3 | Specification testing

Denoting the vector of MEM parameters by θϱ and the vector of ACI or Hawkes parameters, respectively, by θλ, and
observing the process over the time interval 0; Tð �, the resulting log‐likelihood function is given by

lnL t; yjθλ; θϱ; Ht
� � ¼ ∑

M

m¼1
∑

NmðTÞ

j¼1
lngðymj jHt; θϱÞ þ ∑

M

m¼1
∑

NmðTÞ

j¼1
dmj lnλ

m
g tjjHt; θλ
� �

− ∫
tmj
tmj−1

λmg sjHs; θλð Þds
n o

: (15)

Note that the two sets of parameters θλ and θϱ are disjoint, which allows us to maximize the two log‐likelihood com-
ponents separately.

Below we develop Lagrange multiplier (LM) tests to test for self‐excitations, cross‐excitations and spillover effects.
For the sake of brevity, we illustrate the derivations for the ACI framework only. The results hold analogously in the
Hawkes setting.

If the latest observed extreme event j is type m, the contribution to the log‐likelihood function of this event is given
by

lnL tmj ; y
m
j jθλ; θϱ; Ht


 �
¼ lngðymj jHt; θϱÞ þ lnλmg tjjHt; θλ

� �
− ∫

tmj
tmj−1

λmg sjHs; θλð Þds:

By conditional independence between the rate and the magnitude of the exceedances, the score with respect to θ*λ and

θ*ϱ is obtained as

smj θ*λ
� � ¼

∂lnL tmj ; y
m
j jθλ; θϱ; Ht


 �
∂θλ

¼ ∂λmg tjjHt; θλ
� �
∂θλ

λmg tjjHt; θλ
� �!

− ∫
tmj
tmj−1

∂λmg sjHs; θλð Þds
∂θλ

����
θλ¼θ*λ

 
(16)

and
g the stability of the more general model for δk≠0 is significantly more complicated and left for future research.
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smj θ*ϱ

 �

¼
∂lnL tmj ; y

m
j jθλ; θϱ; Ht


 �
∂θϱ

¼ ∂gðymj jHt; θϱÞ
∂θϱ

gðymj jHt; θϱÞÞ
� ����

θϱ¼θ*ϱ

; (17)

evaluated under θλ ¼ θ*λand θϱ ¼ θ*ϱ, respectively. The score vectors and information matrices for both sets of parame-

ters are then given by

S θð Þ ¼ ∑
M

m¼1
∑
N Tð Þ

j¼1
smj θð Þ and I θð Þ ¼ ∑

M

m¼1
∑
N Tð Þ

j¼1
smj θð Þsmj θð Þ⊤;

where θ ∈ θ*λ; θ
*
ϱ

n o
. The LM test is then computed as S θ*

� �⊤
I θ*
� �−1

S θ*
� �

, which is asymptotically χ2 qð Þ distributed,
with q denoting the number of restrictions.

To test for spillover effects in the intensities across markets, we formulate the null hypothesis as bℓmk ¼ 0 and armk ¼ 0
for all m≠k. In this case, the corresponding LM test, denoted by LMcross, requires only the estimates of the score (Equa-

tion (16)). Hence, for bℓmk; a
r
mk

� � ¼ 0; 0f g for all m≠k, we obtain

∂λmg tjjHt; θλ
� �
∂bℓmk

�����
θλ¼θ*λ

¼ exp Ψm
j þ ~ym

j−1
δm


 �
λm0 tj
� �

Φk
j−ℓ;

∫
tmj
tmj−1

∂λmg sjHs; θλð Þ
∂bℓmk

ds

�����
θλ¼θ*λ

¼ exp Ψm
j þ ~ym

j−1
δm


 �
Λm

0 tj; tj−1
� �

Φk
j−ℓ;

and

∂λmg tjjHt; θλ
� �
∂armk

�����
θλ¼θ*λ

¼ exp Ψm
j þ ~ym

j−1
δm


 �
λm0 tj
� �

εj−rdkj−r;

∫
tmj
tmj−1

∂λmg sjHs; θλð Þ
∂armk

ds

����
θλ¼θ*λ

¼ exp Ψm
j þ ~ym

j−1
δm


 �
Λm

0 tj; tj−1
� �

εj−rdkj−r;

where

Ψm
j ¼ ∑

p

w¼1
bwmmΦ

m
j−w þ ∑

q

r¼1
armmðεj−rdmj−rÞ:

