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1
 Introduction and Overview

Erich H. Reck and Georg Schiemer

1.  Structuralism in the Philosophy of Mathematics:  
A Brief History

The core idea of mathematical structuralism is that mathematical theories, always 
or at least in many central cases, are meant to characterize abstract structures (as 
opposed to more concrete, individual objects). Thus, arithmetic characterizes the 
natural number structure, analysis the real number structure, and traditional ge-
ometry the structure of Euclidean space. As such, structuralism is a general po-
sition about the subject matter of mathematics, namely abstract structures; but it 
also includes, or is intimately connected with, views about its methodology, since 
studying such structures involves distinctive tools and procedures. The goal of 
the present collection of essays is to discuss mathematical structuralism with re-
spect to both aspects. And this is done by examining contributions by a number 
of mathematicians and philosophers of mathematics from the second half of the 
19th and the early 20th centuries.

In English-​speaking philosophy, structuralist ideas have played a role for a 
while; but the current discussion of structuralism, as a main philosophical po-
sition, started in the 1960s. A crucial article often referred to in this context is 
Paul Benacerraf ’s “What Numbers Could Not Be” (1965). This article was a re-
action against the view, dominant at the time, that numbers and other mathe-
matical objects are all sets. For example, the natural numbers are the finite von 
Neumann ordinals familiar from Zermelo-​Fraenkel set theory; and the real 
numbers are Dedekind cuts constructed in a set-​theoretic way. According to 
Benacerraf, this kind of position misrepresents mathematics by leaving out its 
structuralist aspects. Beyond Benacerraf, there were other reactions against such 
a set-​theoretic, foundationalist orthodoxy. For example, in Hilary Putnam’s ar-
ticle “Mathematics without Foundations” (1967), a form of if-​then-​ism for math-
ematics was suggested instead (more on both subsequently).

It took until the 1980s for the debates about mathematical structuralism to re-
ally pick up steam. The main impetus came from a number or writings by Michael 
Resnik, Stewart Shapiro, Geoffrey Hellman, and Charles Parsons (cf. Resnik 
1981, 1997, Shapiro 1983, 1997, Hellman 1989, 1996, Parsons 1990, 2009, among 
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others). While Benacerraf had suggested thinking of the natural numbers, say, 
as an “abstract structure,” distinct from all set-​theoretic systems, he remained 
noncommittal and somewhat vague about the nature of such structures. Resnik 
and Shapiro took that notion more seriously, suggesting that we should think 
of them as abstract “patterns.” In Shapiro’s hands, especially, the patterns were 
then conceived of as a novel kind of abstract entity, to be described and studied 
in a general “structure theory.” While more focused on epistemological issues, 
Resnik resisted reifying the relevant patterns. But for both Resnik and Shapiro, 
particular mathematical objects, such as specific natural or real numbers, are 
“positions” in such structures. In addition, Charles Parsons developed a distinc-
tive variant of such a “structuralist view of mathematical objects” (more on the 
differences soon).

Shapiro characterized his position further in a twofold way: as a form of “re-
alism”; and as “ante rem structuralism.” What exactly realism amounts to in this 
context is a difficult, slippery question. But at a minimum, it involves taking 
mathematical statements, such as 2 + 3 = 5, at face value, in the sense that “2,” 
“3,” and “5” are seen as singular terms referring to abstract objects to which we 
ascribe properties, etc. Shapiro called his position ante rem since he took his 
abstract structures to be “ontologically independent” of their more concrete 
“instantiations,” including set-​theoretic ones. Often it is assumed in this con-
text that the ante rem aspect directly implies the “realist” one. But as we will see 
later, this is misleading and wrong in general; the two can be, and have at times 
been, separated. Moreover, Parsons explicitly distinguishes further metaphysical 
claims involving “realism” from the basic structuralist conception he accepted. 
This means that one can be a “pattern structuralist” without being a realist, ex-
cept in the minimal sense already mentioned. (Both points will matter later.)

In widely adopted terminology, Parsons also distinguished between “elimina-
tive” and “non-​eliminative” forms of structuralism (Parsons 1990). According 
to “non-​eliminative structuralism,” abstract structures are accepted, or pos-
tulated, as sui generis objects (different from other kinds of objects, including 
set-​theoretic systems). Shapiro’s ante rem structuralism is a main example; but 
Resnik’s and Parsons’s forms of structuralism are others. A  paradigmatic ex-
ample of “eliminative structuralism” is Geoffrey Hellman’s “modal structur-
alism,” intentionally devised to be a “structuralism without structures” (Hellman 
1996). Building on Putnam’s if-​then-​ism (and earlier ideas in Russell), Hellman 
proposed to interpret every mathematical statement as having a modalized if-​
then form. For example, “2 + 3 = 5” has the form “Necessarily, for all models 
M of the Dedekind-​Peano axioms, 2M + 3M = 5M,” where 2M, 3M, and 5M are what 
“play the roles” of 2, 3, and 5 in the model M, etc. (cf. Reck and Price 2000 for 
details). Along such lines, structures seen as abstract objects are “eliminated”; we 
don’t need to assume their existence. In fact, Hellman’s position is “eliminativist” 
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in a very strong sense, since reference to abstract objects is avoided altogether. 
Instead, mathematics becomes the study of certain possibilities (the Dedekind-​
Peano axioms, say, have to be possible) and necessities (general if-​then statements 
such as the preceding example).

Shapiro and Hellman have worked out their positions in great detail. For both, 
this includes distinguishing “algebraic” mathematical theories, such as group 
theory, lattice theory, and topology, from “non-​algebraic” ones, such as the theo-
ries of the natural numbers, real numbers, and sets. With respect to the latter, we 
are dealing with categorical (or at least quasi-​categorical) theories, which means 
that all their models are isomorphic (up to the height of the set-​theoretic hier-
archy in the case of Zermelo-​Fraenkel set theory). It is such theories to which 
their accounts are meant to apply primarily. For the non-​categorical ones a 
more indirect approach is used. Beyond Shapiro’s and Hellman’s positions, other 
versions of structuralism have been proposed, and they usually involve a similar 
distinction. We already mentioned Resnik’s and Parsons’s positions on the non-​
eliminative side; Charles Chihara’s is another example on the eliminative side 
(Chihara 2004); and we will encounter more later.

Since the 1980s, the debates about structuralism in mathematics have been 
extended in other respects too. Three trends stand out especially. First, some 
comparative studies have been offered (Hellman 2001, 2005; Cole 2010; Shapiro 
2012; also Reck and Price 2000, on which we will build). One of their results is 
that Shapiro’s, Hellman’s, and similar positions rely, at bottom, on the assump-
tion of a kind of “coherence” for the mathematical theories at issue, besides their 
categoricity. (In light of Gödel’s theorems, this replaces provable consistency as 
a basic requirement for mathematics.) Somewhat surprisingly, such positions 
are thus very similar in a basic respect (which, among others, puts the “realism/​
anti-​realism” distinction into a new light). A second development, from around 
2000 on, has been to further probe certain features of Shapiro’s structuralism 
especially, but also of other forms of non-​eliminative structuralism. One ex-
ample is that “positions” in structures are taken to be “ontologically dependent” 
on the whole structure. But how exactly is that to be understood? (Cf. Linnebo 
2008, among others.) Another example is that, according to Shapiro’s and sim-
ilar positions, “structurally indistinguishable” objects should be identified. 
Yet that leads to problems in the case of “nonrigid” structures (with nontrivial 
automorphisms), such as the system of complex numbers (see, e.g., Keränen 
2001; Leitgeb and Ladyman 2008; and Shapiro 2008).

A third main development since the 1980s has been the introduction and pro-
motion of category-​theoretic forms of structuralism, by Steve Awodey, Elaine 
Landry, Jean-​Pierre Marquis, Colin McLarty, and others (cf. Awodey 1996, 
Landry 2009, McLarty 2004, Marquis 2008). While all the versions of structur-
alism we have discussed work, in one form or another, with first-​order logic and 
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set theory (perhaps modified slightly, e.g., in terms of Hellman’s modal logic), 
category theory involves a radical shift away from that framework. This affects 
the way in which “structuralist” ideas are implemented. Roughly speaking, in 
categorical language only “structural properties” are expressible (see Landry and 
Marquis 2005, Korbmacher and Schiemer 2018 for more); and crucial features 
involving them can be highlighted further, e.g., in terms of “universal mapping 
properties.” This makes the approach “structuralist” in a distinctive, very basic 
way. But category theory is also taken to be an alternative, significantly different 
“foundational” framework for mathematics (which has led to debates about the 
notion, or notions, of foundations involved). For both reasons, “categorical” 
versions of structuralism are hard to compare with those mentioned earlier. That 
being said, category theory is in line with an important shift in mathematical 
methodology that emerged in the 19th and early 20th centuries, and investi-
gating that shift further can help us understand “structuralism” better in general, 
including its categorical versions (as will become clearer later).

2.  The Varieties of Mathematical Structuralism:  
Extending the Taxonomy

As the discussion in the previous section shows, it is misleading to speak of 
“structuralism” as if this label attached to a unique, unified position in the phi-
losophy of mathematics. (Occasionally “structuralism” is identified, even more 
misleadingly, with Shapiro’s position, since it is the most prominent one.) Rather, 
a whole variety of “structuralist” positions have been proposed in the literature. 
They all share the core idea with which we started this introduction, namely that 
“mathematical theories characterize abstract structures.” But how that slogan 
is interpreted varies widely. Previously we used a threefold taxonomy so as to 
introduce some order and clarity. It started with Parsons’s distinction between 
eliminative and non-​eliminative forms of structuralism, with Hellman’s and 
Shapiro’s positions as paradigm cases. Then we added categorical structuralism 
as a third alternative, one that is not easy to compare to the others. But actually, 
the options one should consider are more varied than that; hence, a comprehen-
sive taxonomy for structuralism has to be broader and richer. We will now take 
some steps in that direction.

One further distinction (largely ignored for long, but related to the difficul-
ties in comparing categorical and other forms of structuralism) is very basic and 
should be introduced before all the others. It is the distinction between “meth-
odological structuralism,” on the one hand, and “metaphysical structuralism,” on 
the other (cf. Awodey 1996; Reck and Price 2000). In related terminology, one can 
distinguish between “mathematical” and “philosophical structuralism.” In what 
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follows, we will treat these two dichotomies as the same (with only a slight dif-
ference in what is highlighted). The former term in each case, i.e., “methodolog-
ical/​mathematical structuralism,” is meant to capture a distinctive way of doing 
mathematics, i.e., a certain “methodology,” “form of practice,” or “mathematical 
style.” (For related discussions, cf. Corry 2004, Carter 2008, and Landry 2018, 
among others.) Roughly, it consists of doing mathematics by “studying abstract 
structures”; but this slogan requires again clarification. In addition, the method-
ology at issue comes with a general assumption on what mathematics is about, 
or what its subject matter is, namely “abstract structures.” Then again, methodo-
logical/​mathematical structuralism does not include, in itself, claims about what 
these structures are, i.e., about their “nature,” “abstractness,” “existence,” etc. That 
is exactly what is added when we move on to “metaphysical/​philosophical struc-
turalism.” In other words, there is a basic distinction between one kind of struc-
turalism focused on “methodological,” or more generally “mathematical,” issues, 
while the other kind adds specific “metaphysical,” or more broadly “philosoph-
ical,” theses to the mix. Hence the labels.

With respect to mathematical practice, or to pursuing mathematical re-
search fruitfully, one typically does not need to consider the specific “meta-
physical” or more generally “philosophical” questions just mentioned. In fact, 
mathematicians often dismiss them as misleading or misguided (with impor-
tant exceptions, as we will see). In contrast, it is exactly such questions that 
philosophers of mathematics try to address, including Benacerraf, Resnik, 
Shapiro, Hellman, and Parsons. Of course, the philosophers’ answers should 
be grounded in mathematical practice, i.e., the goal should be a philosophical 
position not only compatible with but informed by mathematical practice, thus 
appropriate for it. Categorical structuralists often try to remain on the method-
ological/​mathematical side alone. Their concern is then how to think through, 
and develop further, the methodology emerging in the late 19th-​ and early 
20th-​century mathematics by category-​theoretic means. But sometimes meta-
physical/​philosophical views are added along the way also along such lines (e.g., 
when category theory is interpreted in a formalist way).

One main goal of the present collection of essays is to clarify the origins, 
and with it the nature, of methodological/​mathematical structuralism up to 
the rise of category theory (from Grassmann, Dedekind, and Klein to Noether, 
Bourbaki, and Mac Lane). This is intended to clarify what it has meant, and still 
often means, to do mathematics by “studying abstract structures.” A  second 
main goal is to illustrate that the emergence of methodological/​mathematical 
structuralism, in that sense, was accompanied, from early on, by reflections that 
shade over into “metaphysical/​philosophical structuralism.” And it was not only 
philosophers who engaged in such reflections, but also mathematicians them-
selves. (In several cases, the philosopher and mathematician at issue is one and 
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the same person.) To be able to pursue this second goal fruitfully, several further 
distinctions concerning “structuralism in mathematics” are called for, now espe-
cially on the philosophical side.

Parsons’s dichotomy between eliminative and non-​eliminative forms of 
structuralism will remain helpful in what follows, so that we will keep using 
it. But it should be added, right away, that one can find relevant positions 
in the literature that are “semi-​eliminativist,” unlike Hellman’s position, 
which is “fully eliminativist.” This concerns structuralist positions that re-
ject the postulation of structures as distinctive, independent abstract objects, 
but accept other kinds of abstract objects, e.g., sets (thought of in some 
nonstructuralist way then). In other words, there are structuralist positions 
that are eliminativist about structures, but are not nominalist. They still count 
as forms of eliminative structuralism, but not of eliminativism about abstract 
objects generally.

One example is what is sometimes called “set-​theoretic structuralism” (cf. 
Reck and Price 2000). According to this position, the natural numbers, say, 
should not be identified, in any strict or absolute sense, with the finite von 
Neumann ordinals. Why not? Because, exactly as Benacerraf argued, there are 
various set-​theoretic models of the Dedekind-​Peano axioms, indeed infinitely 
many, and none of them is privileged in a metaphysical sense (as opposed to some 
weaker pragmatic sense). This becomes a form of structuralism if one adds that 
“any set-​theoretic model will do,” so that the intrinsic, nonstructural properties 
of its elements do not matter. In other words, we can identify “the natural num-
bers” with the finite von Neumann ordinals, but do so in a pragmatic sense and 
with the proviso that we could have identified them with, say, the finite Zermelo 
ordinals too. In John Burgess’s words (Burgess 2015), this position involves a “in-
difference to identify” them with any particular model of the Dedekind-​Peano 
axioms; similarly in other cases. (Strictly speaking, this position is “structuralist” 
with respect to some objects but not generally, e.g., not for sets.)

One can generalize this approach. Set-​theoretic structuralism is a specific 
version of “relativist structuralism” (see again Reck and Price 2000). This name 
derives from the fact that the reference of “the natural numbers,” and with it 
the reference of the numerals “1”, “2”, “3”, etc., is relative to an arbitrary, or only 
pragmatically determined, choice between equivalent models. Other forms of 
relativist structuralism result then from modifying the basic framework. For 
example, one can work not just with pure sets, but also allow for “atoms” or 
“urelements.” Along such lines, one can, in fact, let any objects whatsoever oc-
cupy any “position” in a given structure; thus Julius Caesar or some beer mug can 
“be” the number 2. (If at least some abstract objects are included as candidates 
here, this will again be a semi-​eliminative view broadly speaking, but also a form 
of eliminative structuralism.)
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Yet another kind of structuralism, closely related to relativist structuralism, is 
“universalist structuralism” (cf. Reck and Price 2000). With it, we come back to 
if-​then-​ism, i.e., the suggestion that any mathematical sentence should be seen 
as quantifying over all models of the relevant axiom system and as consisting of 
a corresponding if-​then claim. In other words, we keep the “universalist” side of 
Hellman’s position but leave out its modal aspect. But what about the existence of 
the models; i.e., what about the so-​called non-​vacuity problem for the theory at 
issue? Or what ensures its “coherence”? Here one can again work with axiomatic 
set theory as the framework; but there are other options as well. (Once more, this 
makes the position partly but not fully “structuralist.”)

Turning to the side of non-​eliminative structuralism, there are additional 
options available too and further distinctions to be drawn. (At this point, we go 
beyond Reck and Price 2000.) One of them is indicated, implicitly, by Shapiro’s 
label “ante rem structuralism.” Shapiro’s terminology, explicitly inspired by me-
dieval debates about universals, suggests “in re structuralism” as an alternative. 
(Another alternative might be post rem structuralism. Parsons’s position has 
been labeled that way, although this terminology is not widespread. We will not 
pursue it further here.) In fact, two different forms of in re structuralism have 
played a role in the literature already. For the first, consider again the natural 
numbers within a set-​theoretic framework. There are infinitely many models 
for the Dedekind-​Peano axioms, as we have noted. But then, we can identify 
“the structure” of the natural numbers with the equivalence class (under iso-
morphism) of all of them. This class is different from all the models in it, while 
arguably depending on them ontologically (the way in which a class depends 
on its elements). In that sense, we have arrived at a form of in re structuralism. 
Actually, this is exactly the position one gets if Russell’s “principle of abstraction” 
(cf. Russell [1903] 1996) is applied to the case at hand, as Rudolf Carnap and 
others noted.

As the appeal to Russell’s “principle of abstraction” indicates but as is true 
more generally, there are certain forms of structuralism that arise from “struc-
turalist abstraction” (cf. Schiemer and Wigglesworth 2018; Reck 2018). That ab-
straction can, in turn, be reconstructed as a mathematical function, which maps 
models of a mathematical theory to a corresponding “abstract structure” as their 
value. Along Russellian and Carnapian lines, that value is the class of all models 
isomorphic to the given one (or more generally, equivalent in some other way). 
A different option is to use the following “abstraction function”: it maps any given 
model of a theory to a novel, privileged model of it. (In the case of the Dedekind-​
Peano axioms, say, the value then deserves to be called “the natural numbers”; 
similarly for “the real numbers,” etc.) Here the new model is again ontologically 
dependent on the original ones, since it has been introduced “by abstraction” on 
their basis. In the recent literature, this position has been explored by Øystein 



8  Erich H. Reck and Georg Schiemer

Linnebo and Richard Pettigrew, building on Dedekind. For these authors, the 
“principle of abstraction” involved is similar to neo-​Fregean “abstraction princi-
ples” (cf. Linnebo and Pettigrew 2014; Reck 2018).

Last but not least, let us return to eliminative structuralism once more. Yet 
another option under that label, different from Hellman’s and Chihara’s, is “con-
cept structuralism,” as advocated recently by Dan Isaacson, Solomon Feferman, 
Tony Martin, and others (cf. Isaacson 2010; Feferman 2014). The guiding idea 
for them is that what matters in mathematics in the end is “concepts” as opposed 
to “objects.” Thus, there is the concept “model of the Dedekind-​Peano axioms” 
(in Russell’s terminology: “progression”; in Dedekind’s: “simple infinity”); like-
wise for other axiom systems that define (higher-​order) concepts, including the 
concept of set. All that is crucial for mathematics, so the suggestion now, is what 
is provable from those concepts, thus what is true for all models falling under 
them. Once again, we avoid postulating “abstract structures” as separate objects. 
We might even say that the structure simply “is” the concept at issue, parallel to 
its identification with the (closely related) equivalence class given earlier, except 
that the structure is not an object in this case.

3.  The Pre-​History: Key Themes and Features

As should be evident by now, a plethora of positions have been introduced under 
the name of “structuralism in mathematics” since the 1960s, following the initial 
lead of Benacerraf, Putnam, later Resnik, Shapiro, Hellman, Parsons, and others. 
For the most part, they are versions of “metaphysical/​philosophical” structur-
alism.” But these positions are all inspired by mathematical practice, at least 
implicitly, thus by methodological/​mathematical structuralism. So far we have 
not said much about what the latter amounts to, except for mentioning category 
theory as one version, or one outgrowth, of it. However, it is not the only version, 
much less the original one. To probe this issue in a deeper way, it becomes impor-
tant, and will prove illuminating, to consider how “structuralist mathematics” 
arose historically since the middle of the 19th century. Many of the essays in the 
present volume will, in fact, address that rise in detail, i.e., they are meant to fill 
that gap. As further preparation for them, we will now offer a brief overview of 
the themes and features that play a key role.

A number of developments transformed mathematics radically in the 19th 
century, as is now widely acknowledged, so much so that some commentators 
have talked about a “second birth” of the discipline (Stein 1988). The result of 
that transformation was “modern mathematics.” In the 20th century, it was then 
systematized, provided with a set-​theoretic foundation, and later reshaped, once 
again, along category-​theoretic lines. The main innovations that played a role 
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in the 19th century are well known (see, e.g., Boyer and Merzbach 1991, chaps. 
24–​26). They include the radical broadening and rethinking of geometry, by 
means of introducing various non-​Euclidean theories (projective, elliptic and 
hyperbolic, n-​dimensional, etc.); the rigorization and arithmetization of anal-
ysis, including better and more explicit characterizations of the number systems 
involved (from the natural to the complex numbers), and leading to a broadened 
conception of function as well; the transformation of algebra, from the study of 
equations to a much more general, abstract conception of it (Galois theory, the 
introduction of novel number systems and related innovations, e.g., quaternions, 
vector spaces, etc.); and the rise of set theory and modern logic (transfinite num-
bers, generalized notions of set and function, quantification theory, and a logical 
theory of relations, among others).

These broad developments brought with them several important changes that 
we consider to be “proto-​structuralist,” i.e., part of the immediate background 
for the rise of “structuralist mathematics” but not constitutive of it yet. They in-
clude: the rejection of the traditional view that mathematics is “the science of 
number and quantity,” by adding parts that cannot be understood thus (com-
plex analysis, group theory, topology, etc.); the expansion and systematization 
of traditional theories, by introducing “ideal elements” (points at infinity, points 
with complex coordinates, ideal divisors, transfinite numbers, etc.); later the re-
construction of such objects in set-​theoretic terms (Dedekind cuts and ideals, 
quotient constructions in algebra, etc.); the adoption of the view that many parts 
of mathematics are not about particular objects and their properties, but are ap-
plicable much more widely (group theory, ring theory, topology, etc.); the related 
suggestion that mathematics is more about the relations between objects than 
about their intrinsic, non-​relational properties (from number systems to groups, 
rings, etc.); also the emphasis on the “freedom” of mathematics, in the sense that 
its development should not be constrained by its direct and readily apparent ap-
plicability, but should involve the exploration of new “conceptual possibility” 
(non-​Euclidean geometries, transfinite numbers, etc.); and finally, the sugges-
tion that many parts of mathematics, perhaps even all, can be reconstructed sys-
tematically within “logic,” including a basic theory of sets and functions (thus 
basing it on “laws of thought” alone).

As the reader will see, many of these changes play important roles in the essays 
in this volume. In fact, one function of these essays is to document their increasing 
significance in 19th-​ and early 20th-​century mathematics. But the features we 
have listed also brought with them, or soon led to, additional innovations that 
are more properly “structuralist.” Prominent among those are the following 
six, as we want to suggest: First, there is the suggestion to base various parts of 
mathematics on fundamental, characteristic concepts (“group,” “field,” “metric 
space,” also “simple infinity,” “complete ordered field,” “3-​dimensional Euclidean 
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space,” etc.); and this leads to the modern axiomatic approach (explicitly in 
Peano, Hilbert, etc.). Second, the relevant concepts typically specify global or 
“structural” properties (the “denseness” of an ordered system, the “continuity” 
of a space, also the “infinity” of a set); and this relies on considering whole sys-
tems of objects, as opposed to individual objects, especially various “complete 
infinities” (the systems of the real numbers, Euclidean space, various function 
spaces, etc.). Third, increasingly important becomes the study of such systems by 
relating them to each other, especially in terms of morphisms (homomorphisms, 
isomorphisms, etc.). A case in point, but also a method applicable more gen-
erally, is, fourth, the characterization of various systems or kinds of objects via 
“invariants” (complex-​valued functions via their Riemann surfaces, geome-
tries via their groups of transformation, etc.). Fifth, there is the novel practice 
of “identifying” isomorphic systems, since they are “essentially the same” from 
a mathematical point of view (e.g., different models of geometric theories, the 
system of Dedekind cuts and that of equivalence classes of Cauchy sequences, 
etc.). Sixth, this can all be seen as culminating in the view that what really matters 
in mathematics is the “structure” captured axiomatically, on the one hand, and 
preserved under relevant morphisms, on the other hand (two closely related 
techniques, both important historically).

What makes a mathematical methodology structuralist, in our view, is not 
the presence of one or two particular items on the list just given; nor do all six 
have to be present. Rather, what matters is the self-​conscious and fruitful use 
of several of them together. Put differently, we think it is neither promising nor 
appropriate to try to define structuralist mathematics in terms of a few essen-
tial features (necessary and sufficient conditions). Instead, what we are dealing 
with is a case of “family resemblances,” and hence, of “clusters” of these features 
emerging and playing a central role. In any case, when all of the corresponding 
tools and techniques were in place, in the late 19th and early 20th centuries, 
mathematicians began to study the results more systematically. This led to the 
introduction of several additional fields in mathematics: axiomatic set theory, 
seen as a “foundation” for all of mathematics (not just as an exploration of the 
infinite, although this too remained a goal); model theory, proof theory, recur-
sion theory, etc., as ways to study “metamathematical” or “metalogical” features 
of mathematical theories (consistency, completeness, and categoricity, but also 
decidability, mutual interpretability, etc.); and somewhat later, category theory, 
with its generalization of the use of morphisms, invariants, etc. (initially in al-
gebra and topology, then also more widely, and finally as an alternative founda-
tion for mathematics).

During the period when these innovations became accepted widely, a 
number of philosophically inclined mathematicians and mathematically in-
formed philosophers also began to reflect on their deeper significance, often in 
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conversation with each other. For many of them this included attempts to say 
more about how to conceive of the nature of the various “structures” that had 
arisen, or of the underlying notion of “structure.” This means, as we will see, that 
already toward the end of the 19th and early in the 20th century one can find 
forms of metaphysical/​philosophical structuralism in the literature. And as we 
would like to emphasize, this happened 60–​80 years before Benacerraf, Putnam, 
etc., began to publish on the topic, i.e., long before what is usually seen as the 
start of the debates about the topic. A central goal of the present collection is both 
to recover and to make fruitful this ”prehistory of mathematical structuralism”.

4.  Previews of the Essays, Indicating Their Contributions 
to the Volume

After this condensed survey of structuralist themes and key features that arose 
in 19th and early 20th century mathematics, the stage is set for the essays in this 
volume. In this section of the introduction, we will preview the main themes 
in them, thus also indicating how each of these essays fits into the volume as 
a whole.

Overall, the volume is divided into two parts. The essays in Part I are con-
cerned primarily with aspects of methodological/​mathematical structuralism as 
they emerged in the 19th and early 20th centuries. Each focuses on a particular 
mathematician, from Grassmann to Mac Lane. With Part II, the focus shifts to 
the metaphysical/​philosophical side, as well as to contributions by philosophers. 
However, the division between the two parts is porous, including many cross-​
references in the essays themselves. Moreover, while most of the essays in Part 
II focus on figures usually identified as philosophers, such as Peirce, Russell, and 
Cassirer, some of the people covered in this part, like Poincaré and Bernays, were 
also mathematicians, perhaps even primarily so. Why are the essays on them 
then included in Part II? The reason is that the main focus of these essays is on 
philosophical (and logical) themes. Yet even by that criterion, some placements 
of essays could have been different.

Among mathematicians, Richard Dedekind is often regarded as the “founding 
father” of structuralism; second in that regard is David Hilbert (cf. Shapiro 
1996); and third probably Nicolas Bourbaki, especially among historians of 
mathematics (cf. Corry 2004). All three will be quite prominent in our volume, 
but it reaches back further, thus starting with Grassmann.

More precisely, the volume starts with an essay by Paola Cantú on Hermann 
Grassmann, the author of Die Lineare Ausdehungslehre, a book that influenced 
various later structuralists strongly. As Cantú documents, Grassmann suggested 
conceiving of mathematics as a “general theory of forms,” and this was related 
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to his introduction of several new systems of “quantities” (hyperspaces, hyper-
real numbers, etc.). In fact, Grassmann emerges as an early proponent of concept 
structuralism, thus of eliminative structuralism.

In contrast, Dedekind has been interpreted as the first “non-​eliminative struc-
turalist” in the literature (Reck 2003), although this is not uncontroversial. In 
the essay co-​written by Erich H. Reck and José Ferreirós in the present volume, 
the main focus is instead on Dedekind’s contributions to methodological/​math-
ematical structuralism. That essay starts with an account of important influences 
on Dedekind, namely Gauss, Dirichlet, and Riemann. Then his structuralist 
contributions to algebra and algebraic number theory, including Galois theory, 
are discussed, making evident their close relation to his work on the foundations 
of arithmetic and set theory.

A mathematician usually not associated with structuralism, nor recognized 
much as a philosopher of mathematics more generally, is Moritz Pasch. In Dirk 
Schlimm’s essay, Pasch’s work, not only on geometry but also on arithmetic, is put 
in the context of broader developments in 19th-​century mathematics. In doing 
so, structuralist features of his approach are revealed, e.g., concerning the cen-
trality of duality principles, even though a tension remains with the empiricism 
that dominates his work philosophically. In addition, Schlimm provides an anal-
ysis of what should be seen as central to mathematical/​methodological structur-
alism more generally.

In the next essay, by Georg Schiemer, the investigation of 19th-​century geom-
etry with respect to the rise of mathematical structuralism is continued. Here it 
is Felix Klein’s use of group theory in reconceptualizing geometry that becomes 
the focus. Klein was led to rethink the subject matter of different kinds of geom-
etry in terms of what is invariant under relevant groups of transformations. This 
culminated in his “Erlangen program,” in which various geometries are classi-
fied by comparing their respective transformation groups. Another influential 
structuralist idea one can find in Klein, as Schiemer documents, is the suggestion 
to show the structural equivalence of different geometries in terms of “transfer 
principles”.

In Wilfried Sieg’s essay on David Hilbert, two kinds, or uses, of the axio-
matic method are distinguished:  there is “structural axiomatics,” on the one 
hand, which grew out of Hilbert’s early axiomatization of geometry; and there 
is “formal axiomatics,” on the other hand, which involves the metamathematical 
study of axiomatic systems in Hilbert’s later proof theory. With respect to the 
former, the “conceptual” methodology advocated earlier by Dedekind and others 
is brought to full fruition, i.e., their suggestion to base various parts of mathe-
matics on “characteristic concepts.” The latter constitutes a major, and very influ-
ential, example of studying mathematical theories with respect to “foundational” 
issues, such as consistency and decidability, by using tools from modern logic.
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Another mathematician in the early 20th century who built on Dedekind’s 
work explicitly was Emmy Noether. In Audrey Yap’s essay, three phases in 
Noether’s mathematical career are distinguished. It is especially the second and 
third phases that are relevant for our purposes, since they illustrate the shift 
from a more concrete, calculational way of doing mathematics, still dominant in 
Noether’s first phase, to a more and more abstract approach. Moreover, the latter 
became a paradigm of methodological/​mathematical structuralism later in the 
20th century, strongly influencing the work of Bourbaki and the rise of category 
theory, among other developments.

The name “Nicolas Bourbaki” stands for a group of mathematicians who 
worked on reshaping and systematizing modern mathematics from the 1930s 
on, by building on what they found in Dedekind, Hilbert, Noether, and others. 
According to Gerhard Heinzmann and Jean Petitot’s essay, what lies at the 
core of the methodology that resulted is a “functional conception of struc-
ture.” Its main purpose was to help mathematicians in reconceptualizing the 
interrelations of different theories and, especially, in solving hard problems. 
The latter is illustrated by an extended case study from algebraic geometry, 
which leads us from Dedekind through André Weil to Alain Connes. Here 
issues concerning methodological/​mathematical structuralism are illus-
trated by means of a substantive mathematical example, one that still occupies 
mathematicians today.

Both in the essays on Noether and Bourbaki, and also already in the essay 
on Klein, close connections between 19th-​ and early 20th-​century mathematics, 
on the one hand, and category theory, on the other, start to emerge. This theme 
is deepened in Colin McLarty’s essay on Saunders Mac Lane. In that essay, 
Mac Lane is presented as a mathematician interested in logical and philosoph-
ical issues from early on, although he became disillusioned by their treatment 
in mainstream philosophy. Later he was led back to some of them from within 
mathematics. As a result Mac Lane adopted, and promoted explicitly, a form of 
methodological/​mathematical structuralism tied to category theory. McLarty 
characterizes it as “a working theory of structures for mathematicians.”

The first essay in Part II of our volume concerns the logician, philosopher, and 
scientist C. S. Peirce. (Like Part I, this second part is arranged chronologically by 
the birthdates of the thinkers under discussion.) In the recent literature, Peirce 
has been interpreted as subscribing to a form of non-​eliminative structuralism 
(Hookway 2010). In Jessica Carter’s essay, the focus is instead on Peirce’s dis-
tinctive, still relatively unknown views about mathematical inquiry and proof, 
namely in terms of diagrammatic reasoning. Carter finds some aspects of struc-
turalism in Peirce’s works, at least in the sense of methodological/​mathematical 
structuralism. But she refrains from interpreting him as a full-​fledged structur-
alist, since this would oversimplify his multifaceted work.
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The second essay in Part II, by Janet Folina, concerns Henri Poincaré. This 
essay, in particular, could have been put into Part I  too, since Poincaré made 
major contributions to structuralism as a mathematician. But Folina is more in-
terested in metaphysical/​philosophical ideas and themes, which one can find in 
Poincaré’s writings as well. She argues, in particular, that Poincaré should be seen 
as a proponent of ante rem structuralism. However, in this case one needs to sep-
arate the ante rem aspect clearly from the realist aspect, as she adds, even though 
they are often conflated in the current literature on structuralism. In fact, with 
respect to mathematics Poincaré turns out to be a “constructivist ante rem struc-
turalist,” surprising as that may sound at first.

As a prototypical logicist, Bertrand Russell tends to be seen as a strong op-
ponent of structuralism. There is justice to this view, although the story is more 
complicated and more interesting in the end, as Jeremy Heis documents in his 
essay. Early in his career, during the years 1900–​1903, Russell was intensely in-
terested in Dedekind’s works, as some of his posthumously published writings 
show; and he interpreted Dedekind as holding a non-​eliminative structuralist 
position. While attracted to that position initially himself, he then turned against 
it, for reasons Heis documents in detail. But Russell was an important contrib-
utor to the debates about structuralism in another way as well, namely by means 
of his promotion of a logic of relations. That logic was taken as the background 
for reconstructing structuralist ideas by several later thinkers, from Ernst 
Cassirer in the early 20th century to Geoffrey Hellman today.

Cassirer’s explicit and detailed defense of structuralism, both in the method-
ological/​mathematical and in the metaphysical/​philosophical senses, is the topic 
of Erich Reck’s second essay in this volume. While Cassirer was very knowledge-
able about Felix Klein’s work and about developments in 19th-​century geometry 
more generally, the focus in this essay is on his positive reception of Dedekind’s 
structuralist views. This included a defense of them against Russellian objections. 
But Dedekind’s contributions are also embedded into a rich account of the his-
tory of mathematical science, guided, among others, by Cassirer’s distinction be-
tween “substance concepts” and “function concepts”.

The last three essays in the volume concern Paul Bernays, Rudolf Carnap, and 
W. V. O. Quine, respectively. In Wilfried Sieg’s second contribution, an essay 
on Bernays, the connection between methodological/​mathematical structur-
alism, in Dedekind’s, Hilbert’s, and related works, and 20th-​century proof theory 
is thematized. The core concept for Sieg is that of a “methodological frame,” as 
introduced in Bernays’s writings. The role of such frames is to allow for a kind 
of “reductive structuralism,” in the sense of investigating mathematical theories 
in terms of their underlying deductive structures, thus by utilizing the tools of 
Hilbertian proof theory. Seen as such, Bernays’s work constitutes a reflection on 
mathematical structuralism from the perspective of mathematical logic.
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In Georg Schiemer’s second contribution to this volume, Rudolf Carnap’s 
work from the 1920s–​1930s is investigated in a parallel way, i.e., with respect to 
its use of logic. As Schiemer documents, Carnap picked up on Russell’s “prin-
ciple of abstraction,” both to demystify the notion of “structure” and to study it 
further logically. This led him to a form of in re structuralism according to which 
“the structure” of a mathematical theory, such as Dedekind-​Peano arithmetic, is 
identified with the equivalence class of models that satisfy the theory.

In the last essay in our volume, Sean Morris discusses Quine’s place in the 
prehistory of structuralism. Several current structuralists, including Resnik, 
Shapiro, and Parsons, have acknowledged Quine as a strong influence. Usually 
this involves Quine’s later works, in which he proposed a very general form 
of structuralism (also for physical objects, not just for mathematical ones). 
However, Quine’s relevant views can be traced back to his earliest publications 
and his dissertation, as Morris documents. He also argues that Quine stands 
firmly in the tradition of Russell’s and Carnap’s “scientific philosophy,” in-
cluding the rejection of traditional metaphysics. Hence Quine’s structuralism 
should not be seen as exemplifying any strong form of realism. Instead, it is 
grounded in the methodology of the mathematical sciences as interpreted 
by him.

In fact, the latter holds, mutatis mutandis, also for every other figure covered 
in the present volume. What the essays establish as a whole, then, is that there are 
very strong ties between methodological/​mathematical forms of structuralism 
and more metaphysical/​philosophical views. These should not, and ultimately 
cannot, be understood independently of each other; they are two sides of the 
same coin.

5.  Gaps in this Volume and Two Final Suggestions

While this collection of essays is meant to recover the prehistory of mathemat-
ical structuralism in a substantive and inclusive way, we realize that it is far from 
complete. In other words, we could, and perhaps should, have included a number 
of other thinkers and developments as well, both on the mathematical and on the 
philosophical sides.

One mathematician who comes to mind right away is Bernhard Riemann. 
Riemann is mentioned in several of our essays, but he would undoubtedly have 
deserved his own treatment. A  second, less prominent example is Hermann 
Hankel. He too comes up in some of our essays along the way, with his view of 
mathematics as a “theory of forms” that is similar to Grassmann’s. A third ex-
ample is George Boole, as well as other British algebraist in the mid-​19th century, 
who helped to push mathematics in a structuralist direction too.
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Actually, some ideas relevant for us can already be found in late 18th-​ and 
early 19th-​century thinkers. Abel and Gauss are two cases, with their sugges-
tion that mathematics is more about relations, relations of relations, etc., than 
about objects. And a few such ideas can be traced back even further, e.g., to 
D’Alembert’s work on the calculus (cf. Folina’s essay), or to Leibniz’s study of the 
continuity of space (cf. De Risi in progress). But the further back one goes, the 
more one should speak of “proto-​structuralist” rather than “structuralist” ideas, 
as we believe.

On the side of philosophers there are gaps too. One notable figure mentioned 
only tangentially, but who would have deserved a separate essay, is Edmund 
Husserl. As is well known, Husserl started out as a mathematician, including by 
serving as an assistant of Weierstrass in Berlin. And he was concerned about a 
“general theory of manifolds” in some of his later works, thereby building explic-
itly on Grassmann’s, Riemann’s, and Klein’s writings. There are clear connections 
to methodological/​mathematical structuralism in his works; but one can find re-
lated metaphysical/​philosophical views too, including perhaps another form of 
in re structuralism.

Somewhat later in the 20th century, another interesting philosopher for 
our purposes is Albert Lautman. While still largely unknown among English-​
speaking philosophers, he offered detailed reflections on the mathematics 
of Bourbaki, and with it, on mathematical structuralism. Lautman’s views 
were mathematically and philosophically sophisticated, thus deserving to be 
reconsidered. Indeed, we had planned to include essays on both Husserl and 
Lautman; but because of space and time restrictions, they had to be omitted in 
the end. And beyond Husserl and Lautman, there surely are further philosophers 
one could have included. Then again, the volume is already very long as it is.

Because of such omissions, the volume is open to complaints that we did not 
cover this or that figure who would undoubtedly have deserved a separate essay 
as well. In response, we want to close with two suggestions: First, one thing we 
hope this volume will do is to inspire more research on the prehistory of struc-
turalism, thus recovering and reinvestigating other relevant mathematicians and 
philosophers as well. In other words, we suggest viewing the volume only as the 
start with respect to covering its topic. Having said that, we hope that it is sub-
stantive enough to inspire further work.

Second, while the approaches and treatments in our essays are primarily his-
torical, we hope that the volume will be seen as a contribution to mathematical 
structuralism in a systematic sense too, i.e., as relevant for current philosophy of 
mathematics. As we see it, combining historical and systematic investigations 
can only enrich both sides, also in other cases. More generally, a rich topic such 
as mathematical structuralism will surely benefit from being studied in several 
different ways.
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 Grassmann’s Concept Structuralism

Paola Cantù

1.  Introduction

It is hard to determine whether Hermann Grassmann should be considered a 
mathematically inclined philosopher or a philosophically inclined mathemati-
cian, for he was an autodidact in mathematics (he learned mathematics mainly 
from the books of his father, Justus, and from Legendre’s treatise), in Greek 
philology, and partly also in philosophy. He studied theology at the Berlin 
University at the end of the 1820s, and attended, among the philosophy courses, 
only Schleiermacher’s lectures on dialectics and Ritter’s lectures on the history 
of philosophy. In any case, his main contributions concern mathematics and 
linguistics, rather than philosophy. Or rather, he got recognition mainly for his 
mathematical results and his linguistic achievements, whereas his philosophy 
of mathematics did not receive similar attention, not even after his death. Yet 
a large part of Grassmann’s mathematical work is specifically devoted to (a) the 
relation between the emergence of a new abstract mathematical theory and the 
need for a new philosophical frame to understand it, (b) the relation between 
certain applications of this theory and Leibniz’s universal characteristics, and 
(c) the characterization of mathematical disciplines by means of a philosophical 
deduction of their fundamental concepts and of mathematics as the science of 
particulars generated from a given element.

Notwithstanding the growing number of publications concerning specific 
aspects of Grassmann’s mathematical or philosophical writings,1 it is still diffi-
cult to find a comprehensive treatment of his philosophy of mathematics. There 
are several reasons for this: (1) Grassmann’s philosophy of mathematics varies 
in different writings, (2) it is difficult to clearly distinguish his conception from 
that of his brother Robert, (3) where a distinction can be traced, Robert appears 
to have been the one who was most interested in logic and philosophy of logic 

	 1	 See, for example, Banks (2013); Radu (2013); Petsche et al. (2011); Schubring (2005); Flament 
(2005); Radu (2003); Darrigol (2003); Schubring (1996a); Dorier (1995); Schreiber (1995); Flament 
(1994); Boi et al. (1992); Châtelet (1992); Otte (1989); Hestenes (1986); Schlote (1985); Echeverría 
(1979); Lewis (1977); Heath (1917).