Hence the score contribution of the extreme event j in the mth process is given by

smj θ*λ
� � ¼

∂lnL tmj ; y
m
j jθλ; θϱ;Ht


 �
∂bℓmk

∂lnL tmj ; y
m
j jθλ; θϱ;Ht


 �
∂armk

26666664

37777775
θλ¼θ*λ

¼
1 − exp Ψm

j þ ~ym
j−1

δm

 �

Λm
0 tj; tj−1
� �n o

Φk
j−ℓ

1 − exp Ψm
j þ ~ym

j−1
δm


 �
Λm

0 tj; tj−1
� �n o

εj−rdkj−r

264
375:

To test for a feedback from the magnitude of exceedances to the intensities, we impose the restriction δm=0, for m=1,…,
M. To construct the corresponding LM test, denoted by LMint, the corresponding score elements are obtained as

∂λmg tjjHt; θλ
� �
∂δm

�����
θλ¼θ*λ

¼ exp Φm
j


 �
λm0 tj
� �

~ymj−1; ∫
tmj
tmj−1

∂λmg sjHs; θλð Þ
∂δm

ds

����
θλ¼θ*λ

¼ exp Φm
j


 �
Λm

0 tj; tj−1
� �

~ymj−1;

and therefore



FIGURE 5 Threshold selection in the bivariate application. The left (right) panel shows the results of the statistic proposed in

Equation (24) for losses (gains) in dependence of k and β. The dark‐gray rectangle displays the subset of combinations of k and β yielding

stable statistics
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smj θ*λ
� � ¼ 1 − exp Φm

j


 �
Λm

0 tj; tj−1
� �n o

~ymj−1:

Similarly, to test for a feedback from the time between extreme events and their magnitudes, we formulate the hypoth-
esis that γm=0, for m=1,…,M. The corresponding LM test, denoted by LMmarks, is then constructed based on

∂gðymj jHt; θϱÞ
∂γm

����
θϱ¼θ*ϱ

¼ 1=ξm þ 1ð Þ xmj y
m
j ξm

exp 2~φm
j


 � 1þ ξm
ymj

exp ~φm
j


 �
0@ 1A−1=ξm−2

−
xmj

exp ~φm
j


 � 1þ ξm
ymj

exp ~φm
j


 �
0@ 1A−1=ξm−1

;

where

~φm
j ¼ wm þ ρmlny

m
j−1 þ βmψ

m
j−1 − lnð1 − ξmÞ;

implying

smj θ*ϱ

 �

¼ xmj
ymj − exp ~φm

j


 �
ξmymj þ exp ~φm

j


 �:

4 | IMPROVING CONDITIONAL RISK MEASURES

The Basel Committee on Banking Supervision has proposed using ES instead of the VaR as an internal model‐based
approach for regulatory market risk capital. Here, we illustrate how to derive both risk measures based on the proposed
specifications. Consider all losses zt defined as the negative log return of a particular asset with underlying cumulative
distribution function F . For ease of exposition, we omit the superscript m. ES is estimated by first obtaining the VaR at
confidence level α, which is based on the predictive distribution Fzt jHt

VaRt
α

� �
. By inverting the underlying distribution

we can obtain the quantile function, which we denote as a VaR at confidence level α:

VaRt
α ¼ qtα Fzt jHt

� �
;

where Ht denotes the history of event times preceding time t. By computing the conditional survival function

Fzt jHt
zð Þ ¼ 1 − Fzt jHt

zð Þas

Fzt jHt
zð Þ ¼ Pr zt > zjHtð Þ ¼ Pr zt > ujHtð ÞPr zt > z þ ujzt > u; Htð Þ; (18)

where the probability Pr zt > ujHtð Þcan be derived as



TABLE 1 Estimates of the bivariate ACI‐POT models for extreme events of losses and gains of a portfolio based on the log‐returns of the

FTSE 100, DAX, and S&P 500 indexes from January 3, 1994, to December 30, 2014

Model ACI‐POT(1,1) ACI‐POT(2,1) ACI‐POT(1,2)

Log‐
return m Gains Losses Gains Losses Gains Losses

par
(p‐
value) par

(p‐
value) par

(p‐
value) par

(p‐
value) par

(p‐
value) par

(p‐
value)