Paola Cantù, Grassmann’s Concept Structuralism In: The Prehistory of Mathematical Structuralism. Edited by: Erich H. Reck 
and Georg Schiemer, Oxford University Press (2020). © Oxford University Press.
DOI:10.1093/oso/9780190641221.003.0002 
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(see Peckhaus 2011 and Grattan-​Guinness 2011), (4) Grassmann’s philosophical 
style, typical of early 19th-​century natural philosophy, cannot easily be read by 
contemporary philosophers, (5) Grassmann was interpreted in different ways 
in the second half of the 19th century and at the beginning of the 20th century 
(see, e.g., Hankel 1867; Cassirer 1910; and Klein 1875). These interpretations ex-
emplify Grassmann’s philosophical destiny, which is perhaps less “tragic” than 
his mathematical fortune, yet not really fortunate, because he was often used to 
corroborate a given conception of mathematics rather than read to verify what 
his own view really was. These interpretations did not adequately emphasize the 
role of particulars in Grassmann’s mathematics (Cassirer), the role of intuition 
and the reasons for a quasi-​axiomatic presentation of extension theory and arith-
metic (Klein), the differences between the general theory of forms and a sym-
bolic treatment of mathematical objects as signs whose referent does not matter 
(Hankel). Yet all these aspects are extremely relevant to grasp Grassmann’s un-
derstanding of concept formation in mathematics and his contribution to the 
history of methodological and philosophical structuralism. I will try to recon-
struct Grassmann’s definition of mathematics as the science of the particular, and 
to investigate his complex distinction between formal and real, referring to some 
philosophical interpretations discussed in Lewis (1977), Flament (1994), Banks 
(2013), and Schlote (1996).

So in the following it will not be sufficient to recall several of Grassmann’s 
mathematical contributions that are relevant for the structuralist transformation 
of mathematics, such as abstract algebra, linear algebra, and number theory (§2). 
The most important task will be that of giving a plausible and comprehensive re-
construction of Grassmann’s philosophy of mathematics (§3), as it emerges from 
his own mathematical works, rather than from subsequent influential interpret-
ations, such as those by Hankel, Cassirer, and Klein. As a result, it will emerge 
that the notions of linear combination, series, and addition are more important 
to Grassmann than the notions of function, mapping, and order. Mathematics is 
the science of the particular, and the general theory of forms does not properly 
belong to it, because it is about underdetermined connections.

The main aim of the chapter will be to analyze Grassmann’s contribution to 
structuralism, discussing differences and similarities between our interpretation 
and some received views in the literature (§4). In particular, I will try to evaluate 
Grassmann’s work with respect to two different issues that are often mixed up in 
the literature or, when they are clearly distinguished, are often called by different 
names or defined in slightly different ways: methodological (or mathematical)2 
and philosophical structuralism.

	 2	 In the literature, this methodology is often called “mathematical structuralism” rather than 
“methodological structuralism.” I  prefer Reck and Price’s (2000) terminological choice for two 
reasons. On the one hand, this choice does better justice to the idea that the structuralist philosophical 
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By methodological structuralism I intend an analysis of the method that is ap-
plied by mathematicians when they are doing mathematics and that has evolved 
in time. Reck and Price have defined methodological structuralism as a method-
ology that “motivates, explicitly or implicitly, many of the structuralist views in 
the philosophical literature” (2000, 345). Reck and Schiemer in the introduction 
to this volume enucleate a list of conditions that should characterize methodo-
logical structuralism. Later in this chapter, I broadly follow their suggestion and 
associate methodological structuralism with questions concerning (1) criticism 
of mathematics as the science of a given domain of objects (e.g., quantities), con-
cerning objects in isolation rather than relations, (2) the role of intuition and 
formal deductions, (3)  the role of axioms, invariants, and applications, and 
(4) the relation between alternative ways to frame mathematics (e.g., set theory, 
category theory). This methodological structuralism tackles deep philosophical 
questions, which often arise in mathematical practice itself or in historical anal-
ysis of the development of mathematical theories.

Philosophical structuralism is used here as a collective name for a large number 
of different philosophical theories centering on the fundamental question, 
“What is a structure?” Typical issues concern, for example (1) whether there 
are objects and operations, and what their relations to structures might be, 
(2) whether general structures can be distinguished from particular structures 
and from exemplars, (3) what is that we call “formal” in a structure and what 
role is played by axiomatics within it. In section 4.3 the analysis of these issues is 
interconnected with the study of answers given in the contemporary philosoph-
ical debate by Shapiro, Parsons, Feferman, Isaacson, and Burgess. A  tentative 
distinction between concept structuralism and object structuralism is used to 
characterize Grassmann’s own perspective with respect to some contemporary 
approaches.

The objective is certainly not to determine whether Grassmann was a fore-
runner of a specific philosophical position in the contemporary debate. This 
would be quite anachronistic, because both mathematics and philosophy have 
deeply evolved from Grassmann’s time. On the one hand several conceptions of 
structuralism are grounded either in a set-​theoretic or in a categorical frame-
work that had not yet been developed at the time; on the other hand the ana-
lytic approach to structuralism is based on a new understanding of mathematics 
and logic introduced, e.g., by Dedekind, Frege, Peano, Russell, and Hilbert, 
which makes it difficult to separate our common use of certain notions (such as 

viewpoint emerges in mathematical practice, and that a study of the mathematical method might al-
ready be philosophical in nature. On the other hand, it avoids the mistake of considering the method-
ological component of structuralism as the only mathematical aspect of it, whereas also the so-​called 
philosophical structuralism might be the result of mathematical self-​reflection.
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function, concept, equality) from the corresponding use made by Grassmann. 
Yet, provided that historical differences are spelled out clearly, it is not anach-
ronistic to evaluate Grassmann from the perspective of contemporary philos-
ophy of mathematics, to verify whether he asked questions that challenge certain 
structuralist views or raised issues that still need to be clarified.

2.  Grassmann’s Mathematics

Hermann Grassmann’s contributions to mathematics and to its applications 
to physics are numerous; we will recall them very shortly. A clear and detailed 
presentation of Grassmann’s mathematical writings can be found in Schubring 
(1996b) and Petsche et al. (2011). In the following we will restrict our attention 
to several contributions that might be relevant for the development of structur-
alism and that derive mainly from the following works: Ausdehnungslehre (both 
in the 1844 and in the 1862 revised edition), Geometrische Analyse, Lehrbuch der 
Arithmetik, and Robert Grassmann’s Formenlehre.

2.1.  Linear Algebra

Grassmann’s extension theory (ET) (Ausdehnungslehre) introduces several fun-
damental concepts of linear algebra: basis, dimension, generator, linear depend-
ence and independence, but there is no axiomatization of the theory (Dorier 
1995; Zaddach 1994). Grassmann’s vector theory is developed in a purely ab-
stract way (in modern parlance, the vector system is a module over a field), and 
conceptually distinguished from geometry, which is considered as an applied 
science (it is the application of ET to three-​dimensional space).

Grassmann’s theory partially differs from contemporary vector-​based sys-
tems, such as vector analysis, exterior algebra, and geometric algebra, both 
from a technical and from a philosophical point of view. Differences concern 
the closure of the operations, the condition of homogeneity on addition, and the 
conception of the product (Cantù 2011, 96–​98). Besides, an important charac-
teristic of Grassmann’s system is that his notions of base and of a system of (inde-
pendent) generators does not aim at the introduction of a system of coordinates, 
but rather at expressing the idea that all the magnitudes of the system are charac-
terized by some generating law.

Following Grassmann, who uses a geometrical analogy to make the abstract 
presentation more intuitive, we will introduce the fundamental notions of ET 
(element, generating law, simple extensive formation, extensive magnitude) by 
analogy with geometry (point, movement, bound vector, vector). An extensive 
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formation (Ausdehnungsgebilde) is “the collection of all elements into which the 
generating element is transformed by continuous evolution”:3 geometrically 
speaking, it is the geometrical figure resulting from the different positions of a 
point in continuous movement. An elementary (einfach) extensive formation 
“is produced by continuation of the same fundamental evolution” (Grassmann 
1844, 48, my trans.): geometrically, it is a straight line that results from the move-
ment of a point in just one direction.

An extensive magnitude is the class of extensive formations that are generated 
according to the same law by means of equal evolutions (Grassmann 1844, 48–​
49); that is, the vector defined as an equivalence class of bound vectors having the 
same direction, the same orientation, and the same size.

Given Grassmann’s understanding of equality as an identity whose crite-
rion is substitutivity, one cannot say that two extensive formations (two bound 
vectors) are equal (in the sense that they are equivalent), but rather that their 
extensive magnitudes (their corresponding free vectors) are equal (see §2.3.1). 
An extensive formation is determined by the elements it is composed of. An ex-
tensive magnitude, on the contrary, is determined only by direction, size, and 
orientation; that is, it does not depend on the initial element of the generation 
(Grassmann 1844, 49).

2.2.  Number Theory

2.2.1. � Natural Numbers
The theory of natural numbers is presented by Grassmann in the Lehrbuch der 
Arithmetik (1861), which is the result of collaboration with his brother Robert. 
Here the term “magnitude” (Grösse) replaces “form”; mathematics is defined as 
the science of magnitudes, that is, of anything that should be set equal or une-
qual to another thing (Grassmann 1861, 1). This general definition of magnitude 
might apply to any kind of form: arithmetical, extensive, or combinatorial. In any 
case, arithmetical magnitudes are characterized by a further property, that is, the 
fact that they are obtained by successive applications of a specific kind of connec-
tion (an addition) to a single magnitude taken as given and denoted by the sign e. 
It should be noted that Grassmann does not mention the number 1 as the arith-
metic unit. Any magnitude that is taken as initial element to build the arithmetic 
series, which he calls Grundreihe, by successive addition of that initial magnitude 

	 3	 See Grassmann (1844, 48; 1995, 47). Cf. also Lewis (1977, 150). By translating Ausdehnungsgebilde 
by “extensive formation” rather than “extensive structure” (Kannenberg) or “extensive entity” 
(Lewis), I follow here the French translation by Flament and Bekemeier in Grassmann (1994).
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can play the role of a unit. The commutativity and associativity of any arithmet-
ical magnitudes denoted by the symbols a, b, c is not introduced as an axiom, but 
derived inductively (inductorisch) from the commutativity and associativity of 
a + e = e + a and (a + b) + e = a + (b + e) respectively (Grassmann 1861, 1). This 
shows the essential role played by the initial element and by the operation of ad-
dition in the definition of an arithmetical magnitude, and thus of the notion of 
series (see §3.1.1).4

The Lehrbuch has been very influential, because it introduces (1) a clear dis-
tinction between the symbols used to denote (bezeichnen) the concepts and the 
concepts themselves, (2)  the parallelism between the symbolic development 
(Formelentwicklung) and the conceptual development (Begriffsentwicklung) of a 
proof, (3) a clear separation between primitive and derived propositions, and 
(4) the use of induction as a method of inference.

2.2.2. � Real Numbers
Real numbers are not introduced in arithmetic, but in ET. Grassmann, at least in 
the first edition of the Ausdehnungslehre, defines real numbers as ratios of exten-
sive magnitudes of the same dimension: they are thus introduced as magnitudes 
of grade zero, that is, as magnitudes that have no dimension. The idea that num-
bers are themselves magnitudes is familiar in modern linear algebra, where the 
real number field can itself be represented as a vector system (a module on the 
field of real numbers). In particular, the fact of having no dimension allows for 
the product of real numbers to be commutative, even if the product between ex-
tensive forms is generally non-​commutative. So all properties of the usual arith-
metical operations hold for the so-​introduced real numbers, which are the only 
magnitudes whose product commutes (Cantù 2011, 98).

Once real numbers have been introduced according to the operation that 
generates them (division), they can be used as a tool in the symbolic definition 
of extensive magnitudes given in the second edition of the Ausdehnungslehre. 
Relying on an analogy with the generation of natural numbers as successive 
additions of the unity, Grassmann defines several unit magnitudes e1, e2, . . . and 
then introduces extensive magnitudes as additions of the products of these units 
by real numbers, as in the following polynomial: a e1 1  +  a e2 2  +  . . .  . Yet real num-
bers, although presupposed in the definition, can still be conceived as extensive 
magnitudes “if the system consists only of the absolute unity (1) (Grassmann 
1862, 12, my trans.).5

	 4	 The notion of power series emerges already in arithmetic, because Grassmann investigates 
which powers can be transformed into a power series of the form ax bx cxn n n+ + +…− −1 2  with x as 
base. The complex relations between the solution of systems of linear equations, analysis, and exten-
sion theory is here evident.
	 5	 This sentence is omitted in Grassmann (2000). Grassmann thus uses the notion of series to ex-
press natural numbers, extensive magnitudes, and also real numbers. Besides, he often uses it as a tool 
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Natural numbers are based on addition of absolute unities, rational num-
bers are based on division of natural numbers, and real numbers are obtained 
as the quotient of extensive magnitudes. This approach does not provide a uni-
fied notion of number that includes natural, rational, and real. Grassmann does 
not seem to be bothered by the piecemeal character of the definition. On the 
contrary, he aims to ground each kind of number in the operation that is used 
to generate it, and seems to consider as most primitive those notions that are 
built on the basis of addition alone (see §2.3.1 for a discussion of this algebraic 
hierarchy between operations). So natural numbers are more primitive than ra-
tional numbers because the former are introduced by an operation of addition, 
whereas the latter need multiplication and division. For the same reason, exten-
sive magnitudes are more primitive than reals, which are magnitudes and not 
numbers: extensive magnitudes are introduced by addition, whereas reals are 
obtained as the quotient of extensive magnitudes.

2.3.  Algebra and Logic

2.3.1. � Abstract Algebra
Under the name of “general theory of forms” (GTF) Grassmann gathers the inves-
tigation of equality, difference, and the common properties of some connections 
that make their appearance in all branches of mathematics. Contrary to the usual 
treatment in modern algebra, he does not investigate sets of objects endowed 
with a given operation, but rather considers the connections in a purely formal 
way, abstracting from the elements they might be applied to. It is true that some-
times he reasons as if in specific mathematical branches one should consider 
the connections as always holding between certain given magnitudes, and then 
show that these connections satisfy the requirements that allow one to call them 
addition and multiplication respectively (Schlote 1996, 168). Yet this can be done 
only once GTF has been established.6 This explains why Grassmann claims that 

in the solution of problems in different mathematical branches. The ubiquity of the notion of series 
as well as its capacity to express the generating rule of mathematical forms attests to the foundational 
role Grassmann attributes to it.

	 6	 See, e.g., the following passage in the second edition of the Ausdehnungslehre: “We therefore also 
call such a method of conjunction a multiplication, provided only that its multiplicative relation to 
addition is demonstrated, or in other words, provided only that the equal entry of all the terms of the 
conjunctive factors into the conjunction is established in the above sense” (Grassmann 2000, 43). In 
other words, Grassmann defines in abstracto what addition, multiplication, and raising to a power 
are, and then, given a domain closed under an operation, he determines whether it is an addition, a 
multiplication, or a raise to a power, and specifies its further characteristics.
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GTF should precede all other mathematical branches in the exposition: there are 
both epistemological and didactic grounds, because GTF provides a foundation 
of all other branches of mathematics—​in that it presents as united what should 
be united, and has the highest degree of generality—​and also because it spares 
useless repetitions of basic concepts in a mathematical treatise (Grassmann 
1844, 28).

Two forms are said to be equal when they can be substituted one for the other 
in any connection they occur in. Equality is transitive—​if two forms are equal 
to a third, then they are equal one to the other—​and has the following pro-
perty:  forms that are generated in the same way from equal forms are equals 
(Grassmann 1844, 28).

Forms are determined by their generating law, and are therefore equal if the 
same law from the same initial element generates them. Grassmann has often 
been criticized for his adoption of a Leibnizian conception of equality as substi-
tutability salva veritate instead of a Euclidean conception of equality as equiva-
lence (Helmholtz 1887, 377n): as I read him, his equality lies midway between 
Leibniz and Euclid, because he defines it as an identity, and restricts it to some 
features of concepts rather than defining it between objects themselves.7

Given that forms are not given objects but the results of an act of thought that 
generates them according to a certain law, only the characteristics that depend on 
the specific way in which forms have been generated will be taken into account in 
the comparison: the substitutability is thus limited to pertinent contexts.

Grassmann then considers three connections and introduces a four-​level dis-
tinction based on their decreasing generality.

	 1.	 Grassmann believes that the most restrictive conditions to be required 
from any mathematical connection depend on the number of connections 
that are introduced and on their reciprocal relations. So he requires from 
a first connection (connection of first order) that it be commutative and as-
sociative, and from a second connection related to the first (connection of 
second order) that it satisfy the distributive laws with respect to the first.8 At 
this level of generality, the two connections (denoted respectively by ∩ and 
∪) are pre-​mathematical operations between concepts.

	 2.	 Then there is the formal level, where the conditions are less restrictive and 
the connections of first and second order are respectively called “formal ad-
dition” and “formal multiplication” and denoted by the usual arithmetical 
symbols + and ·. A formal addition is a simple synthetic connection with 

	 7	 E.g., two vectors can be considered as equal—​in some extended sense—​because their directions 
and lengths are equal, i.e., identical (Grassmann 1844, 28).
	 8	 The distributive laws are two, because the second connection need not be commutative.
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a single-​valued analytical operation, whereas a formal multiplication is a 
connection of second order with respect to the given addition. This is the 
level of GTF, which is occasioned by an investigation of certain properties 
of the connections that are common to different mathematical branches.

In modern parlance, one could say that Grassmann’s notion of formal addition 
corresponds to a commutative group, and the notion of formal multiplication 
corresponds to a ring under two operations (Schlote 1996, 168). Yet it has often 
been remarked in the literature (e.g., in Lewis 1977, 140, 146, and Flament 1992, 
216) that one should not consider the properties of the connections of first and 
second order, or the properties of the formal addition and formal multiplication 
as axioms,9 or as a reductionist kind of foundation. I believe that a comparison 
with ancient proportion theory might be illuminating, because—​as Aristotle 
himself observed—​the theorems of the theory of proportions could be demon-
strated not only separately for numbers and for geometrical magnitudes but also 
in a more general way. Just as the formulation of proportion theory did not imply 
(at least not until the 18th century) the creation of a new genus of objects (Cantù 
2008, §3), the fact that Grassmann assembled a list of propositions that “relate 
to all branches of mathematics in the same way” (Grassmann 1844, 33; 1995, 
33) does not imply the construction of a new branch of mathematics or of a new 
domain of objects. So formal operations have the properties that are common to 
real operations, the latter being the operations that generate the mathematical 
forms in each mathematical discipline. This explains why Grassmann considers 
addition as being always commutative: he had not encountered any example of a 
non-​commutative additive group in mathematics.

	 3.	 Third, there are abstract connections between thought forms, which 
might have different properties depending on the thought forms they are 
applied to. For example, at this level we find addition and multiplication 
between natural numbers, or addition and multiplication between exten-
sive magnitudes. These abstract connections might be different (e.g., the 
multiplication is commutative in the first case and not commutative in the 
second case), but only with respect to the properties that were not already 
contained in their respective “formal” notions. These are what Grassmann 
calls “real” connections between forms: they are “real” because the law of 
connection is specified and grounds the generation of the forms.10 This is 

	 9	 See Radu (2003) for a discordant point of view on this issue.
	 10	 “So far we have developed the concept of addition in a purely formal manner, since we have 
defined it from the validity of certain laws of conjunction. This formal concept also remains the 
only general one. Yet it is not the way we arrive at this concept in the individual branches of math-
ematics. Rather in them a characteristic method of conjunction is obtained from the generation 
of the magnitudes itself, which manifests itself as an addition in precisely the general sense given, 
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the mathematical treatment of connections, as it is developed in its math-
ematical branch. The idea that in each branch of mathematics, one should 
verify whether the connections that can be introduced can be called ad-
dition or multiplication confirms that there should be a distinction be-
tween the level of formal operations and the level of specific mathematical 
branches, where Grassmann refuses to admit a domain of elements given 
prior to, or independently from, the generation of the elements themselves 
(Cantù 2011, 100).11

	 4.	 Fourth, there is the application of mathematical operations to physical 
reality, as in the case of the addition of masses or forces, or segments. To 
this level belongs the investigation of the connections that one finds in 
geometry.

Mathematics, as we will see in section 3.1, is for Grassmann the science of the 
particular. GTF, on the contrary, investigates formal operations, which are nec-
essarily underdetermined, because the nature of the forms and their generating 
law induce the properties of the operation, which might vary relative to the do-
main of application. Grassmann considers as more “general” the product relative 
to a variable domain—​a domain that is not closed under the operation but rather 
a result of our carrying out the operation itself. It is more general in the sense 
that it is underdetermined, because the determination or particularization of the 
operation depends on further conditions dictated by the nature of mathematical 
objects and by generating rules. The refusal to admit a domain of elements given 
prior to, or independently from, the generation of the elements themselves is an 
idea that Grassmann never abandons, and a basic assumption of his “construc-
tivism” (see §4.2.2 and Cantù 2011, 100).

To resume, Grassmann’s GTF, that is, the study of some fundamental relations 
and operations that occur in all branches of mathematics, is not itself part of 
mathematics, because it contains formal operations that are underdetermined 
and that might receive full determination only when they become real opera-
tions in mathematical disciplines or in the applications of mathematics.

since those formal laws apply to it” (Grassmann 1844, 40; 1995, 39, trans. slightly modified). “We 
have therefore formally defined the general concept of this multiplication as well; if the nature of the 
magnitudes to be conjoined is given, then to this formal concept must correspond a real concept that 
expresses the method of generation of the product by the factor.” (Grassmann 1844, 44; 1995, 42, 
trans. slightly modified).

	 11	 It is interesting to note that different notions of product might occur in the same mathematical 
branch: for example, in the case of ET, there are a real addition between homogenous magnitudes 
(e.g., between segments) and a formal addition between non-​homogeneous magnitudes (e.g., 
the addition between a point and a segment gives a point, because the symbol of addition has to 
be interpreted as a movement from one point to another point rather than as a concatenation of 
magnitudes) (Cantù 2011, 97).
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2.3.2. �  Logic
Hermann Grassmann’s contributions to logic concern some reflections (1) on the 
notion of primitive proposition—​and in particular on the idea that in formal sci-
ences there are only definitions, and no axioms, because mathematics concerns 
abstract concepts and not given objects—​and (2) on a general logical law (law of 
progression).

The nature of primitive propositions varies according to the kind of science 
in question: formal sciences start from definitions, while real sciences start from 
axioms.

Now if truth is in general based on the correspondence of the thought with the 
existent, then in particular in the formal sciences it is based on the correspond-
ence of the second thought process with that existent established by the first, 
that is, on the correspondence of the two thought processes. . . . Consequently, 
the formal sciences cannot begin with axioms [Grundsätze], as do the real; 
rather, definitions comprise their foundation. (Grassmann 1844, 22; 1995, 23, 
trans. slightly modified)

Unlike Kant’s formal criterion of truth, which concerns only the form and not the 
content of knowledge, and thus cannot say anything on the eventual contradic-
tion between knowledge and its object (Kant 1787, 82), Grassmann’s condition 
on the consistency of two thought processes is a condition on the consistency be-
tween an object of thought (the result of the first thought process) and a thought, 
that is, between two concepts.

Grassmann mentions a law of progression (Fortschreitungsgesetz) that he 
considers a general logical law:12 it guarantees that “anything that is asserted 
about a series of things in the sense that it should hold for each individual of 
the series can actually be asserted about each individual belonging to the series” 
(Grassmann 1844, 65, my trans.).13

	 12	 Here “logical law” should be intended as a law of thought, rather than as a law of propositional 
or predicate logic. This interpretation is supported by what Grassmann’s brother Robert explicitly 
claimed, i.e., that mathematical proof is independent of any given natural language, and of any log-
ical theory (syllogistic logic in particular). Even if Robert’s conception differs from that of Hermann 
inasmuch as he treated GTF as being itself mathematics, and logic as being one of its branches 
(Grassmann 1872, 17–​18), I think the two brothers would agree that the notion of series is more 
pervasive in science (and thus more fundamental or more general) than universal instantiation in 
predicate logic: Hermann does not mention the latter at all, neither in GTF nor in mathematical 
branches such as arithmetic and extension theory, whereas Robert considers universal instantiation 
as occurring in a specific mathematical branch: logic.
	 13	 On the rule of progression cf. Cassirer (1910, 20–​21). I translate “law of progression” rather than 
“procedural principle,” as does Kannenberg (Grassmann 1995, 62), to underline the relationship to 
the concept used by Cassirer in a passage of Substanzbegriff und Funktionsbegriff where he discusses 
Grassmann’s ideas (“In all these cases, we are not concerned in analyzing a given ‘whole’ into parts 
similar to it, or in compounding it again out of these, but the general problem is to combine any 
conditions of progression in a series in general into a unified result” [Cassirer 1910, 127; 1923, 96]).
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This law, which we could understand as universal instantiation for series 
(rather than a law explaining the universal quantification of a predicate), just 
makes explicit what Grassmann means by general proposition, and should not 
be assumed as an axiom of mathematics. It is rather what allows us to demon-
strate mathematical results, because proofs are considered concatenations 
(Aneinanderketten) of definitions, that is, themselves series of thoughts.

3.  Grassmann’s Philosophy of Mathematics

3.1.  Mathematics as the Science of the Particular

Defining mathematics as the science of (thought) forms, Grassmann claims that 
mathematics is about concepts, which are considered particulars generated by 
means of an act from some initial element.

	 1.	 Thought forms are particulars that have “come to be through thought” 
(Grassmann 1844, Intro., §§2–​3, 22–​23).

	 2.	 Thought forms might come to be by different types of generation and 
different ways to relate them to the initial element of the generation 
(Grassmann 1844, Intro., §5, 25).

But he also characterizes mathematics by contrasting its peculiar method to the 
method followed in philosophy.

	 3.	 The mathematical method goes from the particular to the general 
(Grassmann 1844, Intro., §13, 30).

According to both characterizations of mathematics, which are not mutually ex-
clusive but rather complementary, mathematics is conceived as the science of the 
particular.

3.1.1. � Mathematical Thought Forms as Particulars
Mathematical thought forms (Denkformen)—​or simply forms—​are determined 
by their generating law: any form is a particular being that has come to be by 
some act of thought (it is the result of a particular act).

Pure mathematics is therefore the science of the particular existent that has 
come to be by thought. The particular existent, viewed in this sense, we call a 
thought form or simply a form: thus pure mathematics is the theory of forms. 
(Grassmann 1995, 24)
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Forms are abstract concepts that result from a generating thought from an initial 
element, which is itself a particular concept. Mathematics is thus the science of 
the particular that is posited by thought and not the science of the general laws of 
thinking (logic).14

The generation of the forms is so intrinsic to their nature that it also explains 
the partition of mathematical disciplines: depending on the relation between the 
elements (equal or different) and on the kind of generating law (discrete or con-
tinuous) that is applied to an initial element, one obtains a partition of math-
ematics into four branches: arithmetic, analysis, combinatorics, and extension 
Theory (see Table 1).

The partition of mathematics is based on the generating law and on the rela-
tion of the generated element to the initial element; that is, it is based on oper-
ations and relations, but also on the determinateness of the initial element. One 
reason why Grassmann introduced the term “form” in the definition of math-
ematics is that it contains a reference to formation, that is, to the way mathe-
matical particulars are generated by a certain law, which alone guarantees their 
determinateness.15

Since what is different from something given [von einem Gegebenen] may be 
different in infinite ways, the difference would get lost completely in the inde-
terminate, were it not constrained by a fixed law. (Grassmann 1995, 29, trans. 
modified)

	 14	 “The formal sciences treat either the general laws of thought or the particular as established by 
means of thought, the former being the dialectic (logic), the latter pure mathematics” (Grassmann 
1995, 23–​24).
	 15	 Other reasons might be the influence of Leibniz as well as dissatisfaction with the usual term 
“magnitude” (§4.2.1).

Table 1  The Partition of Mathematics

Elements Discrete generation Continuous generation

Equal Arithmetic
(natural numbers)

Analysis
(intensive magnitudes)

Different Combinatorics
(permutations)

Extension theory
(extensive magnitudes)
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Grassmann is a conceptualist and a constructivist: what mathematics is about are 
concepts determined by construction, according to a law, from a particular that 
is considered as given (even if it is itself a concept).16

The relation of difference and equality between elements is introduced as 
a difference or equality with something given, that is, a first element from 
which the forms are successively generated. The importance of the individua-
tion of a first element in the series becomes particularly relevant in arithmetic, 
where it grounds Grassmann’s conception of numerical induction, but it plays 
a fundamental role also in ET, where it grounds the notion of generator, and in 
applications (e.g., in the geometrical calculus the initial element is the point, 
whereas in the barycentric calculus it is the point magnitude). Yet this charac-
teristic of Grassmann’s philosophy of mathematics has often been neglected or 
underestimated in the literature.

However, it plays an essential role in the notion of equality (e.g., two extensive 
magnitudes are equal if they are generated in the same way by equal elements), 
in the definition of thought form, and in the clarification of the specificity of the 
mathematical method (§3.1.2). Besides, it is relevant in the distinction between 
operations that are defined on a fixed domain and operations whose domains 
depend on the forms they are applied to: see, for example, the regressive or ap-
plied product (Grassmann 1844, 206), which is relative to the system that two 
magnitudes have in common (Cantù 2011, 94). Finally, it constitutes an essen-
tial aspect of Grassmann’s understanding of concept formation, which is better 
represented by the notion of series than by the notion of function. Whereas the 
notion of function is introduced in modern mathematics by a correspondence 
between two given sets of elements, a series is always determined by an initial el-
ement and a law of development.17

One of the most acute interpreters of Grassmann’s notion of series was Ernst 
Cassirer. Yet he underestimated the role of the initial element that is taken as 
given in order to go from the particular to the general, as well as the additive 
group of elements required by the notion of a series, insisting rather on what he 
calls the “concrete universality” of mathematical functions, and on the order re-
lation between the members of a series. Cassirer understood Grassmann’s claims 
about the initial element in ET by analogy with arithmetic rather than with ge-
ometry, and tried to go beyond the limit to “definite kinds of transformations” 
by highlighting the fact that “the element . . . is . . . only a pure particular grasped 
as different from other particulars,” whereby no “specific content” is assumed 

	 16	 By concept I  mean what Grassmann calls “a thought representing an existent”; the existent 
might be given independently from thought, as in real sciences, or be itself a thought, as in formal 
sciences.
	 17	 In modern parlance we could say that a function could be intended as a logical notion, whereas 
a series is usually considered a mathematical notion.



Grassmann’s Concept Structuralism  35

(Cassirer 1923, 97–​98).18 But Grassmann explicitly adds that a further determi-
nation and distinction is guaranteed by the generation law, which might generate 
the forms in a discrete or in a continuous way. This is needed in order to let a real 
concept of operation correspond to the formal concept of operation.

Cassirer rightly underlined what he considered the “most general function 
of the mathematical concept: . . . giving some qualitatively definite and unitary 
rule that determines the form of the transition between the members of a series” 
(1923, 98). But then he concluded by inscribing Grassmann among the authors 
who considered mathematics as the science of relations:

The considerations by which Grassmann introduces his work thus create a ge-
neral logical schema under which the various forms of calculus, which have 
evolved independently of the Ausdehnungslehre, can also be subsumed; for they 
only show from a new angle that the real elements of mathematical calculus are 
not magnitudes but relations. (Cassirer 1923, 99).

So, even if Cassirer’s reading of Grassmann is partially accurate and faithful, he 
inscribes Grassmann in a tradition to which Grassmann does not properly be-
long, especially if one acknowledges that Grassmann’s GTF, which actually deals 
only with relations and operations, does not really belong to mathematics.19

	 18	 “First, in place of the point, that is, of the particular position (locus), we here substitute the 
element, by which we mean a mere particular, conceived as distinguished from other particulars; 
and indeed we attribute to the element in the abstract science absolutely no other content. There 
can therefore be no question as to what sort of particular it properly is—​for it is the particular per 
se, devoid of any real content—​, or in what sense this one is distinguished from the others—​for it is 
merely defined as the distinct per se, without establishing any real content that might account for its 
distinctness. Our science has this concept of an element in common with combination theory, and 
thus the designation of elements by different letters is also common to both. The difference consists 
only in the way forms are obtained from the elements in the two sciences; that is, in combination 
theory by simple conjunction and thus discretely, but here by continuous generation. The different 
elements can now also be regarded as different states of the same generating element, and this differ-
ence of stages corresponds to differences in position (locus)” (Grassmann 1844, 47; 1995, 46, trans. 
modifified). Cf. also Grassmann (1994, 12).
	 19	 Erich Reck rightly noticed that Cassirer’s notion of function cannot be reduced to the concept 
of a mapping between two domains. I agree that the notion of series grounds what Cassirer says 
about conceptual understanding: an intuitive multiplicity can be understood conceptually only if 
its elements can be seen as the elements of a series (Cassirer 1910, 19–​20). Yet the notion of function 
is distinct from the notion of series: it is “some general law of arrangement through which a thor-
oughgoing rule of succession is established. . . . it is the rule of progression, which remains the same, 
no matter in which member it is represented” (Cassirer 1910, 20–​21; 1923, 17). In another passage, 
Cassirer again distinguishes between “a series which has a first member, and for which a certain law 
of progress has been established, of such a sort that to every member there belongs an immediate 
successor with which it is connected by an unambiguous transitive and asymmetrical relation, that 
remains throughout the whole series” and the “progression” (Fortschritt) in which “we have already 
grasped the real fundamental type with which arithmetic is concerned” (Cassirer 1910, 49; 1923, 38). 
On the one hand, the notion of function is influenced by Dedekind’s notion of Abbildung (Cassirer 
1910, 50); on the other hand, Cassirer apparently agrees with Russell that arithmetic is a formal study 
of relations (Cassirer 1910, 48).



36  Paola Cantù

More specifically, Cassirer’s move from series to relations is too quick. 
Grassmann’s philosophy of mathematics is rooted in the notions of series and ad-
ditive group rather than in the notions of function and order: the former and not 
the latter are relevant in concept formation.

In the introduction to the second edition of the Ausdehnungslehre, Grassmann 
explains the different role played by the notion of linear combination, which is 
essential to defining the notion of elementary extensive magnitude, and by the 
notion of function, which is not an expression between signs: its value is itself a 
magnitude, and precisely a composite magnitude (Grassmann 1862, 7; 2000, xvi, 
trans. modified). The notion of function occurs only in the second part of the 
book and presupposes the notion of magnitude, which is defined by means of the 
notion of linear combination.

Definition. When a magnitude u depends on one or several magnitudes x, y, . . . 
in such a way that, whenever x, y, . . . assume determinate values, then u also 
assumes a determinate (univocal) value, then we call u a function of z, y, . . . . 
(Grassmann 1862, 224, my trans.)

So, according to Grassmann, neither linear combinations nor functions are 
notational abbreviations (Grassmann 1862, 5; 2000, xiv): they are rather essen-
tial tools for concept formation. It is only because a new autonomous concept has 
been formed by addition and multiplication that inverse operations can arise and 
the concept of a negative quantity can be introduced. In particular, Grassmann’s 
notion of function has nothing in common with the notion of a mapping be-
tween two domains, because the latter does not include any privileged reference 
to operations. And even in the case of numbers, the operation of successor is 
considered a generating law that builds numbers by addition (the simplest ex-
ample of linear combination, characterized by a single unit: the absolute unit). 
Thus, Grassmann highlights the similarities between numbers and extensive 
magnitudes, which are generated by similar concept formation tools, rather than 
their respective differences (the kind of order, and the commutative property of 
the product).

3.1.2. � Mathematical (and Scientific) Method: From the Particular to the 
General (and Back)

The notion of a particular is at the basis of the mathematical method too. 
Mathematics and philosophy are characterized by an opposite movement: phi-
losophy starts from the general and arrives at the particular with an analytical 
process of decomposition of a complex concept in more simple concepts; math-
ematics proceeds in a synthetic way and links several particulars to get a new 
particular, that is, links several concepts to get a new concept. The philosophical 
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(dialectical/​logical) method and the mathematical method can be better under-
stood by analogy with the two different moments of the Platonic dialectic pro-
cess: reduction and division. Philosophy starts from an overview of the totality, 
which is successively articulated and ramified, whereas mathematics starts by 
connecting particulars and aims at their unity (Grassmann 1844, 30).20

It is still controversial whether Schleiermacher’s Dialektik had a decisive in-
fluence on Grassmann’s understanding of mathematics.21 Without pretending 
to give historical support to the claim, I  would like to recall two issues of 
Schleiermacher’s Dialectic that might clarify my interpretation of the difference 
between formal and real operations as a difference in determinateness, and offer 
a key to understanding the importance of the initial element in Grassmann’s gen-
eration of mathematical objects.22

Schleiermacher distinguishes between the construction of the one (the ini-
tial element) and the combination of the one with another one (generation law 
starting from an initial element and determining the other elements). Even if 
mathematics mainly deals with combination, it does not ignore that each par-
ticular is in turn the result of a thought process, and in particular cannot ignore 
that the initial element is the result of a construction, which is relevant in the 
determination of the outcome of the combination. Production (or construc-
tion) and combination condition each other reciprocally (Schleiermacher 1839 
[1986], 179).

The knowledge of a single concept obtained by a process of concept formation 
is an incomplete knowledge that needs to be further determined by the connec-
tion of that concept with other concepts. The mathematical method concerns 
specifically the determination of connections, but these cannot be separated 
from the particulars they should connect, and from the initial element whose 
knowledge should be completed by further determinations.23 The initial element 

	 20	 For a convincing interpretation of Schleiermacher’s influence on Grassmann’s distinction be-
tween dialectic and mathematics see Lewis (1977). See especially the distinction between construc-
tion (concept formation) and combination (connection of particular concepts).
	 21	 See, for example, Engel (1911), Lewis (1977), and Petsche (2004), who claim it did, and 
Schubring (2008), who denies it—​or at least restricts the influence to other domains than mathe-
matics, as, for example, philology.
	 22	 Both issues are actually mentioned in Lewis (1977), but are not related to Grassmann’s 
Ausdehnungslehre, nor specifically to Grassmann’s ideas on concept formation and indeterminacy. 
Schleiermacher’s influence is rather recognized by Lewis in Grassmann’s deduction of mathematical 
branches by opposition of the fundamental concepts (equal, unequal, discrete, continuous). See also 
Schubring (2008, 63). I thank Jamie Tappenden for calling my attention to this review.
	 23	 “Even if a concept is formed it can never by itself completely represent the existent since as con-
cept it only contains what is based in the particularity of this existent and not what is posited in it 
as a consequence of its associations [with other existents]. . . . Thus each given thought contains the 
requirement of finding another new thought and of determining that which is left undetermined. 
The first is the extensive direction within combination and the latter the intensive, and it will be in 
the oscillation between the two that we must progress. The method in the first direction—​to find 
from a given knowledge a new one—​we call the heuristic; that in the other—​to connect the dispersed 
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of the series allows the construction of the successive element, which in turn 
adds determinateness to the preceding element.

The scientific method, which is for Grassmann the method of presentation of 
a science in a treatise, that is, a pedagogical method (Flament 1992, 215), should 
sum up in itself both the specificity of the philosophical method (which pro-
ceeds from the general to the particular) and the specificity of the mathematical 
method (which proceeds from the particular to the general). So any scientific ex-
position should combine two aspects, which Grassmann calls respectively con-
tent and form: the content (Inhalt) of a science is the development that goes from 
one individual truth to another individual truth in demonstrations, whereas the 
form (Form) is a guiding idea, which is either a presentiment of the searched 
truth or a conjectural analogy with other well-​known branches of knowledge 
(Grassmann 1844, 31).

3.2.  Formal and Real

There is an ambiguous use of the terms “formal,” “form,” and Formel in 
Grassmann, which explain the difficulty in understanding and appreciating his 
philosophy of mathematics. These expressions occur in different contexts with 
different meanings.

	 1.	 Forms are thought forms, which are opposed to what exists independently 
of thought (“das Sein als das dem Denken selbständig gegenübertretende”), 
to what is given and cannot be itself generated by thought (e.g., space) 
(Grassmann 1844, Intro., §1, p. 22). The former notion is connected to the 
distinction between “formal sciences” and “real sciences,” whereby formal 
sciences concern the purely conceptual (rein begrifflich), whereas real sci-
ences concern what is given outside thought (e.g., spatial [räumlicher 
Natur] notions) (Grassmann 1844, 22).

	 2.	 Formeln are symbolic expressions, as opposed to their denotations: concepts 
(Grassmann 1861, 6).

	 3.	 “Formal operations” in GTF are the formal addition and the formal multi-
plication that are opposed to “real operations” (e.g., addition between num-
bers in arithmetic or between extensive magnitudes in ET) (Grassmann 
1844, 41, 42n).

	 4.	 The form of a science is its treatment or exposition, as opposed to its con-
tent (concatenations of truths) (Grassmann 1844, 31).

and isolated given material—​the architectonic” (Schleiermacher [1839] 1986, 179–​180; trans. in 
Lewis 1977).
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In the following, I will discuss in more detail the first three occurrences, having 
already discussed the last one in the method of scientific exposition (§3.1.2).

3.2.1. � Purely Conceptual versus Spatially Intuitive
We have already mentioned that thought forms are the objects of mathematics. 
“Formal” is also used to characterize several sciences in contrast to real sci-
ences: the main differences between them concern their respective objects (ab-
stract vs. intuitive), their primitive propositions (definitions vs. axioms), and 
their criterion of truth (correspondence between two acts of thought versus cor-
respondence with some external thing). Independence from intuition is clearly 
stated at the end of Grassmann’s Geometrische Analyse, where abstract as purely 
conceptual is opposed to real as associated with spatial intuition.

Now, in fact, as is demonstrated throughout Grassmann’s Ausdehnungslehre, 
all concepts and laws of the new analysis can be developed completely inde-
pendently of spatial intuition [unabhängig von der räumlichen Anschauung], 
since they can be tied only to the abstract concept of a continuous transforma-
tion; and, once one has grasped the idea of this purely conceptually conceived 
[rein begrifflich gefassten] continuous transformation, it is easy to see that also 
the laws developed in this essay can be conceived as freed from spatial intui-
tion [von der räumlichen Anschauung gelösten]. (Grassmann 1995, 384, trans. 
modified)

The main point is not to do away with intuition, but to give it its own role. 
The analogy with geometry is essential in the method of exposition of the 
Ausdehnungslehre and as a heuristic guide in the search for theorems. One thing 
is to consider pure concepts as independent from intuition and another thing is 
to assume that Grassmann calculates with signs devoid of meaning.

3.2.2. � Symbolic versus Conceptual
Formel occurs in expressions such as Formelentwicklung, where it might be 
considered synonymous with what we now call symbolic. In the Treatise on 
Arithmetic, formal as symbolic is mentioned in the inferential development 
of arithmetical truths, which are expressed by symbols but denote concepts. 
There is thus no idea of symbols or “signs or letters the referent of which did not 
matter” in Grassmann (Darrigol 2003, 522). This formalistic interpretation of 
Grassmann’s number theory has been encouraged by Hankel, who maintained a 
distinction between actual and formal numbers, but identified formal numbers 
with signs (Hankel 1867, 36). Quoting Grassmann as a fundamental source of his 
work (Hankel 1867, 16), Hankel indirectly suggested that Grassmann shared his 
point of view. Yet Grassmann claimed that
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“the symbolic development [Formelentwicklung] and the conceptual develop-
ment [Begriffsentwicklung] should go hand in hand. . . . The whole treatment 
will proceed along a conceptual development, whereas the formulas added at 
each step symbolically represent the conceptual advancement.” (1861, 6, my 
trans.)