Ground process

a1m1 1.250 (0.000) 0.644 (0.000) a1m1 1.320 (0.000) 0.556 (0.002) a1m1 1.326 (0.000) 0.635 (0.002)

a1m2 ‐1.041 (0.000) 0.506 (0.000) a1m2 ‐0.976 (0.000) 0.599 (0.000) a1m2 ‐1.001 (0.000) 0.619 (0.000)

b1m1
0.755 (0.000) 0.224 (0.000) b1m1

0.831 (0.000) 0.484 (0.002) a2m1 ‐0.295 (0.200) 0.105 (0.620)

b1m2
0.208 (0.000) 0.644 (0.000) b1m2

0.031 (0.867) 0.492 (0.000) a2m2 0.440 (0.042) ‐0.219 (0.274)

νm 9.121 (0.000) 3.081 (0.000) b2m1
‐0.073 (0.635) ‐0.262 (0.082) b1m1

0.821 (0.000) 0.123 (0.001)

σm 5.139 (0.000) 1.484 (0.000) b2m2
0.146 (0.377) 0.192 (0.148) b1m2

0.086 (0.053) 0.834 (0.000)

Qm ‐1.607 (0.023) ‐0.367 (0.022) νm 9.284 (0.000) 3.106 (0.000) νm 9.951 (0.000) 3.086 (0.000)

δm ‐0.009 (0.894) 0.121 (0.077) σm 5.271 (0.001) 1.479 (0.000) σm 5.875 (0.007) 1.495 (0.000)

Qm ‐1.646 (0.038) ‐0.346 (0.030) Qm ‐1.831 (0.056) ‐0.384 (0.018)

δm ‐0.005 (0.934) ‐0.112 (0.144) δm ‐0.006 (0.930) ‐0.089 (0.294)

LL1 −2,535.322 −2,541.610 −2,529.575

Ground process residuals

Mean (εm) 0.003 ‐0.076 0.008 ‐0.032 0.000 ‐0.066

~σε 1.212 1.250 1.134 1.075 1.215 1.167

Excess. dis. 1.588 (0.112) 1.180 (0.238) 2.110 (0.035) 1.152 (0.249) 3.521 (0.000) 2.667 (0.008)

LBε 5.652 (0.017) 0.566 (0.452) 10.189 (0.070) 20.235 (0.001) 5.489 (0.359) 11.581 (0.359)

Mark process

wm 0.054 (0.003) 0.069 (0.000)

ρm 0.084 (0.000) 0.115 (0.000)

βm 0.799 (0.000) 0.778 (0.000)

γm ‐0.003 (0.048) ‐0.002 (0.058)

ξm 0.088 (0.069) ‐0.017 (0.748)

LL2 ‐335.863 ‐355.843

Diagnostics

LMcross 6,362.754 (0.000)

LMint 22.232 (0.000)

LMmark 10.390 (0.001) 12.199 (0.000)

AIC 6,506.057 6,526.633 6,502.563

BIC 6,630.090 6,669.748 6,645.678

Note. p‐values are in parentheses. LL1 corresponds to the log‐likelihood of the ACI part; LL2 corresponds to the POT part. Mean (εm): mean of residuals; ~σε:

standard deviation of residuals; LBε: Ljung–Box statistic; Excess. dis.: excess dispersion test. p‐values for the maximum likelihood estimates are obtained from
a two‐sided t‐test.
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Pr NðtÞ−Nð�tÞ > 0jHtÞ ¼ 1 − exp −∫�t tλg sjHsð ÞdsÞ≈λg tjHtð Þ;




(19)

where �t < t is the occurrence time of the most recent observed extreme, and the last result is obtained by using the
approximation ln xð Þ ≈ x − 1 as x→1. The conditional probability of exceedances is then computed as
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Pr zt > z þ ujzt > u; Htð Þ ¼ ∫
t
�t∫

∞
zþuλ s; ljHsð Þdsdl

∫
t
�t∫

∞
u λ s; ljHsð Þdsdl

¼ 1þ ξ
z−u

exp φ �N ðtÞ
� � !−1=ξ

: ¼ Gξ;exp φ �N ðtÞð Þ zjHt; tð Þ;
(20)

where Gð·Þ denotes the conditional generalized Pareto survival function. Finally, the VaR is defined by
Pr zt > VaRt