The mentioned definition of function, as well as the refusal to consider linear 
combination as a notational abbreviation, also supports a non-​formalistic 
reading of Grassmann.24

3.2.3. � Formal versus Real: Two Levels of Abstractness
The adjective formell occurs in GTF as a way to distinguish formal addition and 
multiplication from real addition and multiplication. Here the formal concerns 
an underdetermination of the concept of a connection, which gets embodied 
and becomes real only in each specific mathematical discipline. Both the formal 
connections and the real connections are thus abstract and purely conceptual 
(rein begrifflich), and thus opposed to intuitive or spatial notions that can be 
found in applied mathematics (e.g., in a real science as geometry). The ambi-
guity of the terminology is here evident and explains why it is difficult to under-
stand Grassmann’s philosophy of mathematics. The notion of real connection, 
opposed to that of formal connection, is not to be found in real sciences, but in 
formal sciences! It is thus abstract and opposed as such to what is real in the sense 
of concrete, as connections between geometrical figures.

Are the formal operations of GTF merely expressed by signs devoid of refer-
ence, as several authors took them to be? Here Grassmann’s idealistic philosophy 
explains why this is not the case.

As the general sign for conjunction we take the symbol ∩; now if a and b are the 
factors, with a the prefactor, b the postfactor, then we indicate the product of 
their conjunction as (a ∩ b), where the parentheses here express that the con-
junction indicates that the factors are no longer separate, but that their concepts 
are unified. (Grassmann 1995, 34)

It is certainly true that the level of generality and the abstraction from specific 
features of the real operations suggest that the formal connections do not refer 
in the same way, because they concur in the formation of concepts once applied 

	 24	 For a different reading see Darrigol (2003, 522), but also Klein, who encouraged a formalistic 
reading of Grassmann, as he praised his ingenious algorithms (Klein 1979, 166–​167). Klein’s reading 
suggests that ET contains algorithms that refer to geometry, thereby ignoring Grassmann’s abstract 
level that is situated between the formal and the real concrete level (§2.4).
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to some concept. Just as proportion theory (from which GTF inherits the anal-
ysis of equality and of addition) needs to be applied to specific mathematical 
branches, so does Grassmann’s GTF. The following passage supports this inter-
pretation, according to which formal and real should be understood as disem-
bodied and embodied respectively:

Incidentally, it lies in the nature of things that the conceptual determination 
of these connections is here purely formal, whereas only in the single sciences 
it can be embodied by means of real definitions. (Grassmann 1844, 42n, my 
trans.)

The insistence on the separation of the different mathematical branches and on 
the purity of proofs in each domain is incompatible both with the idea that GTF 
has as its object an abstract structure, and with the view that it constitutes a sym-
bolic calculus devoid of reference or meaning.

3.2.4. � Hankel’s Three-​Level Distinction
Hankel rightly distinguishes the first and the second notions of formal and real, 
individuating three levels in the Ausdehnungslehre: formal, real abstract, and real 
concrete, which correspond to the laws of GTF, of extensive magnitudes and of 
geometrical figures respectively (Hankel 1867, 16–​17).

Hankel thus traces a distinction between (1) the level of formal laws, (2) the 
level of abstract content, and (3) the level of real content. There are at least two 
distinct interpretations of this tripartition in the literature on Grassmann: (a) 
universal algebra, different algebras, and physical instantiations of such algebras, 
(b) abstract algebra, linear algebra, and geometry. A critical discussion of these 
two interpretations is useful to understand Grassmann’s contributions to uni-
versal algebra, abstract algebra, and non-​Euclidean geometry, and therefore 
to the transformation of mathematics into a science of structures, but it is also 
useful to compare contemporary philosophical structuralism with Grassmann’s 
peculiar understanding of mathematical objects and structures.

The second interpretation of the tripartition holds for what Grassmann does 
in the Ausdehnungslehre, provided that one also remarks that of the three levels, 
only the second properly pertains to pure mathematics, whereas the former is 
not mathematics, and the latter is applied mathematics, and provided that one 
recalls the differences between Grassmann’s approach and modern algebra. The 
main question here is whether GTF (1)  does not belong to mathematics yet, 
because it has not been sufficiently developed or because it cannot be part of 
mathematics, given that it is only formally abstract and not really abstract, or 
(2) cannot belong to mathematics, given its too general nature. In support of in-
terpretation (1), it should be noted that Grassmann himself declares that “such a 
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general branch is not yet available” and that he has developed it only as far as it is 
needed for ET, thereby neglecting a third possible connection: raising to a power 
(Grassmann 1844, 33, 42n). In support of interpretation (2) there is the fact that, 
according to Grassmann’s conception of the mathematical method, GTF cannot 
belong to mathematics, because it does not go from the particular to the general. 
And in fact the connections are considered independently from their application 
to a first element.

My claim is that GTF should be considered as something that has to do with 
the scientific method, which, as we have seen, has to incorporate both the phil-
osophical and the mathematical method, going both from the unity of the idea 
to the multiplicity of particulars and back. This interpretation seems to be con-
firmed by the role Robert Grassmann assigns to it in the Formenlehre. Robert 
develops what Grassmann calls GTF as a theory of magnitudes (Grösenlehre),25 
including the general definitions and theorems that make a rigorous scientific 
thought possible, teaching us how to make scientific inferences (wissenschaftlich 
beweisen) (Grassmann 1872, 1), and characterizes it as the general part in oppo-
sition to special disciplines.26

Now, if one considers not only the Ausdehnungslehre but more generally the 
totality of Grassmann’s writings, then one might have an argument for the first 
interpretation of the tripartition already mentioned. The level of formal laws 
might correspond to a certain way of doing universal algebra; the level of abstract 
content might correspond to different algebras developed by Grassmann, among 
which is vector space theory, but also some non-​commutative algebras that he 
developed in his essay on different kinds of multiplication (Grassmann 1855); 
and the level of real content would correspond to geometry, to the barycentric 
calculus, and to other physical instantiations of such algebras.

	 25	 Yet Robert Grassmann uses a different terminology and inverts the presentation: he begins by 
raising to a power (Anreihung, which is not commutative), then introduces multiplication (Einigung, 
which is associative), and finally introduces addition (Vertauschung, which is commutative) 
(Grassmann 1872, 15–​24). He then considers direct (Trennung or trennbare Knüpfung) and inverse 
operations (Lösung or untrennbare Knüpfung), where the former are univocal and the latter are not 
univocal.
	 26	 “Grösenlehre, the first or most general discipline of Formenlehre, teaches us to recognize those 
connections between magnitudes that are common to all disciplines of Formenlehre. It develops the 
laws of equality, addition or Fügung, multiplication or Webung, and exponentiation or Höchung. The 
four special disciplines of Formenlehre emerge from Grösenlehre through the introduction of new 
conditions” (Grassmann 1872, 11–​12, my trans.).
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4.  Is Grassmann a Structuralist?

4.1.  Mathematical Contributions

Grassmann’s contributions to mathematics already tell us something about his 
relation to methodological structuralism (see §1). If the mathematical structur-
alist methodology is the result of several important innovations such as abstract 
algebra, axiomatic method, set theory, and Bourbaki’s structuralism (Reck and 
Price 2000, 346), Grassmann did explicitly contribute to the first factor, thanks to 
his contribution to vector space theory, which clearly favored the development of 
abstract algebra. Vector space theory is also an example of a non-​Euclidean ge-
ometry, because the vector space has dimension n, with n ∈ N, and thus includes 
the investigations of abstract spaces with dimension > 3. Grassmann’s distinc-
tion between real and formal sciences thus contributed to the liberation of ab-
stract geometry (linear algebra) from physical space.

Even if Grassmann’s presentation of extensive forms is not strictly axiomatic, 
Grassmann contributed to the development of axiomatics for at least three 
reasons:

	 1.	 He gave an axiomatic presentation of natural numbers in 1861, where, 
thanks also to the collaboration with his brother Robert, specific attention 
was given not only to the propositions chosen as axioms but also to demon-
strative inferences (and in particular to which propositions are used in each 
step of the derivation).

	 2.	 He developed a purely abstract treatment of linear magnitudes that is com-
pletely independent from concrete intuition.

	 3.	 He was the source of inspiration of Giuseppe Peano, who published an ex-
plicitly axiomatic presentation of vector theory in 1888 and of arithmetic in 
1889.27

Grassmann contributed to the investigation of the abstract structure of a system 
of extensive magnitudes. He highlighted similarities and differences concerning 
the operations of different systems of mathematical forms. On top of that, he 
favored a comparison of the abstract structures of numbers with the abstract 
structures of magnitudes, individuating their main difference in dimensionality 
and in the commutativity of the product. Grassmann thus clearly contributed to 

	 27	 Shapiro himself, literally quoting Nagel (1939), acknowledges the contribution of Grassmann’s 
theory of extension as a prefiguration of “the method of implicit definition” (Shapiro 1997, 147). On 
the relation between Peano’s axiomatic vector theory and Grassmann’s extension theory see in partic-
ular Dorier (1995, 247) and Cantù (2003, 331–​338).
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the development of abstract algebra, and, if universal algebra is conceived as a 
comparative investigation of different algebras—​either to see what they have in 
common (Grätzer 1968, 7) or in connection with their interpretations in order to 
find a generalized notion of space that might serve as a uniform method of inter-
pretation of the various algebras (Whitehead [1898], 1960, v, 29)—​then he con-
tributed to the development of universal algebra too. In particular, Grassmann’s 
comparison of different structures was motivated by a foundational effort to dis-
tinguish different branches of mathematics according to the structural relations 
of their elements (§3.1.1). Yet one should remember that Grassmann did not un-
derstand algebraic systems as sets of given entities closed with respect to certain 
operations, and did not investigate classes of algebras, but only the different pos-
sible properties of operations.

If an essential condition for the development of methodological structuralism 
was the “transition from geometry as the study of physical or perceived space 
to geometry as the study of freestanding structures,” a transition that was ac-
complished through the development of analytical geometry, projective geom-
etry and non-​Euclidean geometry (Shapiro 1997, 14), Grassmann’s distinction 
between what we now call linear algebra (vector space theory in n dimensions) 
and geometry (the three-​dimensional application of the former to physical 
space) (Grassmann 1845, 297) was certainly a relevant step, even if, as is often 
said, Grassmann did not bridge the gap between the discrete and the continuous, 
at least in the sense that he never considered real numbers as an extension of the 
system of rational numbers. On the contrary, he defined real numbers as being 
themselves magnitudes, thereby emphasizing the difference between discrete 
natural numbers and continuous real numbers, and grounding ET independ-
ently from arithmetic.

4.2.  Methodological Structuralism

4.2.1. � Mathematics Is Not the “Science of Quantity”
Methodological structuralism is often associated with a criticism of the 
definition of mathematics as science of quantity and number. Grassmann 
criticizes the traditional definition of mathematics as “science of quantity 
or magnitudes” (Grössenlehre) for two reasons. First, the word Größe refers 
only to continuous magnitudes and thus does not apply to the whole of 
mathematics.

The name “theory of magnitude” is inappropriate for all mathematics, since one 
finds no use for magnitude in a substantial branch of it, namely combination 
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theory, and even in arithmetic only in an incidental sense. (Grassmann 
1995, 24)

That Größe refers only to continuous quantities is proved linguistically:  in 
the German language vermehren and vermindern are connected to number, 
while vergrössern and verkleinern are connected to continuous quantities. 
Distinguishing what Wolff in Mathematisches Lexikon had not explicitly 
separated (Wolff translated both Latin terms magnitudo and quantitas by the 
same German word, Grösse [Cantù 2008]), Grassmann refuses to admit the re-
duction of geometry to algebra and to subsume continuous geometrical figures 
and real numbers under a single genus. Grassmann considers natural num-
bers as discrete quantities generated by repetition of a unit. Therefore the lan-
guage rightly distinguishes numbers that increase or decrease from continuous 
magnitudes (including real numbers) that become bigger or smaller.

Second, the word Größe fails to express the main characteristic of mathe-
matical objects, that is, that they are not given but generated according to a 
rule (§3.1.1). It is only in this second sense that Grassmann’s remarks might be 
interpreted as having some relationship to structuralist approaches.

4.2.2. � Mathematics Is Not about “Objects” but about Relations
A second fundamental feature of methodological structuralism is that mathe-
matics is not about objects but about relations, or at least about objects only in-
asmuch as they are positions in a structure. Recalling what we have said about 
mathematics as the science of the particular, and especially about the role of the 
initial element in the “real” generation of mathematical abstract forms, it seems 
implausible to associate Grassmann with the conception of mathematics as the 
science of relations, notwithstanding Cassirer’s and Hankel’s tendency to do it. 
A further argument against this assimilation might come from some remarks 
by Banks, who insists on Grassmann’s belonging to a German tradition that 
was interested in the development of a physical monadology in a Leibnizian 
sense (Banks 2013, 20–​21), or the investigations by Brigaglia, who considers 
Grassmann to be the inspiring source for Segre’s generalization of the notion of 
point (Brigaglia 1996, 159–​160).

Yet there might be reasons to claim that, even if Grassmann’s mathematics 
cannot be considered, sensu stricto, a science of relations, it might be an interme-
diate step between the traditional conception of mathematics and a structuralist 
approach. Such reasons are his constructivism and his consideration of opera-
tions as corresponding to pre-​mathematical operations that can be applied to 
any kind of domain. Grassmann’s constructivism is based on the idea that forms 
are the results of processes of connection, which construct or generate them, so 
that, in a dialectical perspective inherited from Schleiermacher, forms cannot 
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really be distinguished from the process of their construction, and thus from the 
operations that occur in their concept formation and that determine their rela-
tions to other forms.

4.2.3. � Mathematics Is the Study of “Relational Systems”
A third feature of methodological structuralism is the idea that mathematics 
investigates different “relational” systems, such as number systems, geometrical 
manifolds, various algebras, and so on. Again, Grassmann’s separation between 
GTF, the specific branches of pure mathematics, and applied mathematics make 
it difficult to compare this approach to methodological structuralism. Certainly, 
he did not deeply investigate order relations, and he had a quite intuitive notion 
of continuous transformation. On the other hand, the effort to introduce a parti-
tion of mathematics that is based on different properties of the operations—​an ef-
fort that became systematic especially in Robert’s Formenlehre—​or Grassmann’s 
abstract analysis of different kinds of formal multiplications and their possible 
“realizations” in mathematical theories (Grassmann 1855, 216–​217) can be con-
sidered a step toward the development of the project of a systematic investigation 
of relational systems.

4.2.4. � Mathematics Is Not “Directly about the World”
There is at least one feature of methodological structuralism that Grassmann en-
tirely subscribed to: it is the separation between pure and applied mathematics, 
which implies that mathematics is about abstract forms, and thus is not about the 
external world, or, in Grassmann’s parlance, is not about a given that is not itself 
constructed by thought.

4.2.5. � Mathematical Inferences Are “Formal”
A further feature of methodological structuralism is based on the idea that 
deductions are merely formal. Grassmann explicitly recognized that mathemat-
ical inferences are independent of intuition in the sense that primitive propos-
itions can be conceived purely conceptually and that the only general logic law 
is the law of progression. Even if he admitted a relevant role of intuition as a 
heuristic tool, he never conceded that it should play a role in deductions. Yet 
Engel criticized Grassmann exactly because he did not manage to fulfill his pro-
ject, maintaining an intuitive and unclear notion of continuous transformation 
(Grassmann 1844, 405). But this again is a controversial issue: Lawvere claims on 
the contrary that Grassmann’s continuous transformation is unclear if wrongly 
conceived as a spatial translation, but that it becomes philosophically clear if it is 
understood as an action of the additive monoid of time.28

	 28	 “Grassmann philosophically motivated a notion of a ‘simple law of change,’ but his editors in the 
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4.2.6. � Mathematics Goes toward Set Theory or Category Theory
If either set theory or category theory is a necessary condition for the develop-
ment of methodological structuralism (an exception made, maybe, for Hellman’s 
modal structuralism), then one should note that Grassmann did not contribute 
to the development of a theory of sets. On the contrary, his notion of product is 
incompatible with the modern understanding of a function, and his construc-
tivism is incompatible with a set-​theoretic perspective, where operations are de-
fined on previously given sets of individuals (Cantù 2011, 2016). Grassmann did 
not contribute to the theory of category either, from a strict mathematical point 
of view, but Lawvere considers that category theory makes it “possible to recover 
some of Grassmann’s insights and to express these in ways comprehensible to the 
modern geometer,” and claims that Grassmann can be considered as precursor of 
category theory (Lawvere 1996, 255–​256).

4.2.7. � Mathematics Is Based on Some Kind of Axioms
We have seen that Grassmann did not present ET in an axiomatic way, at least not 
in a Hilbertian sense. But he considered mathematics to be based on concepts, 
because he deduced the differences between mathematical disciplines and math-
ematical forms by means of four fundamental concepts: equal, different, discrete, 
and continuous. And there is another sense in which GTF is based on some ge-
neral conditions upon which a real operation might be called an addition or a 
multiplication (see §2.3.1). Finally, mathematics, being a formal science, does 
not have axioms in a traditional sense, but definitions. Yet the treatment of ET is 
not presented axiomatically, and GTF rather describes the operational features 
common to all operations that can be found in known mathematical disciplines, 
rather than an axiomatic description of algebraic structures.

4.2.8. � Mathematics Studies Invariants
Structuralism is often associated to the investigation of invariant properties of 
different systems. GTF can be interpreted as a unifying perspective that studies 
what is invariant in different mathematical operations. Yet, as we have repeated 
many times, it is not a branch of mathematics. Some authors have tried to show 
that, even if Grassmann did not himself develop a comparison and classifica-
tion of different mathematical systems by means of groups, his remarks on affine 
geometry influenced Klein’s Erlangen program (see Engel 1911, 312, quoted in 
Toebies 1996, 120–​122). Yet this is controversial, given that it has been argued 

1890’s found this notion incoherent and decided he must have meant mere translations. However, 
translations are insufficient for the foundational task of deciding when two formal products are geo-
metrically equal axial vectors. But if ‘law of change’ is understood as an action of the additive monoid 
of time, ‘simple’ turns out to mean that the action is internal to the category A [of affine-​linear spaces 
and maps] at hand” (Lawvere 1996, 255).
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that Klein took his inspiration from Riemann and from projective geometry 
rather than from Grassmann and affine geometry (Rowe 2010, 142). Besides, 
Kannenberg has claimed that even if Grassmann individuated the group of 
circular and linear transformations starting from an analysis of different side 
conditions for the multiplication of extensive magnitudes, “the relation between 
groups and ‘species of multiplication’ is not reciprocal” (Grassmann 1995, 469).

To resume, Grassmann’s GTF, which corresponds to the level of formal laws, 
is not part of mathematics, because it is underdetermined:  it does not speak 
about a specific structure or a class of structures, but rather about the possible 
ingredients of a structure, being thus more similar to a metatheory of abstract 
structures. Grassmann’s arithmetic contains just one kind of multiplication, 
whereas Grassmann’s ET (the level of abstract content) concerns several kinds 
of multiplication, which can be fully determined only by further side conditions.

4.3.  Philosophical Structuralism

In an earlier section of my chapter (see §3), I  have tried to reconstruct 
Grassmann’s conception from a perspective internal to his writings and to the 
spirit of his time. Now I will try to look at Grassmann’s philosophy of mathe-
matics from the present perspective, and thus look at some of the questions 
raised by Grassmann in the light of contemporary philosophical structuralism.

4.3.1. � Grassmann’s Claims on Structures
Even if Grassmann never used the term “structure” himself, I suggest that he 
might have agreed that (1) mathematical objects are characterized by structural 
properties; (2) structures are not given axiomatically; (3) general structures are 
distinguished from particular structures and from exemplars; (4) there is an in-
terdependence between a structure and its objects, and (5) pre-​mathematical op-
erations between concepts are distinguished from operations in structures.

	 1.	 Mathematical objects are characterized by means of their relations and op-
erations and by the relations between such operations (i.e., by structural 
properties). Structures are not themselves mathematical forms, because 
mathematical structures are universals, whereas mathematical forms, al-
though being themselves concepts, are particulars.

	 2.	 Structures are not given axiomatically (construction versus postulation), 
and certainly not defined as in model theory by means of a domain and 
some relations and operations on it.

	 3.	 GTF is the study of relations and operations and concerns what we now 
call general structures (monoids, groups, rings). Mathematics is the study 
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of particular thought forms and concerns what we would now call partic-
ular structures. Applications of mathematics study particulars considered 
as given independently from thought and concern the investigation of 
exemplars of particular structures.

	 4.	 There is a dialectic between general structures, particular structures, and 
their exemplars, which allows further determination of mathematical 
forms as well as their relational properties. General structures do not exist 
independently from particular structures. Particular structures both deter-
mine and are determined by their objects. The distinction between GTF and 
mathematics concerns the question of the interdependence between rela-
tion and relata. In formal operations the operation might stand without its 
factors, whereas in mathematics it cannot. GTF is a sort of metatheoretical 
discourse on mathematical operations rather than itself a theory having 
mathematical structures as its objects.

	 5.	 There are some pre-​mathematical relations and operations (equality, con-
nection, and separation) that express some general operations of com-
position of concepts. They have some very general properties, such as 
substitutivity, commutativity and distributivity respectively. They are 
underdetermined with respect to mathematical operations, which have 
further properties: for example, the properties of the additive operation in 
an abelian group, or of the additive and multiplicative operations in a ring.

4.3.2. � Grassmann’s Claims Evaluated from the Perspective 
of Contemporary Philosophical Structuralism

If one evaluates the previous claims from the perspective of contemporary philo-
sophical structuralism, one might remark that (1) there are no structures as uni-
versal objects in Grassmann; (2) there is no set-​theoretic approach in Grassmann, 
(3) Isaacson’s distinction between general and particular structures might apply 
to Grassmann’s distinction between ET and arithmetic, (4) Grassmann’s episte-
mology might be fruitfully compared to Parsons’s non-​eliminative structuralism 
as well as to (5) Feferman’s conceptualism.

	 1.	 No universals: Grassmann’s epistemology suggests the need for a construc-
tivist alternative to the ante rem /​ in re ontology, an alternative that might 
speak about structures without considering them as mathematical objects, 
and especially not as universals.

Grassmann certainly had an ontological perspective, at least in the sense that he 
was an idealist and a constructivist: mathematical forms have an objective na-
ture. All products of thought processes become objective in the moment of their 
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construction, and can thus be successively taken as given (Grassmann 1844, 22). 
For this objective nature of thought forms, it is certainly not easy to associate 
Grassmann with an eliminative (nominalistic) position à la Hellmann (1990). 
Nor does it seem possible to consider thought forms as in re universals (as in 
Shapiro’s account of eliminative structuralism [1997, 9]).

Yet the question about Grassmann’s structuralism can be asked once more at 
another level, that is, at the level of GTF. Grassmann could be associated with an 
eliminative approach at this level, because there are no such things as the objects 
of a general structure. General structures are not the genus of which spaces, 
number systems, and so forth are species (Burgess 2015, 107–​108), but are based 
on underdetermined concepts that get their full determination once applied to 
particulars, and it is this very application that makes further side conditions ex-
plicit and allows for the determinateness that is needed to treat something as an 
object of mathematics.

	 2.	 No set-​theoretic notion of structure: a preliminary objection might con-
cern the anachronism of applying a philosophical perspective that is 
grounded on different notions of function, object, and concept. According 
to Grassmann, operations are not closed on a domain, either because the 
domain might be considered variable (in mathematics) or because the op-
erations might be considered independently from their factors or from a 
domain on which the factors should vary.

The main problem in the case of Grassmann is to exactly determine what he 
might mean by “structure.” Whereas the model-​theoretic notion of structure is 
based on a domain (a set) to which the operation is applied (and the definition of 
the structure concerns this domain, at least inasmuch as it has properties of clo-
sure with respect to operations), there is not even the possibility of determining 
closure properties in Grassmann’s consideration of formal operations.

	 3.	 General and particular structures (Isaacson and Shapiro):  a comparison 
with Isaacson’s structuralism is interesting in order to appreciate another 
aspect of Grassmann’s structuralism: the distinction between formal and 
real operations. Isaacson’s structuralism is antithetic to Grassmann’s per-
spective, at least inasmuch as it defends the existence of structures but 
not of mathematical objects (structures themselves are not mathematical 
objects), and he centers his perspective on axiomatic postulation rather 
than on construction.

Isaacson distinguishes between general and particular structures. The distinction 
is derived from the way we linguistically refer to them, either by the determinate 
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article (the structure of natural numbers) or by the indeterminate article (a 
group) (Isaacson 2011, 2–​3, 18). Isaacson remarks that Bourbaki believed that 
the mathematical interest was mainly on the side of general structures, and 
Grassmann might agree on that point.

Yet, according to Isaacson, the philosophical interest is all on the side of par-
ticular structures, because structuralist realism concerns the existence of partic-
ular structures. This might be related, I think, to Grassmann’s choice to consider 
GTF as not properly belonging to mathematics: it concerns general and not par-
ticular structures. Besides, Isaacson notes that particular structures can them-
selves be classified into abstract and concrete structures (type and tokens), being 
in the relation one-​many. This might correspond to Grassmann’s distinction be-
tween vector space theory and 3-​dimensional geometry, or between the abstract 
real level and the level of applications.

Shapiro had introduced a distinction between “algebraic” and “non-​algebraic” 
fields of mathematics, that is, between mathematical subdisciplines that concern 
a class of structures or a single structure respectively.29 Even if one might claim 
that algebraic fields are about general structures, whereas non-​algebraic fields 
are about particular structures, the use of Shapiro’s distinction is problematic, 
because it does not do justice to Grassmann’s idea that all mathematical fields are 
about particular structures. It is only GTF that concerns general structures. This 
is an important aspect of what we might call Grassmann’s concept structuralism, 
as opposed to an object structuralism, which requires a complete determinate-
ness of the objects and therefore an identity criterion.30 And this might explain 
why Grassmann would probably disagree with the idea (shared, e.g., by Isaacson 

	 29	 See Shapiro (1997, 40–​41). The distinction made by Grassmann between arithmetic and ET 
can be compared with Shapiro’s distinction between non-​algebraic (e.g., arithmetic and analysis) 
and algebraic fields (e.g., group theory, field theory, or topology, which are about a class of related 
structures).
	 30	 More should be said on this notion of “concept structuralism,” but this would require a new 
article. For the sake of the understanding of Grassmann’s perspective, it might suffice to say what 
concept structuralism is not, and how it is related to a dynamic process of mathematical determina-
tion of pre-​theoretical notions. (1) Concept structuralism is not a historical tradition like “conceptual 
mathematics” (see, e.g., Stein 1988 and Ferreirós 2007). (2) Concept structuralism is not necessarily 
characterized as a weak form of Platonism (see, e.g., Ferreirós’s effort to define conceptual structur-
alism as a version of weak Platonism, suggesting that structures exist as abstract entities but are not 
necessarily independent from the mathematician). Structures are conceptual tools that describe ge-
neral properties of the operations among particular entities. In a proper sense, only the particulars 
can be said to exist as fully determined objects. (3) Concept structuralism is based on the idea that 
mathematics is a dynamic process that tries to further determine some pre-​theoretic notions, e.g., by 
considering the algebraic closure of an underdetermined operation, so that mathematical objectivity 
is ultimately grounded in processes of concept formation. I would like to thank José Ferreirós for the 
rich discussion we had on the topic, and for the useful insights I got from the reading of his essay on 
mathematical practices (Ferreirós 2016), and his unpublished manuscript on Feferman’s conceptu-
alism (Ferreirós 2018).
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and Shapiro) that the philosophical problem consists in accounting only for the 
existence of particular structures.

Another interesting point is Isaacson’s remark that there cannot be objects 
without particularity and without an identity criterion: therefore Shapiro has a 
problem when he pretends to speak about the objects of a structure (as is proved 
by Keranen’s objections). I  take Isaacson’s remark to suggest that whenever 
structures are introduced axiomatically (or by postulation), then one cannot talk 
about mathematical objects of these structures, because no identity criteria are 
available. Grassmann avoids introducing vector space systems by postulation, 
exactly because he believes that they concern mathematical forms whose con-
struction is determined by their generating laws, which also allow for identity 
criteria. Construction rather than postulation has for Grassmann a foundational 
value. This position is again antithetic to the position of Isaacson, who believes 
that only postulation has foundational value, and that construction was funda-
mental only in the logicist perspective, because the construction should prove 
the logical nature of mathematical concepts.

	 4.	 Parsons’s non-​eliminative structuralism:  Grassmann’s approach can be 
interestingly compared with Parsons’s version of non-​eliminative struc-
turalism.31 Mathematical objects are taken to be particular forms (e.g., 
numbers, extensive magnitudes, etc.). Neither formal operations nor 
structures themselves seem to be considered mathematical objects, be-
cause they appear in GTF as underdetermined, devoid of an identity 
criterion, which on the contrary seems to be a necessary condition for 
something to be an object (Isaacson 2011). Talk about formal operations 
is rather metatheoretic, and general structures (in Grassmann’s sense) 
are not even deficient-​property objects (Burgess 2015), because they are 
not structures whose elements have no individual nature, but rather a 
bunch of operations considered independently from their “application” 
to particulars. There is a dialectic between particular structures and their 
exemplars, as in the case of the geometric analogy that guides the develop-
ment of Grassmann’s ET. Similarly, Parsons considers structures to be not 

	 31	 A general classification of all kinds of contemporary variants of structuralism is not available, 
and various terminologies conflict one with the other. I will adopt Parsons’s terminology, and distin-
guish eliminative from non-​eliminative structuralism: “Eliminative structuralism . . . proposes some 
procedure for paraphrasing the language that refers to the objects we are concerned with, usually 
either the numbers of one of the number systems, or sets, so that commitment to the objects con-
cerned, even the conception of them as a distinctive kind of object, disappears. . . . [Non-​eliminative 
structuralism] takes the ideas behind structuralism not as the basis for a program for eliminating 
numbers, sets and other pure mathematical objects, but rather as the basis for an account of them as 
objects, as the objects which theories of numbers and sets talk about when taken more or less naïvely” 
(Parsons 2004, 57).
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free-​standing but connected to instantiations developed in mathematical 
practice. Grassmann’s vector space theory is presented in a purely abstract 
way in the first edition of the Ausdehnungslehre, but a geometric analogy 
guides the development of ET. This dialectic between the particular struc-
ture and one of its exemplars suggests a comparison with Parsons’s claim 
that talking about mathematical objects is legitimate in structuralism, even 
if their identity criteria cannot be established exclusively by means of struc-
tural properties, but require some reference to extra-​structural properties.

Grassmann similarly believes that it is possible to talk both about operations that 
are only partially determined and about operations that are fully determined in 
some particular structure or in an exemplar of it. This is legitimate, because, ac-
cording to Parsons, structures are not free-​standing but are somehow connected 
to instantiations developed in mathematical practice.

With Parsons, Grassmann would agree that mathematical objects such as nat-
ural numbers are usually given in a realization of the structure, and that “some 
mutual dependence in understanding what the objects of a domain are and what 
their most important properties and relations are” need not be circular (Parsons 
2004, 73). I suggest that Grassmann would understand in a dialectical way the 
relation between the so-​called intended model and the axiomatic formulation of 
a structure.

Grassmann’s perspective cannot be compared with Parsons’s Quinean ap-
proach, according to which “speaking of objects just is using the linguistic 
devices of singular terms, predication, identity, and quantification to make se-
rious statements” (Parsons 1982, 497). Yet I think Grassmann shares what I take 
to be a presupposition of Parsons’s structuralism: the possibility of talking both 
about objects that are only partially determined (e.g., determined only by their 
structural properties, even when this does not allow us to distinguish objects in 
the structure, as might be the case for i and −i in the structure of the complex 
numbers) and about objects that are fully determined in some instantiation of 
the structure (where one might have identity criteria or knowledge of specific 
relations between the objects).

	 5.	 Feferman’s conceptualism:  Feferman’s conceptual structuralism is based 
on the belief that the general ideas of order, succession, collection, rela-
tion, rule, and operation are pre-​mathematical. Likewise, Grassmann’s 
conceptual constructivism distinguishes pre-​mathematical operations be-
tween concepts (some general notions of composition) from mathematical 
operations.
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 According to Feferman, the basic objects of mathematical thought exist only 
as abstract mental conceptions resulting from processes that are independent of 
the concrete objects to which they are applied, and based on pre-​mathematical 
concepts such as relations, rules. and operations (Feferman 2009). Grassmann 
might substantially agree on several of Feferman’s 10 theses that characterize his 
version of conceptual structuralism.32

As in Feferman’s version of conceptual structuralism, mathematics does not 
concern only universal or relational concepts, but also particular concepts con-
sidered as autonomous thought forms. The focus is on the procedures of concept 
formation.

4.3.3. � Grassmann’s Challenges to Contemporary Structuralism
The comparison between Grassmann’s epistemology and contemporary phil-
osophical structuralism can be used both to better understand Grassmann’s 
philosophy and to consider whether new challenges might derive from his “ob-
solete” perspective.

Grassmann certainly contributed to the development of methodological 
structuralism. He criticized the traditional definition of mathematics as a science 
of magnitudes, and even if he still associated it with particular thought forms, 
he considered the latter to be determined by their generating law applied to an 
initial element. Grassmann clearly separated pure from applied mathematics, 
and developed a formal analysis of certain properties of connections that can be 
found in all mathematical branches. Even if, sensu stricto, he did not axiomatize 
mathematics, he individuated certain side conditions of the general connections 
that can be considered as invariant under specific kinds of transformations.

From a philosophical perspective, Grassmann’s general theory of forms and 
the general definition of multiplication that occurs in ET can be interestingly 
compared to a non-​eliminative structuralism associated with a constructivist 
ontology, as for example Parsons’s or Feferman’s structuralism. With the latter 
Grassmann would share the idea that the basic objects of mathematical thought 
exist only as abstract mental conceptions resulting from processes that are in-
dependent of the concrete objects to which they are applied, and based on pre-​
mathematical concepts such as relations, rules, and operations (Feferman 2009). 
With the former Grassmann would share the idea that mathematical forms (in-
cluding numbers and extensive magnitudes) are the objects that mathematics 
talks about (Parsons 2004, 57).

Even if most questions related to the development of philosophical struc-
turalism, such as Benacerraf ’s dilemma on natural numbers, cannot really be 

	 32	 See in particular Feferman’s theses 1, 2, 3, 8, and 9 (2009, 3).
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compared with Grassmann’s pre-​set-​theoretic approach, the epistemological 
challenge is taken into account in his constructivism. So Grassmann’s most in-
teresting contributions to contemporary structuralism might be seen in several 
challenges: (a) find a constructivist alternative to the ante rem /​ in re ontology, (b) 
verify whether a form of conceptualism might explain how mathematicians talk 
about structures without wholly abstracting from their instantiations, (c) con-
sider the foundational role of series in mathematical and scientific thought, (d) 
develop an investigation of the differences between what we have called concept 
structuralism and object structuralism.
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3
 Dedekind’s Mathematical 

Structuralism: From Galois Theory 
to Numbers, Sets, and Functions

José Ferreirós and Erich H. Reck

In this essay, “mathematical structuralism” will be understood mainly as a style 
of work, a methodology for mathematics—​but methodological choices can 
hardly be made without concern for the subject matter. Richard Dedekind’s case 
was no exception to this rule. Thus his mathematical structuralism, which will be 
our main concern, was supplemented by a philosophical conception of mathe-
matical objects.1

What is meant by “structure” in this context? Roughly, a structure is a rela-
tional system, a framework (Fachwerk, truss) of relations between elements—​
where the emphasis is on the relations (and relations of relations, etc.), in the 
sense that the same structure can be instanced by different kinds of elements. 
This rough sketch can be elaborated in a number of different ways, both mathe-
matically and philosophically.

What, then, do we mean by “mathematical structuralism”? It is a style of work 
that takes results in a given branch of mathematics to emerge from the nature 
of relevant structures (exemplified therein), and often typically, from certain 
interrelations between structures of different kinds. A clear and paradigmatic ex-
ample, also for Dedekind, is Galois theory, as we will see.

The essay will proceed as follows:  After some background on Dedekind’s 
main forerunners (§1), we will consider structuralist themes in his approach 
to Galois theory and algebraic number theory (§2). Then we will turn to his 
rethinking of the real numbers (§3) and the natural numbers (§4), within a ge-
neral framework of sets and functions. The essay will end with a brief summary 
and conclusion (§5).

	 1	 The way in which we use “mathematical structuralism” in this essay makes it closely related 
to “methodological structuralism” in Reck and Price (2000); cf. the editorial introduction to this 
volume. We also use “style” in a methodological and epistemological sense, as opposed to a personal, 
national, or merely aesthetic one; cf. Mancosu (2017) for a general discussion.
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1.  Forerunners: Gauss, Dirichlet, and Riemann

As just indicated, a core ingredient of mathematical structuralism is the emphasis 
on relations, as opposed to objects standing in those relations. Henri Poincaré is 
well known for having written in Science and Hypothesis: “Mathematicians do 
not study objects, but the relations between objects; to them it is a matter of indif-
ference if these objects are replaced by others, provided that the relations do not 
change” (Poincaré [1902] 2011, 20). Less well known is the fact that he said this 
as a preparation for explaining Richard Dedekind’s account of the real numbers 
as defined by cuts.2 Yet this point of view has deeper roots, also reaching further 
back than Dedekind.

By 1900, a structuralist approach was natural for many mathematicians, es-
pecially those, like Poincaré, used to working with group theory; similarly for 
Hilbert and mathematicians influenced by his application of the axiomatic 
method to geometry. But already in the 1820s, C.  F. Gauss had argued that 
“mathematics is, in the most general sense, the science of relations” (Gauss 
[1917] 1981, 396).3 This is so since “the mathematician abstracts entirely from 
the nature of the objects and the content of their relations; he is concerned 
solely with counting and comparison of the relations among themselves” (Gauss 
[1831] 1863, 176).4 In another pregnant remark, he wrote that some mathemat-
ical results should be obtained “from notions [i.e., concepts], not from notations” 
(quoted in Dedekind 1895, 54). At the same time, Gauss’s style of doing mathe-
matics was still mostly classical; and while he took care to reformulate some ex-
isting theories in terms of pregnant “notions” (such as the congruence relation, 
≡, in number theory), his writings often seem more calculational than structural.

Around 1850, several German mathematicians insisted that one ought 
to “put thoughts in the place of calculations”, as Dirichlet wrote in his obit-
uary of Jacobi. In other words, they adopted the principle—​later attributed by 
Hermann Minkowski to Dirichlet himself—​of obtaining mathematical results 
with a “minimum of blind calculation, a maximum of clear-​seeing thought” 
(quoted in Stein 1988, 241). And by the end of the 19th century it had become 
customary to speak of a conceptual approach to mathematics in this connec-
tion, as opposed to more calculational approaches.5 Riemann and Dedekind, 

	 2	 See the essay on Poincaré in the present volume for more.
	 3	 Our translation; in the original German: “Die Mathematik ist so im allgemeinsten Sinne die 
Wissenschaft der Verhältnisse [in der] man von allem Inhalt der Verhältnisse abstrahiert” (Gauss 
[1917] 1981, 396).
	 4	 Our translation; in the original German:  “Der Mathematiker abstrahirt gänzlich von der 
Beschaffenheit der Gegenstände und dem Inhalt ihrer Relationen; er hat es bloss mit der Abzählung 
und Vergleichung der Relationen unter sich zu thun” (Gauss 1831, 176).
	 5	 For more on the opposition between a “conceptual” and a more “computational” approach to 
mathematics, cf. Stein (1988), Laugwitz (2008), also Tappenden (2006), Reck (2016).
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two young mathematicians influenced directly by Dirichlet, adopted this prin-
ciple wholeheartedly. They also gave it a particularly abstract twist, or as one 
might say, a philosophical bent.

The initial model in this connection was Dirichlet’s work from the 1830s, 
specifically his contributions to analytic number theory and the theory of trig-
onometric series. Gustav Lejeune Dirichlet is not as well known today as he 
deserves; but his mathematical results were “jewels” (Gauss in an 1845 letter to 
Humboldt)6 that greatly influenced the development of mathematics. Moreover, 
his lectures—​recorded, edited, and published by Dedekind—​were highly influ-
ential and celebrated for their conceptual clarity. When he proved a theorem, one 
would never get lost in a jungle of calculations; instead, one would come away 
with clear insight into the chain of reasons, into the crucial steps that make the 
result possible. In addition, in Dirichlet’s work on Fourier series (1829) he pro-
moted analysis with more rigor than Cauchy. He was able to prove the existence 
of a Fourier-​series representation for any function that is continuous and does 
not oscillate too often. Crucially, this result necessitated a “conceptual approach,” 
since the goal was to establish the existence of a series representation merely 
from some very general traits of functions.

Dirichlet’s application of methods from analysis to pure number theory (1837) 
was also greeted as an impressive novelty. The first example was his theorem that 
there are infinitely many primes of the form a + n·b, with a and b coprime. The 
key point here is that recourse to certain functions in analysis (called L-​series) 
was presented as indispensable; thus a result about finite numbers could only be 
obtained via a detour through the infinitesimal calculus. This stimulated much 
thought about the foundations of mathematics, especially by Kronecker and 
Dedekind. Dirichlet’s own conclusion seems to have been that pure mathematics 
is just arithmetic, i.e., that all of analysis and algebra is nothing but a heavily de-
veloped number theory. Thus, as Dedekind later recalled, in the 1850s he often 
heard Dirichlet say that any result of algebra or analysis, no matter how complex 
or apparently remote, could be reformulated purely as a theorem about the nat-
ural numbers ( [1888a] 1963a, 35). This would, among others, justify the applica-
tion of analytic methods to number theory in a deep way, implying that there is 
nothing “impure” in it.

One more aspect of these contributions by Dirichlet is crucial for our 
purposes. It is his conceptual approach to mathematics that led him to empha-
size the idea of an arbitrary function. Up to then, a “function” was supposed to 
be given explicitly by means of a formula, say polynomial or a concrete infinite 

	 6	 And “one does not weigh jewels on a grocer’s scales” (Biermann 1977, 88).
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series. However, Dirichlet defined a function to be a “law” according to which “to 
any x there corresponds a single finite y”, i.e., an arbitrary correspondence of nu-
merical values (Ferreirós 1999, 148). A function f is then continuous if small var-
iations of x correspond to small variations of f(x). Assuming now that, within an 
interval, the function f is bounded, is continuous except in finitely many points, 
and has finitely many maxima and minima, Dirichlet established that there is a 
Fourier-​series representation for it.

A general way to understand this result is that the notion of function rep-
resentable by a Fourier series, which makes it “calculational”, is tantamount to 
a notion defined more abstractly or conceptually, namely that of a piecewise 
continuous, piecewise monotone function f. This is how Bernhard Riemann 
presented the matter in the introduction to his PhD thesis on the theory of an-
alytic (complex-​valued) functions. As such, Dirichlet’s approach constitutes a 
substantial triumph for the conceptual style of thinking. Riemann then made 
it his programmatic goal to base the theory of complex functions on a similarly 
conceptual starting point, leaving the development of explicit “forms of repre-
sentation” for the very end of the treatment. Here is how he characterized the 
resulting methodological perspective:

Previous methods of treating these functions were always based on an ex-
pression for the function, taken as its definition, which determined its value 
for each value of the argument. Our investigation has shown that, as a con-
sequence of the general characteristics of [analytic] functions of a complex 
variable, in such a definition a part of the determining elements follows 
from the rest; and the extension of those determining elements has been 
reduced to what is strictly necessary. This simplifies their treatment consid-
erably. To give an example, in order to establish the equality of two different 
expressions for the same function, it was necessary to transform one into the 
other, that is, to show that they coincided for each value of the variable mag-
nitude; now it is sufficient to show their coincidence in a far more restricted 
domain.