αjHt
� � ¼ 1 − α, implying

VaRt
α ¼ uþ

exp φ �N ðtÞ

 �
ξ

1−α
λg tjHtð Þ
� �−ξ

− 1

( )
: (21)

From this result, the conditional ES, corresponding to the conditional distribution of extreme events beyond the VaR,
given Ht, is computed as

EStα ¼ 1
1 − α

∫
1

αq
t
s Fzt jHt

� �
ds ¼ VaRt

α

1 − ξ
þ
exp φ �N ðtÞ

 �

− ξu

1 − ξ
: (22)

Note that

lim
α→1

EStα
VaRt

α
¼ 1

1 − ξ
; (23)

with the limit not depending on time. Recently, the Basel Committee proposed using the VaR at the 99% confidence
level in internal model‐based approaches with ES evaluated at the 97.5% confidence level (see BCBS, 2013). According
to the Basel Committee, ES is less sensitive to extreme events than VaR, and therefore should account for the tail risk in
a more comprehensive form. We analyze this proposition in the next section.
5 | APPLICATIONS

We employ the log returns of the DAX, S&P 500, and FTSE 100 indices through the sample period from January 2, 1994,
to December 31, 2014, covering 5,128 trading days. Our first application is based on a bivariate model for the analysis of
the clustering of extreme losses and gains of an equally weighted portfolio based on the three indices. The second appli-
cation considers a trivariate model to jointly model negative log returns of the three indexes. Here, we only illustrate
applications of the ACI‐POT model. The corresponding results for the Hawkes‐POT model are comparable and are pro-
vided in the Supporting Information Appendix.

In order to determine the tail threshold u, we follow the statistic proposed by Reiss and Thomas (2007) to determine
the number of exceedances k by

arg min
k

f ðkÞ ¼ 1
k
∑
k

i¼1
iβ bξ i −median bξ 1; …; bξ k
 ���� ���; (24)

wherebξ i is the estimate of the shape parameter for the sample fraction of extremes above the upper order statistic i, and
β ∈ 0; 0:5½ � is a tuning parameter. The idea is to find the sample proportion for which the distribution of the shape
parameters is stable. Figure 5 displays the statistic in dependence of k and β for gains and losses. We find a proportion
between 410 and 460 observations for gains and losses, respectively, to be a satisfactory size. We thus choose to proceed
with 436 observations, corresponding to 8.5% of the most extreme events for losses and gains. For the trivariate appli-
cation below, we proceed similarly and determine a threshold of 9% as a reasonable choice. In a robustness analysis
in the Supporting Information Appendix, we demonstrate that the results of our empirical analysis are quite stable with
respect to the choice of u.



FIGURE 6 Bivariate conditional intensity of the ground process for the analyzed index portfolio. The three top panels show the estimated

conditional intensities of the ground processes for positive log returns based on, from top to bottom, the ACI‐POT(1,1), ACI‐POT(2,1), and

ACI‐POT(1,2) specifications. Correspondingly, the next three panels exhibit the conditional intensity of the ground processes for negative log

returns specifications. The bottom panel displays a barcode plot wherein the black or gray colors indicate the log returns causing the extreme

observation
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5.1 | Modeling positive and negative extremes

Table 1 in the Appendix gives the estimation results for ACI‐POT(1,1), (1,2), and (2,1) specifications. We find that the
inclusion of a second lag improves the log‐likelihood only marginally, making ACI‐POT(1,1) the best‐fitting specifica-
tion according to the Bayesian information criterion (BIC). Additional analysis (which is not reported here) shows that
the inclusion of even higher lag orders considerably increases the complexity of the model without strongly improving
its fit. This is in line with other studies in the literature employing dynamic intensity processes (see, e.g., Aït‐Sahalia
et al., 2015; Bacry & Muzy, 2014; Kehrle & Peter, 2013).

In Figure 6 we plot the estimated conditional intensity of the ground processes of positive and negative log returns,
respectively, based on the different specifications. The bottom panel shows a barcode plot, with black and gray colors
depicting extreme events in gains and losses, respectively.

We can summarize the following findings. First, we find significant evidence for spillover effects between positive
and negative extreme observations. This is particularly supported by the LMcross test. Moreover, the estimates reflect
some asymmetries in the spillover effects. Shocks in the intensities of negative extremes tend to decrease the probability
of observing positive extremes (a12=−1.041), while shocks in the intensities of positive extremes tend to increase the
probability of observing negative extremes (a21=0.644). This kind of asymmetry can obviously not be captured by a
Hawkes‐type specification as the parametrization is more restrictive and does not allow for negative spillover effects.5

This asymmetry is also reflected by the impulse‐response functions shown in the bottom panel of Figure 7. The corre-
sponding estimates indicate that shocks in positive extremes are less persistent than shocks in negative extremes.

Third, as depicted in Figure 6, the different ACI‐POT specifications reflect a higher variability in negative extremes
than in positive extremes (gray and black lines, respectively).

Fourth, the baseline hazard functions of the inter‐exceedance times of both return processes reveal an inverted U‐shape,
with the underlying densities being positively skewed as qm<0. As shown by Figure 7, we observe that for positive extremes
5See the Supporting Information Appendix for corresponding results for the Hawkes‐POT approach.



FIGURE 7 Top panel: Baseline hazard functions for the bivariate ACI‐POT model. The left‐hand plot exhibits the baseline hazard function

for positive returns, while the right‐hand plot shows the baseline hazard function for negative returns. Bottom panel: Impulse‐response

functions of innovations associated with a shock in the gains (IRF1) and losses (IRF2) in the pooled process. The left‐hand plot exhibits the

impact of a standard deviation innovation on gains and its responses on the gains (solid line) and losses (dashed line) processes. The right‐hand

plot shows the impact of a standard deviation innovation on losses and its responses on losses (solid line) and gains (dashed line) processes
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the baseline function λ0 decreases more slowly than for negative extreme returns. Moreover, we find that the baseline inten-
sity function is generally higher for negative extremes than for positive extremes, indicating a higher temporal clustering.

Fifth, symmetries between positive and negative extremes are also reflected in the estimates of the coefficient δm,
which captures the influence of the size of exceedances on the intensities. Although the effects are jointly significant
according to the LMint test, they are individually significant only for negative extremes, but not for positive extremes.
Hence higher (negative) exceedances particularly increase the intensity of negative extreme events. As a result of this
self‐enforcing behavior, negative returns are more clustered than positive ones. This is in line with Campbell and
Hentschel (1992), among others, suggesting that volatility is higher after stock markets exhibit losses, making stock mar-
ket returns negatively correlated with future volatility.

Sixth, the estimates of the MEM specification provide clear evidence for a clustering of the size of exceedances. Hence
small (large) exceedances are likely to be followed by small (large) exceedances. The coefficients γm are individually and
jointly highly significant (according to the LMmarks test) and negative for gains. This indicates that high lagged inter‐
exceedance waiting times imply a reduction of the expected size of the marks. This is in line with Santos and Alves
(2012), Hammoudeh, Santos, and Al‐Hassan (2013), and Herrera and Schipp (2014).

Finally, diagnostics for the ACI‐POT model can be straightforwardly performed by means of the de‐meaned inte-

grated intensities of the M individual ground processes εmj ¼ 1 − ∫
tmj
tmj−1

λmg sjHsð Þds. Under correct specification and accord-

ing to the random time change theorem (Meyer, 1971), each residual εmj should be i.i.d. standard exponentially

distributed with a mean of zero. Thus, by means of the distributional properties of this process, the model goodness‐
of‐fit is evaluated. Engle and Russell (1998) proposes a test for excess dispersion which builds on the statisticffiffiffiffiffi
nε

p
~σ2
ε − 1

� �
=
ffiffiffi
8

p
 �
, where nε corresponds to the number of residuals, and ~σε is the empirical standard deviation of

the residuals series εmj , which should be one under the null hypothesis of correct model specification. Under this hypoth-

esis, the test statistic is asymptotically standard normally distributed. In fact, in Table 1 we observe that the residuals
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FIGURE 8 Top panel: Baseline hazard functions for the trivariate ACI‐POT(1,1) model. From left to right the plots correspond to the

baseline hazard functions of negative returns for the DAX, S&P 500, and FTSE 100 indices, respectively. Bottom panel: Impulse‐response

functions of innovations to the losses in the FTSE (right), DAX (middle), and S&P 500 (left) markets for the ACI‐POT model. Solid and dotted

lines represent the response functions of losses to an innovation shock in own and in the other markets, respectively
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are, on average, close to zero with standard deviations not far from unity. In addition, Ljung–Box statistics, testing
against independence in the residuals, indicate that the model is able to capture the dynamics of the data fairly well.
5.2 | Modeling spillovers in extremes

Table 2 in the Appendix gives the estimation results based on trivariate ACI‐POT models for extremes in DAX, S&P 500,
and FTSE 100 returns. The table reports an unrestricted and restricted ACI‐POT(1,1) specification as well as an ACI‐
POT(1,2) specification.6 The restricted ACI‐POT(1,1) model is a specification without incorporating feedback between
individual exceedance intensities and without feedback between the magnitude of exceedances and their conditional
ground intensities.