A theory of such functions in accordance with the foundations established 
here would determine the configuration of the function (that is, its value for 
each value of the argument) independently of forms of determination by means 
of operations; to the general concept of a[n analytic] function of a complex 
magnitude, one would only add the necessary traits for determining the func-
tion, and only afterwards would one move on to the different expressions which 
the function admits. What is common to a species of functions that have been 
expressed in a similar way by means of operations would then be represented 
by means of boundary and discontinuity conditions. (Riemann [1851] 1876, 
§20, 38–​39; our trans.)
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The basis for Riemann’s approach was his definition of an analytic function via 
the Cauchy-​Riemann conditions,7 together with his study of functions by means 
of their associated Riemann surfaces, plus some additional conditions regarding 
points of discontinuity (poles and singularities) and boundary conditions.8

The association of a Riemann surface—​a geometric or, better, topological 
object—​with each analytic function was a very fruitful move too, but one that 
remained somewhat mysterious at the time. In retrospect it can be regarded as 
another step toward mathematical structuralism: the study of one kind of ob-
ject (a complex function) by associating it with an object of a different kind (a 
surface in n-​dimensional space). The price paid by Riemann and his followers 
was foundational worries concerning the nature of these novel objects, which 
required the development of n-​dimensional geometry and topology in order to 
be fully resolved. Finally, applying the same kind of methodology to the study of 
Euclidean space, Riemann subsumed the latter under the much richer and quite 
abstract concept of continuous (and differentiable) manifold, endowed with a cer-
tain metric.9 The idea here was to look for further conditions so as to gradually 
narrow the scope of spaces falling under this general concept, thereby clarifying 
the nature of the assumptions behind Euclidean geometry and its links to other 
recently developed geometries, like the non-​Euclidean one of Lobatchevsky-​
Bolyai, or even more generally, to geometries in spaces of variable curvature (cf. 
Ferreirós 2006).

In Riemann’s work, the conceptual style of doing mathematics became 
very explicit and exclusive. As a consequence, it was criticized by other 
mathematicians—​most importantly by Weierstrass and his Berlin school—​who 
wanted to remain closer to the previous concrete and constructive style of math-
ematics.10 In particular, Weierstrass gave preference to explicit representations 
of functions by means of power series. He argued, among others, that the class 
of differentiable functions had not been characterized completely yet (con-
structively, as one should add); and along such lines, the definition of analytic 
functions given by the Cauchy-​Riemann conditions was not entirely satisfactory. 
For Dedekind, in contrast, the example of Riemann’s style of mathematics be-
came the model to emulate. Thus, when Dedekind makes his most committed 

	 7	 These conditions say, in essence, that a function is analytic or holomorphic if and only if it is dif-
ferentiable (in the complex domain); they state:  ∂
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 for u + vi = f(x + yi).

	 8	 Thus, if the function has discontinuities only in isolated points, and they consist in its “be-
coming infinite with finite order,” then the function “is necessarily algebraic” and vice versa.
	 9	 Cf. Scholz (1999). An n-​dimensional manifold is currently defined as a topological space that, 
locally, behaves like Euclidean space—​but globally it won’t in general be like ℝn. Riemann introduced 
the idea in connection with his reflections about n-​dimensional geometry: they generalized the idea 
of a 2-​dimensional surface to three and more dimensions. The Riemann surfaces are 2-​dimensional 
manifolds, and it may be impossible to embed them in Euclidean space.
	 10	 Cf. Bottazzini and Gray (2013), 320–​324, and Tappenden (2006), 108–​122.
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statements about mathematical method, there is typically a reference to Riemann 
involved, as in the following example:

In these last words, if they are taken in their most general sense, we find the 
expression of a great scientific thought: the decision for the inner in contrast to 
the outer. This contrast also comes up in almost all fields of mathematics. One 
only has to think of function theory, of Riemann’s definition of functions by 
means of characteristic inner properties, from which the outer forms of repre-
sentation arise with necessity. But in the much more limited and simple field of 
ideal theory too, both directions have their validity. (Dedekind 1895, 54–​55)11

Similarly, in the preface to his 1871 book on algebraic number theory, which 
contains his first presentation of ideal theory, Dedekind expressed his “hope 
that the effort to obtain characteristic basic concepts [das Streben nach 
characteristischen Grundbegriffen], which has been crowned with such beau-
tiful success in other areas of mathematics, may not have eluded me completely” 
(Dedekind 1930–​32, 3:396–​397, our trans.). The same outlook is presented in a 
letter to Lipschitz from 1876, again with reference to Riemann.12

Dedekind was exposed to Dirichlet’s and Riemann’s conceptual style of 
thought during his time as privatdozent at the University of Göttingen. This 
proved to be a crucial experience for him. Not only did he later repeat Dirichlet’s 
view that all of algebra and analysis is an extended form of arithmetic, as already 
noted; he also adopted his general notion of function (with consequences we 
explore further subsequently). And whenever it came to expressing his most 
deeply cherished methodological preferences, he wrote that his aim (in algebra, 
in number theory, etc.), like Riemann’s in his theory of functions, was to base his 
results on “characteristic concepts,” while letting concrete “forms of representa-
tion” emerge only as end products.

Actually, in Dedekind’s hands the consistent promotion of such goals led 
even further—​to a form of mathematical structuralism. This Dedekindian move 
brought with it novel set-​ and map-​theoretic methods. But before we turn to 
those, the historical roots of yet another core ingredient of his mathematical 

	 11	 Our translation; in the original: “In diesen letzten Worten liegt, wenn sie im allgemeinsten Sinn 
genommen werden, der Ausspruch eines großen wissenschaftlichen Gedankens, die Entscheidung 
für das Innerliche im Gegensatz zu dem Äußerlichen. Dieser Gegensatz wiederholt sich auch in 
der Mathematik auf fast allen Gebieten; man denke nur an die Funktionentheorie, an Riemanns 
Definition der Funktionen durch innerliche charakteristische Eigenschaften, aus welchen die 
äußerlichen Darstellungsformen mit Notwendigkeit entspringen. Aber auch auf dem bei weitem 
enger begrenzten und einfacheren Gebiet der Idealtheorie kommen beide Richtungen zur Geltung.”
	 12	 From the letter to Litschitz (in our trans.): “My efforts in the theory of numbers are directed . . . —​
though this comparison may sound pretentious—​to attain in this field something similar to what 
Riemann did in the field of function theory” (Dedekind 1930–​32, 3:468, our trans.). For additional 
remarks, compare, e.g., p. 296.
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structuralism should be made explicit, namely:  the systematic exploitation of 
relations, not just between particular mathematical objects, but between whole 
systems of objects as exemplified by Galois theory.

2.  The Algebraic Context: From Galois Theory to Algebraic 
Number Theory

B. L.  van der Waerden, the author of the classic textbook Moderne Algebra 
(1930), stated:  “Galois and Dedekind are those who gave modern algebra its 
structure—​the supporting skeleton of this structure comes from them” (1964, 
vii). Let us consider what he meant by that, including how Galois’ and Dedekind’s 
approaches are related. After that, we will turn to Dedekind’s closely related use 
of Galois theory in his work on algebraic number theory.

After having finished his dissertation under Gauss in 1852, Dedekind 
remained in Göttingen as a privatdozent for six more years. He hesitated about 
what to do next. He also attended several of Dirichlet’s and Riemann’s classes so 
as to broaden and deepen his knowledge of mathematics. In 1855, he found his 
first great field of work: the contributions of Abel and Galois to higher algebra, 
into which he immersed himself, and especially, Galois’s theory (first published, 
posthumously, in 1846 and quite difficult to understand at the time). In 1856–​57 
and 1857–​58, Dedekind gave the first university courses in Germany on Galois 
theory. And it is here that he started to develop “the structural and concep-
tual methodology that will be characteristic of his whole mathematical work” 
(Scharlau 1981, 336, our trans.).

As is well known, algebra had been understood as the general theory of the 
symbolic resolution of equations for centuries; or as Isaac Newton put it, it was 
a kind of “universal arithmetic” that worked with a symbolic or literal calculus 
(in German: Buchstabenrechnung) instead of ordinary arithmetical calculations. 
It was primarily Galois’ work in the early 19th century that led to a novel, much 
more abstract understanding of algebra—​later often called “modern algebra”—​
in which the resolution of equations is relegated to the level of applications, while 
issues involving general theories of groups and fields come to the forefront (see 
Corry 2004, chap. 1). Dedekind played a crucial role in that development.

A central algebraic problem, from the 15th to the 19th century, was to 
find general methods for solving polynomials of any degree by means of 
radicals—​just as the second-​degree equation ax2 + bx + c = 0 is solved by taking  
x = (–​b ± √(b2 –​ 4ac))/2a). Analogous resolutions were found for equations of 
degree 3 and 4 in the 16th century. But around 1800 mathematicians were con-
vinced that a general solution, for all degrees n, is impossible to obtain. Lagrange, 
Ruffini, and Abel provided increasingly fine-​grained analyses of this question, 
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leading to Abel’s proof that equations of degree 5 are in general not solvable (by 
radicals). This line of mathematics emphasized analyzing permutations of the 
roots of the equation at issue, and some expressions that remain invariant under 
such permutations. The very young Galois picked up on that approach, noting 
that all the permutations together form a group—​a very innovative and rather 
abstract concept. This led him to associate with each equation its “Galois group” 
G, and then to investigate subgroups of G with particular attention to what later 
(by Heinrich Weber) would be called “normal” subgroups, which proved to be 
crucial.

Rather quickly, Dedekind obtained remarkable clarity in rethinking Galois’ 
crucial innovation. Here is one passage in which he explains the path he took:

During my first in-​depth study of [the Gaussian theory of] cyclotomy13 during 
the Pentecost holidays of 1855, I had, while well understanding all the details, 
to fight long and hard until I found the crucial principle in irreducibility; I only 
had to direct simple, natural questions at it so as to be led, with necessity, to 
all the details. Through a careful study of the algebraic investigations of Abel 
and, especially, Galois, and by my discovery, in early December of the same 
year, of the most general relation between any two irreducible equations, these 
thoughts were brought to a certain conclusion. Later I employed the method 
I had found also in the two winter courses on cyclotomy and higher algebra 
[given at Göttingen] in 1856–​58. (Dedekind 1930–​32, 3:414–​415)14

Dedekind’s lecture notes from these courses were only published, by Wilfried 
Scharlau, in the 1980s. In Scharlau’s evaluation, his presentation of Galois 
theory—​with its group-​theoretic and field-​theoretic foundations (see below in 
this section)—​was far ahead of his time, even satisfying 20th-​century expec-
tations (Scharlau 1981, 341).15 A similar level would only be achieved again in 

	 13	 Cyclotomy is the study of roots of equations of the form xm = 1, with m a positive integer. These 
roots are points on the unit circle (and thus cut it, “cyclotomy”).
	 14	 Our translation; in the original German:  “Bei meinem ersten gründlichen Studium der 
Kreisteilung in den Pfingstferien 1855 hatte ich, obgleich ich das Einzelne wohl verstand, doch 
lange zu kämpfen, bis ich in der Irreduktibilität das Prinzip erkannte, an welches ich nur einfache, 
naturgemäße Fragen zu richten brauchte, um zu allen Einzelheiten mit Notwendigkeit getrieben 
zu werden. Nachdem diese Gedanken durch eine eingehende Beschäftigung mit den algebraischen 
Untersuchungen von Abel und namentlich von Galois vervollständigt und durch die im Anfang 
Dezember desselben Jahres gelungene Auffindung der allgemeinsten Beziehungen zwischen irgend 
zwei irreduktiblen Gleichungen zu einem gewissen Abschluß gekommen waren, habe ich später in 
meinen beiden Wintervorlesungen über Kreisteilung und höhere Algebra 1956–​1958 die damals 
gewonnene Methode befolgt.”
	 15	 Dedekind’s version of Galois theory was also much superior to contemporary ones, e.g., those 
by Betti or Serret (or Galois himself). It is comparable to the (often celebrated) Jordan (1870), but 
may be again superior to it as a presentation of the theory as a whole.
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Heinrich Weber’s Lehrbuch der Algebra (1895) and in Dedekind’s Supplement XI 
to Dirichlet’s Vorlesungen über Zahlentheorie (1894).16

Two ingredients of Galois theory and Dedekind’s reception of it are of spe-
cial importance for our purposes: the group-​theoretic aspect of Galois’s original 
contribution, developed further by Dedekind; and the introduction of the con-
cept of a field. The latter was only implicit, thus still obscure, in Galois’s writings, 
while Dedekind made it explicit and very central. Concerning the former, in his 
1857–​58 lectures Dedekind presents very clearly a theory of finite groups, which 
he already understands in a general, abstract way. Thus he writes:

The following investigations are based solely on the two fundamental theorems 
just proven,17 together with the fact that the number of substitutions is finite. 
Hence its results will be valid equally for any domain with a finite number of 
elements, things, concepts θ θ θ, , ,...′ ′′  that admits of a composition θθ′ , from θ  
and ′θ , which is defined arbitrarily but so that θθ′  is again a member of that 
domain and this kind of composition obeys the laws expressed in both fun-
damental theorems. In many parts of mathematics, but especially in number 
theory and algebra, we repeatedly find examples of this theory; and the same 
methods of proof are valid there too. (Scharlau 1981, 63, emphasis added)18

The structuralist flavor of this passage is undeniable. It is also not hard to see that 
the two theorems or laws mentioned suffice to axiomatize finite group theory. 
Dedekind then adds the idea of partitioning a group by a normal subgroup, with 
an induced law of composition. All of this is quite remarkable for the 1850s.

Dedekind introduces the notion of a field initially under the label “rational 
domain” (rationales Gebiet). The insight that, when studying an algebraic equa-
tion, one has to pay attention to the domain of numbers in which its coefficients 

	 16	 One of the students attending the courses, Paul Bachmann, remarked about Dedekind: “In his 
calmly flowing, never halting presentation, [he was able to] present the theory with such exceptional 
clarity and simplicity that it was not hard for me to comprehend the material, then still quite foreign 
to me, despite its abstractness—​the concept of group played a big role” (our trans.). In the original 
German: Dedekind was able “in ruhig fliessendem, niemals stockenden Vortrage die Theorien mit 
so ausnehmender Klarheit und Einfachheit [vorzutragen], dass es mir nicht schwer wurde, den mir 
damals noch ganz fremden Gegenstand trotz seiner Abstraktheit—​der Gruppenbegriff spielte eine 
grosse Rolle—​verständnisvoll zu erfassen” (quoted in Landau 1917, 53).
	 17	 The theorems in question state the associativity of the product, and a law of simplification: from 
any two of the three equations ϕ = θ, ϕ′ = ′θ , ϕϕ′ = θθ′, the third follows.
	 18	 In the original German: “Die nun folgenden Untersuchungen beruhen lediglich auf den beiden 
soeben bewiesenen Fundamentalsätzen und darauf, dass die Anzahl der Substitutionen endlich 
ist: Die Resultate derselben werden deshalb genau ebenso für ein Gebiet von einer endlichen Anzahl 
von Elementen, Dingen, Begriffen θ θ θ, , , ...′ ′′  gelten, die eine irgendwie definierte Composition θθ′  
aus θ und ′θ  zulassen, in der Weise, dass θθ′  wieder ein Glied dieses Gebietes ist, and dass diese Art 
der Composition den Gesetzen gehorcht, welche in den beiden Fundamentalsätzen ausgesprochen 
sind. In vielen Theilen der Mathematik, namentlich aber in der Zahlentheorie und Algebra, finden 
sich fortwährend Beispiele zu dieser Theorie; dieselben Methoden der Beweise gelten hier wie dort.”
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live, together with the domain containing its roots (regarded as different from 
the first), was due to Galois. The way in which he introduced them was by con-
sidering rational functions of given quantities supposed to be “known a priori”; 
as he writes: “We shall call rational any quantity which can be expressed as a 
rational function of the coefficients of the equation and of a certain number 
of adjoined quantities arbitrarily agreed upon” (quoted in Toti Rigatelli 1996, 
119). Galois was not more explicit than that—​but it was now relatively easy for 
mathematicians like Dedekind, or Kronecker, to go further and explicitly define 
fields. This can be done in different ways, and it is instructive to compare the 
contrasting styles involved.

We mentioned earlier that Weierstrass wanted to remain close to a “pre-
modern”, concrete, and calculational style of mathematics. The same applies, all 
the more, to Kronecker. He essentially followed Galois in defining a “domain of 
rationality” (Rationalitätsbereich) as the totality of quantities that are rational 
functions of some given quantities ′ ′′ ′′′r r r, , , .... Kronecker was explicit in pre-
ferring this kind of (constructivist) approach, via explicit expressions, to its 
more abstract alternative. Dedekind, in contrast, chose to emphasize the link 
between the notion of a “field” (Körper)—​as he came to call it around 1870—​
and the “simplest arithmetic principles” (Dedekind 1930–​32, 3:400). Thus, he 
defined a field as a set of numbers “closed in itself ” under addition, subtraction, 
multiplication, and division. In doing so, he was directly avoiding any reliance 
on explicit expressions for numbers, since this would “spoil” (verunzieren) the 
presentation.

These two definitions are closely related but not exactly equivalent. 
Kronecker’s “domains of rationality” are always engendered by finitely many 
elements ′ ′′ ′′′r r r, , , ..., while Dedekind’s “rational domains” or “fields” do not 
face such a restriction. As a consequence, the totality of all algebraic numbers 
is a Dedekindian field, but not a Kroneckerian domain of rationality; similarly 
for the field ℝ of all real numbers, which was not accepted by Kronecker at all. 
Moreover, in Dedekind’s treatment of what he called a “finite field”, i.e., a finite 
extension of ℚ, he was not happy with the definition that it is the extension of 
ℚ obtained by adjoining a number α, i.e., the set ℚ [α] of all numbers x0 + x1α + 
x2α

2 + . . . + xn−1α
n−1 with coefficients xi ∈ ℚ. Instead, he preferred to call K a “fi-

nite field” over ℚ when there are only a finite number of subfields ′K  such that  
ℚ ⊆ ′K ⊆K. This is again a conceptual definition. It is also one that directly points 
to an invariant property, as Dedekind was well aware (see Ferreirós 1999, 94). 
And again, explicit equations or “forms of representation” are relegated to being 
auxiliary means.

The contrast between the very different methodologies involved—​Kronecker’s 
constructivist approach and the conceptual/​structural approach of Dedekind—​
became even clearer and more explicit in their divergent ways of dealing with 
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ideal theory (or the “theory of divisors” in Kronecker’s terminology). We will say 
more about the latter soon. But the style of Dedekind’s work is already visible in 
general traits of his approach to Galois theory. Note, in addition, that Dedekind 
focuses on the basic foundations of the whole theory, i.e., on what we would call 
its structural underpinnings. In doing so, he relegated the study of concrete 
solutions of equations to a secondary role, thereby also departing from Galois.19 
What he was mainly concerned about was a general understanding of the exist-
ence and nature of such solutions, not concrete processes of solution.

It remains to highlight one further aspect of the shift from Galois to Dedekind. 
From today’s point of view, the key moves in Galois theory are the following: (i) 
we associate with a given equation its Galois group G, so as to investigate its 
subgroups; (ii) we note that there is a correspondence between the subgroups 
of G and intermediate fields K (intermediate between the base field B, where the 
coefficients of the equation lie, and its extension E, containing all the roots of the 
equation); and (iii) we investigate the conditions for obtaining the splitting field 
E (as a finite extension of B) by studying the properties of the subgroups of G.20 
Galois introduced aspect (i), while (ii) and (iii) were added, and well understood, 
by Dedekind already in the 1850s. They also illustrate an element of mathemat-
ical structuralism we take to be central. Namely, a structuralist methodology 
often involves addressing problems about certain structures by studying their 
interrelations with other structures, perhaps of a different kind; and these structural 
correspondences may require the introduction of novel objects along the way.21 
We would like to highlight this aspect especially, since it is often ignored or at least 
underemphasized by philosophers of mathematics in discussing structuralism.

During the 1860s, a period in which Dedekind moved from Göttingen 
to Zürich for his first salaried position and then back to his hometown of 
Braunschweig as professor, he came to view the concept of a number field as the 
central object of study for algebra. This was consistent with the arithmetizing 
orientation he had encountered in Dirichlet’s work, which guided his research 
on pure mathematics from early on (like that of several other mathematicians 
at the time: Weierstrass, Cantor, etc.). To provide outsiders at least with a rough 
sketch of this conception of algebra, he wrote in 1873 that it deals with the “al-
gebraic [family] relations between numbers” or, better, that it is “the science of 
[family] relations between fields” (Dedekind 1930–​32, 3:409).22 In particular, the 

	 19	 Fragments of Galois’s writings that were oriented more toward this question included details 
not given by Dedekind (e.g., about irreducible equations of prime degree); cf. Scharlau (1981, 107).
	 20	 For a classic presentation of Galois theory along such lines, cf. Artin (1942).
	 21	 Concerning the latter, cf. the introduction of Riemann surfaces. Concerning the former, this 
amounts to studying relevant morphisms and functors (in category-​theoretic language).
	 22	 Our translation; in the original German:  The new algebra deals “von den algebraischen 
Verwandtschaften der Zahlen”; it is “die Wissenschaft von der Verwandtschaft der Körper.”
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properties of equations studied both traditionally and in Galois theory can be 
reconceived as properties of fields and their interrelations (base field, splitting 
field), as previously noted.

As Scharlau remarked (1981, 106), Dedekind was close to publishing the first 
textbook of “modern algebra”, with a careful redaction of his 1856–​58 notes on 
Galois theory. He failed to do so only because he found “an even more inter-
esting” field of work in algebraic number theory, to which he then directed most 
of his energies. The exact date of the redaction at issue is not fully clear, but it 
seems safe to assume that it must have been finished by 1860, if not earlier. In 
any case, the structure of Dedekind’s carefully written notes is distinctive and in-
structive. Its first section contains an investigation of the group-​theoretic results 
needed in Galois-​theoretic algebra; the concept of a (finite) group is isolated and 
investigated separately; and both are given an abstract, fully general presentation.