Again, the best fit is provided by the unrestricted ACI‐POT(1,1) model. The inclusion of higher lags improves the log‐
likelihood only slightly but results into a worse BIC. Likewise, the restricted version of the ACI‐POT model, which rules
out feedback and cross‐excitation effects, is not supported by the data. This is indicated by the information criteria as
well as the LM tests. The latter indicate that spillover effects in intensities across markets as well as between intensities
and magnitudes are statistically highly significant. The estimates therefore reveal clear evidence for self‐excitation and
cross‐excitation effects as documented in Section 2, indicating the usefulness of the proposed model.

The ground processes reveal highly persistent though stationary dynamics in the intensities. According to the
residual‐based Ljung–Box tests, the specification seems to capture the dynamics in the data pretty well. Moreover,
the baseline functions reveal inverted U‐shaped patterns. As illustrated in the top panel of Figure 8, the baseline hazard
functions increase until 3–4 days after the occurrence of the last extreme event and decline thereafter. This
nonmonotonic pattern seems to be an important feature characterizing the time evolution of extreme events on finan-
cial markets and requires flexibility of the underlying parametrization. Observing peaks of the baseline functions
around three to four exceedance periods, moreover, reflects underlying temporal clustering, making it more likely to
observe a further extreme price movement just after a previous one than after a long period without exceedances.
6An ACI‐POT(2,1) model yields a very similar (but slightly worse) fit than the ACI‐POT(1,2) specification and is omitted here. It is available upon
request from the authors.
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The tests on excess dispersion reveal no evidence of overdispersion and thus indicate that the flexibility provided by the
baseline functions is sufficient to pick up the distributional properties of inter‐exceedance times.

The estimated impulse responses shown in the bottom panel of Figure 8 indicate spillover effects in the sense that
losses in one market increase the intensity of loss exceedances in other markets. Nevertheless, self‐excitation effects
in the own market tend to dominate cross‐market effects. Overall, the impulse responses show similar patterns. This
is likely due to periods of turmoil around the subprime mortgage crisis, generating mechanisms of mutual excitation
and therefore clustering of extreme events. This result is in line with studies of dependencies in extremes in interna-
tional stock markets showing that extreme losses tend to affect several stock markets at the same time, creating
comovements and strong dependencies among their conditional intensities (see, e.g., Baltzer, Cappiello, Santis, &
Manganelli, 2008; Poon, Rockinger, & Tawn, 2003).

When interpreting cross‐market effects, it should be taken into account that the US market and the European mar-
kets do not open and close simultaneously. In particular, the US market lags the European markets by 6 hours. Hence
any information occurring during the time when European markets are closed is incorporated in the daily return of the
S&P 500 index, while European indices can only react with a delay. Nevertheless, the current specification including all
indices simultaneously provides a better fit to the data (and a better performance in terms of in‐sample and out‐of‐
sample VaR accuracy, as discussed in the following section) than specifications including, for instance, the US market
in lagged form.7 In accordance with the estimates for the bivariate specifications in Section 5.1, we find that the impact
of the exceedance size on the conditional intensity of the ground process, as captured by the coefficient δm, is significant
in all cases. Hence extreme events in one series increase the conditional intensity for the next extreme event in the same
series, but also in the other series. Finally, the estimates of the MEM process for the size of exceedances reveals a high
persistence with coefficients βm<1. Hence, exceedance sizes are strongly autocorrelated and depend negatively on the
length of past inter‐exceedance waiting times, as reflected by the coefficient γm. The corresponding LM tests show that
these effects are not only individually but also jointly significant.

Estimates of Hawkes‐POT models reveal qualitatively similar results and are found in the Supporting Information
Appendix.
6 | VaR AND ES FORECASTING USING DYNAMIC INTENSITY MODELS

An important advantage of a VaR‐based risk assessment is the possibility of backtesting. Conversely, there is no consen-
sus on how to backtest ES. Emmer, Kratz, and Tasche (2015) propose a framework to backtest ES based on a represen-
tation in terms of the integrated VaR:

EStα ¼ 1
1 − α

∫
1

αq
t
s Fzt jHt

� �
ds

≈
1
4
VaRt

α þ VaRt
0:75αþ0:25 þ VaRt

0:5αþ0:5 þ VaRt
0:25αþ0:75

� �
;

(25)

where qts Fzt jHt

� �
is approximated as in Equation (21). This allows making use of backtesting techniques developed for

VaR. In particular, if each of these confidence levels is successfully backtested, then, to a certain degree, the same is true
for EStα. In order to test the accuracy of VaR estimates, we utilize a battery of tests proposed in the literature, which are
described in detail in the Supporting Information Appendix.

The first three tests are based on a binomial‐type test introduced by Christoffersen (1998): an unconditional coverage
test (LRuc), evaluating the expected fraction of exceptions (i.e., exceedances of the VaR); a test for the independence of
exceptions (LRind); and a conditional coverage test (LRcc), which is a combination of the latter two. Moreover, we imple-
ment the dynamic quantile tests proposed by Engle and Manganelli (2004), which rely on linear regressions. The first is
the dynamic quantile hit test (DQhit), where de‐meaned exceptions are regressed on their lags, while the second one—
the dynamic quantile VaR (DQVaR) test, uses in addition the contemporaneous VaR estimates. Finally, we implement a

loss measure VES, which evaluates the potential loss between the forecasted ES (cEStα) and the observed return Zt, given
that this return has exceeded the actual VaR:
7Corresponding results for such alternative specifications are available upon request from the authors.



FIGURE 9 From top to bottom: Estimated 99% VaR (gray line) and 97.5% ES (black line) for the trivariate ACI‐POT model with

generalized gamma hazard function applied to negative log returns of the FTSE 100, DAX, and S&P 500 indexes. In‐sample period:

January 3, 1994, to December 30, 2014. Out‐of‐sample period: January 2, 2015, to December 30, 2016 (marked by dark background). The

bottom panel shows a barcode plot, with light colors indicating extreme events in the FTSE 100, DAX, or S&P 500, and mid‐range dark colors

indicating a simultaneous extreme event in any pair of negative log returns. The dark black color marks a simultaneous extreme event in all

three negative log return series
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VES ¼
∑
T

t¼0
Zt − ð−cEStαÞ
 �

1
Zt<−cVaR t

α

n o
∑
T

t¼0
1

Zt<−cVaR t

α

n o :

An accurate estimate of ES should result in a low absolute value of this quantity. However, its weakness is that it
depends on the accuracy of the preliminary VaR estimation, since only returns below the VaR are taken into account
(Embrechts, Kaufmann, & Patie, 2005). For instance, if the VaR estimates of a model do not generate any exceedances,
this measure cannot be evaluated.

In order to assess the accuracy of the proposed approaches for the estimation and prediction of VaR and ES at dif-
ferent confidence levels, we estimate all models using the sample from January 3, 1994, to December 30, 2014. The esti-
mated parameters are then used to compute 1‐day‐ahead forecasts of the 99% VaR and 97.5% ES in the forecast period
from January 2, 2015, to December 30, 2016.8 The model parameters are not reestimated each trading day since the
additional information obtained from the additional day is negligible compared to the historical sample information,
and results would change only very mildly.

Table 3 in the Appendix gives the test outcomes for the in‐sample and out‐of‐sample VaR and ES estimates of the
trivariate models jointly modeling extremes in all three index series. Recall that we need to estimate the VaR confidence
levels (0.975, 0.98125, 0.9875, 0.99375) in order to make use of the integral representation in Equation (25), enabling us
to backtest ES at the 97.5% level. For comparison purposes, we also report the VaR at the 99% confidence level.

In terms of in‐sample predictive performance the ACI‐POT(1,1) performs best. The explicit inclusion of mutual inter-
actions between the point processes and the processes of exceedances results in higher VaR accuracy. In fact, the unre-
stricted specification passes the tests 10% more often than the restricted specification. These findings are also confirmed
8The Basel Committee (BCBS, 2013) recommends changing the risk‐based capital framework building on 99% VaR to 97.5% ES. These confidence
levels are used in our empirical analysis.



TABLE 4 Ratio between both measures of risk for all specifications (ES0:975=VaR0:99) using the mean of these risk measures for the whole

period (in‐sample and backtesting periods)

ACI‐POT(1,1) Restricted ACI‐POT(1,1) ACI‐POT(1,2)

In‐sample Out‐sample In‐sample Out‐sample In‐sample Out‐sample Theoretical

FTSE 1.010 1.046 1.033 1.019 1.013 1.014 1.006

DAX 1.022 1.050 1.030 1.029 1.022 1.024 1.002

S&P 500 1.021 1.052 1.036 1.028 1.021 1.023 1.001
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by the out‐of‐sample analysis. The unrestricted specifications yield valid predictions in terms of VaR accuracy, with 90%
of p‐values exceeding 0.05. This proportion, however, is reduced to 81% when the restricted model is used.9

Figure 9 displays the estimated VaR and ES times series based on the ACI‐POT(1,1) model. The figure also shows
barcodes visualizing the extent to which extremes occur individually or jointly in the three series. We observe the
highest VaR and ES estimates in all series during 2000–2002. During this period, the three stock market indices expe-
rienced large losses that were mainly due to the dot‐com crash and the aftermath of the 9/11 terrorist attacks. After this
period, the level of extreme risks declined until the subprime crisis in 2007, followed by the global crisis in 2008–2009.

As an additional evaluation metric, we analyze the difference between the predicted 99% VaR and 97.5% ES based on
this approach. According to the Basel Committee (BCBS, 2013), 97.5% ES is less sensitive to extreme events than the 99%
VaR and therefore should account for tail risk in a more comprehensive way. From a theoretical point of view, the ratio

between both measures should be close to ES0:975=VaR0:99 ≈ 0:4ξ=ð1 − ξÞ, where ξ is the shape parameter of the GPD.10

Since for all return series analyzed we have ξ>0, the ratio should be greater than one. Table 4 in the Appendix reports
the time series average (through both estimation and backtesting periods) of this ratio for all models. The results indi-
cate that the ratios are greater than one and nearly identical for all approaches, but are slightly higher in the case of the
ACI‐POT(1,1) specification for the backtesting period.

Finally, to evaluate the sensitivity of our analysis with respect to the choice of the tail threshold u, we estimate the
trivariate ACI‐POT model for 100 different threshold levels u, ranging from the 90% to 94.999% quantile of returns. For
each estimate we then evaluate the in‐sample and out‐of‐sample VaR accuracy. The results are provided in the
Supporting Information Appendix and document that our findings are widely stable with respect to the choice of u.
7 | CONCLUSIONS

We propose a multivariate dynamic intensity framework to jointly model the occurrence of extreme observations
(exceeding a certain threshold) in a multivariate time series of log returns. The event arrival is modeled as an MPP
of exceedances, where the marks are associated with the magnitude of (loss) exceedances. The major feature of these
models is to allow for the clustering of the arrival of extremes over both time and the cross‐section and the clustering
of the size of exceedances. This is achieved by combining a multivariate dynamic intensity process with a multiplicative
error model based on a GPD for the magnitude of exceedances. Both components are linked to allow for feedback effects
between the arrival intensity of extremes and the size of exceedances above the threshold.

Empirical evidence based on the return series of the DAX, S&P 500, and FTSE 100 indices provides strong support for
the models. We find significant evidence for (co‐)cluster structures in extreme stock market losses, which are well cap-
tured by the proposed approach. Furthermore, we demonstrate that the new models yield a good out‐of‐sample
backtesting performance when they are applied to the prediction of VaR and ES.

We see it as a major advantage of the proposed framework that it can be easily extended in various directions and—
depending on the chosen specification—is also tractable in higher dimensions. Consequently, it might be used as a valu-
able framework to analyze, for instance, systemic risk or tail dependencies.
9A VaR forecasting comparison with the Hawkes‐POT model is provided in the Supporting Information Appendix. We find that the ACI‐POT model
slightly outperforms the Hawkes‐POT model not only in terms of in‐sample VaR accuracy but also VaR accuracy.
10Note that

VaR0:975

VaR0:99
≈ 0:4ξ , and from Equation (23) we know that

ES0:975
VaR0:975

≈
1

1 − ξ
.
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