What is characteristic here, and a constant in Dedekind’s subsequent writings, 
is this: while investigating a given area of mathematics, he was always on the 
lookout for new concepts that might be useful; and when he became convinced 
that a certain new idea was needed, he would isolate it and develop its general 
theory separately. As another example, his 1877 presentation of ideal theory 
begins with a section entitled “Auxiliary Theorems from the Theory of Modules” 
(in which he introduces an antecedent of the more general 20th-​century con-
cept of R-​module, where R is a ring);23 and in all later presentations, the theory 
of modules forms a section of its own, rising to a rather central role in his 1894 
version of ideal theory.

Galois theory remained important for Dedekind’s work in algebraic number 
theory. His first approach to the latter was in terms of a combination of the prin-
ciples of Galois with a theory of “higher congruences” (Dedekind 1930–​32, 
3:397).24 Algebraic numbers are those numbers (real or complex) that are roots 
of a polynomial with rational coefficients, e.g., √–​3 (root of x2 + 3) or 1 5+
(root of x4 –​ 2x2 –​ 4). Now, in certain simple cases it was clear at the time which 
numbers should be regarded as algebraic integers in such contexts, e.g., numbers 
of the form a + b√3, with a, b integers.25 But in general the situation was not so 
clear. Both Dedekind and Kronecker considered this issue; and each of them was 
helped by previous acquaintance with the concept of a field or “rational domain”. 
Each realized that one has to go to the relevant field first, so as then to isolate the 
ring of integers in it (to use current terminology). As a consequence both hit on 
the right definition of an algebraic integer, namely a number (real or complex) 

	 23	 Dedekind’s “modules” are in fact ℤ-​modules, where ℤ is the usual ring of integers.
	 24	 Meant are polynomial congruences modulo a prime; cf. Haubrich (1992, chap. 8).
	 25	 Adjoining √3 to ℚ, we obtain a number-​field, denoted ℚ [√3], that is a finite extension of ℚ. The 
numbers specified are the integers corresponding to that field.
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that is the root of a monic polynomial with integral coefficients ( 1 5+  is an 
example).26

When studying the number theory of certain algebraic integers and building 
on the cases treated by Gauss earlier, Ernst Kummer had found the following 
problem: one often ends up in a situation in which prime integers do not conform 
to our expectations. Dedekind later gives this simple example: In the domain of 
integers ℤ [√–​5], the numbers 2, 3, 1 + √–​5 and 1 –​ √–​5 are indecomposable, 
i.e., they are not the product of two other integers of this kind. However, they do 
not behave like regular primes, for 2 · 3 = (1 + √–​5) · (1 –​ √–​5) = 6, i.e., unique 
decomposability of integers into prime factors fails.27 Kummer then had the bril-
liant idea of introducing “ideal numbers,” objects that do not exist in the given 
domain of integers, but that, once assumed, allow us to recover the principle of 
unique decomposition.

The main issue in algebraic number theory on which Dedekind was working, 
from the 1860s on, was to develop an analysis of all the domains of algebraic 
integers in which the fundamental principle of unique decomposition holds. The 
core question became how to define Kummer’s “ideal numbers” in a way that 
could be applied to any ring of integers and that was rigorous, e.g., by allowing 
us to introduce the product operation on them carefully and explicitly. Around 
1860 he worked with a theory based on “higher congruences,” as already men-
tioned, which led him close to that goal. However, he was not fully satisfied 
with this approach, both since it was not completely general and since it was 
not sufficiently conceptual. The key to his eventual success, 10 years later, was 
the extensionalization of the whole problem, in the sense of its analysis in set-​
theoretic terms. As he put it himself:

I did not arrive at a general theory . . . until I abandoned the old, more formal 
approach completely and replaced it by another, one that departs from the sim-
plest basic conception and fixes the eyes directly on the end. In that approach, 
new creations are not needed any more, like those of Kummer’s ideal number. It 
is entirely sufficient to consider systems of really existing numbers, which I call 
ideals. The power of this notion rests on its extreme simplicity. (Dedekind 1877, 
268, our trans.)28

	 26	 Monic means that the lead coefficient of the polynomial is 1, as happens in the case of x4 –​ 2x2 –​ 4.
	 27	 This refers to the Fundamental Theorem of number theory, due to Gauss, which holds for the 
regular integers (in Z) as well as for the Gaussian integers a + bi (with i = √–​1).
	 28	 Our translation; in the original French: “Je ne suit parvenu à la théorie générale . . . qu’après avoir 
entièrement abandonné l’ancienne marche plus formelle, et l’avoir remplacée par une autre partant 
de la conception fondamentale la plus simple, et fixant le regard immédiatement sur le but. Dans cette 
marche, je n’ai plus besoin d’aucune création nouvelle, comme celle du nombre idéal du Kummer, et il 
suffit complétement de la considération de ce système de nombres réellement existants, que j’appelle 
un idéal. La puissance de ce concept reposant sur son extrême simplicité.”
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That is to say, instead of considering an ideal number p in Kummer’s sense, which 
was only a fiction introduced formally, Dedekind considers the totality of alge-
braic integers in the given ring divisible by p—​which forms an infinite set. This 
set is called an ideal A. In some cases (those of principal ideals), it corresponds to 
a number in the ring that divides all the elements of A, but not in other cases. For 
Dedekind the task now became to find a simple definition of such ideals A; and 
he found that two conditions suffice: (i) sums and differences of elements of A 
are again elements of it; (ii) the products of elements of A with any integers in the 
ring are again in A. His new definition worked fully generally; and he proceeded 
to treat ideals (infinite sets) as if they were simple numbers, operating on them 
as “new arithmetical elements”. Doing so allowed him to define the product of 
ideals; it also made possible the proof of the fundamental theorem for any ring of 
algebraic integers.

We will not go into further details concerning Dedekind’s theory of ideals, 
since it has been analyzed extensively elsewhere.29 But two general observations 
are worth adding in our context. First, the downside of Dedekind’s success with 
his conceptual, set-​theoretic, and structuralist techniques was that others at the 
time were puzzled by his very “abstract” moves. Those moves were natural for 
him, but foreign to most mathematicians of that generation. Consequently, his 
ideal theory was not accepted until the 1890s; and even then, David Hilbert, 
Adolf Hurwitz, and others preferred more formal approaches.30 As late as 1917, 
Edmund Landau would remark that in a “modern lecture” aiming to prove the 
main results, without gaps but briefly, one would prefer Hurwitz’s approach, and 
“Dedekind’s definition of an ideal is not used as basic any more [wird kaum noch 
zu Grunde gelegt]” (Landau 1917, 59).

The merit of Hurwitz’s more formalistic way was that it avoided “the long 
chain of classical concepts and theorems of Dedekind’s, about field permutations 
[automorphisms], modules, modules of rang n, etc.” (Landau 1917, 59). 
Dedekind published a paper on methodology (1895) in which he explained why 
his self-​contained approach was to be preferred to the Hilbert-​Hurwitz way of 
relying on established algebraic theories. But his structuralist methodology, 
exemplified by his contributions to Galois theory and algebraic number theory, 
only came into vogue in the 1920s and later, with works by Emmy Noether, Emil 
Artin, B.  L.  van der Waerden, etc.31 Thus the “modern algebra” of the 1920s 
would take Dedekind’s side—​whence Noether’s well-​known phrase, “It’s all in 
Dedekind already.”

	 29	 Cf. Avigad (2006), earlier Edwards (1980) and Ferreirós (1999, 95–​107).
	 30	 Hurvitz took inspiration from Kronecker’s use of polynomial rings and the “method of 
indeterminates” (Methode der Unbestimmten). Hilbert followed that style in his famous Zahlbericht, 
which made it much less structuralist than Dedekind’s work (see the introduction to Hilbert 
[1897] 1998).
	 31	 Cf. Corry (2004), as well as the essays on Noether, Bourbaki, and Mac Lane in this volume.
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The second general observation is that similar “abstract” moves, which again 
elicited negative reactions, characterize Dedekind’s contributions to more foun-
dational issues, as we will see next. The latter also led him to a kind of logicism.

3.  The Real Numbers: From Arithmetization 
to Dedekindian Logicism

Early in the 20th century, Charles Sanders Peirce called Dedekind, very aptly, 
a “philosophical mathematician.” Or to quote him more fully: “The philosoph-
ical mathematician, Dr. Richard Dedekind, holds mathematics to be a branch of 
logic” (Peirce [1902] 2010, 32). Dedekind’s logicism was developed in the con-
text of reconceptualizing first the real and then the natural numbers. But it is 
illuminating to go back further, to Dedekind’s earliest foundational reflections.

Dedekind’s is a singular case in the history of mathematics, in our judg-
ment, because of the intensity and the success with which he devoted himself to 
reshaping his discipline. Indeed, he worked on a systematic reshaping of all the 
“pure mathematics” of his time—​arithmetic, algebra, analysis—​a fact that has 
not been recognized enough so far.32 In doing so, he set the stage for various 
20th-​century developments—​by being a key precursor of Hilbert, Bourbaki, 
and, above all, “modern algebra”. From the beginning of his career, Dedekind 
was deeply concerned about foundational issues in mathematics as well. In fact, 
foundational and more mainstream issues were intimately intertwined for him.

Dedekind’s interest in foundations is already apparent in his habilitation 
lecture, whose topic was “the introduction of new functions in mathematics” 
(Dedekind 1854). In this lecture, he proposed a genetic viewpoint on the number 
systems, one according to which “the requirement of the unrestricted possibility 
of carrying through the indirect or inverse operations [subtraction, division, 
etc.] leads with necessity to the creation of new classes of numbers” (quoted in 
Ferreirós 1999, 218). However, the set-​theoretic considerations typical of his 
later writings were not present in this discussion yet, which focused on how to 
redefine such operations rigorously and non-​arbitrarily in expanded domains 
(e.g., how to extend the arithmetic operations from the positive and nega-
tive integers to the rational numbers). On the other hand, it is noteworthy that 
Dedekind speaks of new kinds of numbers as our “creations” already in this con-
text. He also believed that the main difficulties in systematizing arithmetic begin 
with the imaginary numbers (Dedekind 1930–​32, 3:434).

	 32	 For the rise of “pure mathematics” in this sense, including Gauss’s role, cf. Ferreirós (2007).
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Interestingly, the latter is an issue to which he would never contribute. The 
reason seems to be that he found a completely satisfactory solution just a few 
years later, while reading W. R. Hamilton.33 Here the ordered pair <a, b> is not 
yet conceived as a set—​but we are moving in that direction. In all likelihood, 
Dedekind was completely satisfied with this reduction of complex arithmetic to 
the arithmetic of the real numbers. And the same move became then a central 
part of his foundational project: to reduce expanded number-​domains, together 
with their operations and laws, to simpler ones. The quintessential example—​
and a key advancement for the foundations of mathematics—​can be found al-
ready in 1858, with Dedekind’s new approach to the real numbers. But its results 
were only published in 1872, in his well-​known essay Stetigkeit und irrationale 
Zahlen.34

As the details of this episode are again well known (or easy to find in the lit-
erature),35 we will only highlight the core ideas. Dedekind starts by assuming 
that the arithmetic of the rational numbers ℚ (an ordered field) has been sat-
isfactorily developed. His goal is to introduce “new arithmetic elements”—​the 
irrationals—​in one step, as a whole system. By only presupposing ℚ, he thus 
reduces the newly created numbers (and their operations) to the rational num-
bers. In particular, Dedekind proves all the fundamental properties of the new 
number domain ℝ based on the operations on and properties of the rationals: his 
1872 essay contains a proof that ℝ is an ordered field with the (topological) pro-
perty of continuity or, in later terminology, line-​completeness. An essential pro-
viso, however, is this: Dedekind needs to regard as unproblematic that we can 
work set-​theoretically with the totality of rational numbers—​the reduction of ℝ 
to ℚ is by set-​theoretic means.

The key in Dedekind’s approach to the real numbers is his concept of a cut: a 
Dedekind-​cut <A1, A2> on ℚ is a pair of (non-​empty) sets A1, A2 such that 
each element of A1 is less than any element of A2, i.e., ∀x ∈ A1 ∀y ∈ A2 (x < y). 
Crucially for him, cuts on the system of rational numbers are a “purely arith-
metical phenomenon” (Dedekind [1888a] 1963, 35–​36, 40). By presupposing as  
given also the totality of all Dedekind-​cuts for the number-​system ℚ, we have 

	 33	 Cf. Ferreirós (1999, 220–​221). Hamilton, in the introduction to Lectures on Quaternions (1853), 
defined the complex numbers a + bi as ordered pairs of real numbers <a, b>, including corresponding 
operations. In manuscripts by Dedekind from the 1860s, perhaps earlier, he defines the integers as 
pairs of natural numbers and the rationals as pairs of integers; cf. Sieg and Schlimm (2005).
	 34	 Dedekind started teaching the calculus at the University of Zürich in 1858. It is in that context 
that he came up with his theory of cuts; cf. Dedekind (1872, 1), and Dedekind (1888a, 36). (In the 
English translation of the latter, 1853 is wrongly given as the relevant year).
	 35	 Besides the original Dedekind (1872), see, e.g., Courant and Robbins (1996, 71–​72), Ebbinghaus 
et al. (1983, 30–​31), or earlier Landau (1930, chap. 3). Dedekind was not the only mathematician 
working on this topic at the time, as mentioned by these writers; but his approach to it was quite 
original.
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essentially introduced the real number system in its entirety—​some cuts will 
correspond to rational numbers, while others will not, e.g., the cut A1 = {x: x2 
< 3}, A2 = {x: x2 > 3}. It is by means of the latter that the irrationals numbers are 
introduced.

Dedekind’s other central contribution in this context is his masterful defini-
tion of continuity: a set of elements S endowed with an ordering < is continuous 
if and only if, given a corresponding cut of its elements into two (non-​empty) 
classes C1 and C2 (as defined previously), there exists one and only one element 
c0 of S that “produces” it. (This definition presupposes implicitly that S is a 
densely ordered set, a point that gave rise to some debate and misunderstandings 
at the time. Also relevant is the fact that Dedekind continuity implies the 
Archimedean property.)36 A straight line in geometry, with an ordering of its 
points left-​and-​right, intuitively has the mentioned property: for any cut, there 
is a point that produces it.37 As Dedekind established explicitly, the system of all 
cuts on ℚ has the property too.

Using the concept of a field isomorphism—​present already in Dirichlet 
(1871), a year before the publication of Stetigkeit und irrationale Zahlen38—​his 
procedure for introducing the system of real numbers can then be described as 
follows: ℝ is defined as a novel number system isomorphic to the system of cuts 
on ℚ. More specifically, we “create new numbers” corresponding to all the cuts, 
including those not produced by rational numbers, and together these form 
the system ℝ. The arithmetic properties of the real numbers, thus introduced, 
are derived rigorously from the arithmetic of the rational numbers; similarly 
for a linear ordering on ℝ, induced by that of ℚ. And ℝ can now be shown to 
be continuous in the precise sense introduced earlier (just like the system of 
cuts on ℚ).

As emphasized already, (infinitary) set theory is functioning as a key back-
ground assumption in Dedekind’s foundational work (also in his work in al-
gebra and algebraic number theory). But how did Dedekind understand its 
status? Consider again his view that cuts are a “purely arithmetic phenomenon.” 
Underlying it is the assumption that set theory is pure logic; and hence, set-​
theoretic constructions on ℚ are pure arithmetic, since we are allowed to em-
ploy all of logic’s resources in it. It is on this basis that the phenomenon of cuts  

	 36	 This says that any positive number r, multiplied by itself n times, will be greater than any other 
number s. The Archimedean property excludes infinitesimal numbers.
	 37	 In the introduction to Dedekind (1888a) he points out, however, that we can conceive of a geo-
metric space that does not have this property, e.g., A3 where A is the set of algebraic numbers. This is 
relevant for evaluating Euclid’s traditional approach to geometry.
	 38	 The label “isomophism” is not Dedekind’s, however. In 1871, he spoke of a field substitution 
(Substitution) instead. The term “isomorphism” was employed early on in crystallography; it was also 
used in Jordan (1870, 56) for groups. Compare http://​jeff560.tripod.com/​i.html.
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appears “in its logical purity” according to him ([1888a] 1963, 40). Notice also, 
once again, that together with the set ℚ of rational numbers Dedekind assumes 
as given the totality of all cuts on ℚ—​a strong assumption equivalent to (an ap-
plication of) Zermelo’s power set axiom.

While controversial today, the idea that the concept of set is purely logical 
was common during Dedekind’s time, e.g., in the tradition of the algebra of 
logic from Boole onward (cf. Ferreirós 1996; 1999, 47–​53). Dedekind adopted 
this view early on, it seems, and it formed a key ingredient in his promotion of 
an early form of logicism. Already in a manuscript drafted in 1872, the same year 
in which his essay on the real numbers was published, he introduced sets in ge-
neral as follows: “A thing is any object of our thought. . . . A system or collection 
[Inbegriff] S of things is determined when for any thing it is possible to judge 
whether it belongs to the system or not” (Dugac 1976, 293, our trans.). And 
in 1887, while preparing the final version of his essay on the natural numbers, 
he noted that the theory of sets, or “systems of elements,” is “logic” (quoted in 
Ferreirós 1999, 225).

Because Dedekind regarded set theory as pure logic, the fact that the theory 
of the real numbers can be reduced to the arithmetic of the rational numbers by 
set-​theoretic means implied for him that the notion of the continuum does not 
have to be seen as grounded in perception or geometric intuition. As he puts it, 
the number concept is “entirely independent of the intuitions of space and time” 
(Dedekind [1888a], 1963, 31); and the creation of the “pure, continuous number 
domain” (ℝ) is not dependent on the notion of magnitude. Instead, its creation 
takes the form of “a finite system of simple steps of thought” (340), and we get a 
“purely logical construction” (Aufbau) of arithmetic—​in the broad sense, from ℕ 
to ℝ, or even to the field ℂ of complex numbers.

Clearly the set-​theoretic reduction of the irrationals to more elementary 
number systems was a crucial step for Dedekind. It also seems that he was the 
first mathematician to consciously avoid reliance on the traditional notion of 
magnitude in this context (cf. Epple 2003). A further reason for this avoidance 
was a requirement of purity. As he wrote: “I demand that arithmetic shall be devel-
oped out of itself ” (Dedekind [1872] 1963, 10) and, more particularly, “without 
any admixture of foreign ideas (such as that of measurable magnitudes)” 
([1888a]‌ 1963 35, trans. modified). Again, Dedekind’s initial goal—​delineated 
already in 1854, clarified while reading Hamilton, and encouraged by Dirichlet’s 
approach—​was to develop the complex number system starting from the natural 
numbers. Other contributors to “arithmetization,” like Weierstrass, shared this 
goal; but unlike them, Dedekind realized this could be done with the help of set 
theory alone. Arithmetic is thus shown to be an outgrowth of the “pure laws of 
thought” (Dedekind [1882] 1963, 31).
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Dedekind’s version of logicism was highly influential during the 1890s—​
much more so than Frege’s—​by affecting authors such as Schröder and Hilbert.39 
The Peirce quotation given at the beginning of this section reflects this state of 
affairs. On the other hand, Dedekind’s talk of “creation” has often been taken to 
throw doubts on the alleged logical nature of his point of view. And it has to be 
conceded that his way of expressing things sometimes runs the risk of conflating 
logic and psychology.40 Was he then guilty of a problematic form of psycholo-
gism (as later criticized by Frege and Husserl)?41 Dedekind was always convinced 
that mathematical objects and concepts are our “creations”—​in his eyes, the pro-
totype objects are numbers, and these are “free creations [freie Schöpfungen] of 
the human mind” ([1888a] 1963, 35; [1872] 1963, 4; also 1854). This was perhaps 
his most persistent philosophical conviction, from 1854 until his death.42 Yet 
such talk about “the human mind” does not have to be understood in a subjec-
tivist sense, as psychologistic thinkers are usually assumed to do. Instead, it can 
be interpreted in a Kantian or neo-​Kantian way; it can thus be seen as a reference 
to our collective “mind” and its products, thus to human cognition and culture.43 
And as we will see in the next section, by 1888 the “creation” of the natural num-
bers consists merely in a step of abstraction from a more concrete “simply infinite 
set,” so that strictly logico-​mathematical results determine every single aspect of 
arithmetic.44

One final observation concerning the real numbers: how Dedekind proceeds 
in this context is closely related to his approach to ideal theory—​methodologically 
the two are of a piece. Indeed, in a French essay of 1877 he explicitly compares 
the two cases (Dedekind 1877, 268–​269). In both, we introduce new “arithmet-
ical elements” in the progressive expansion of the number systems (although 
Dedekind does not “create” new objects corresponding to his set-​theoretic 
ideals). And in both he is guided by the following desiderata: (1) “Arithmetic 
ought to be developed out of itself ” ([1872] 1963, 10, trans. modified), thus 
avoiding any “foreign elements” and “auxiliary means” (magnitudes in the case 
of the reals, polynomials or other specific representations in the case of ideals). 

	 39	 Cf. Ferreirós (2009), later also Reck (2013a).
	 40	 The same happens in Schröder’s logical writings. And traces of it are still visible in Hilbert, e.g., 
when he writes: “We think [wir denken] of three sets [Systeme] of things” (Hilbert 1930, 2); similarly 
in his paper on the real numbers: “We think of a set of things [Wir denken ein System von Dingen]” 
(Hilbert 1900, 181). Notice the use of Dedekind’s terminology in both cases.
	 41	 Cf. Reck (2013b) for related charges, as well as Dedekind’s more general reception.
	 42	 In a letter to Weber of 1888, he wrote that we have the right to claim for ourselves such a creative 
power: “We are of divine lineage and there is no doubt that we possess creative power, not only in ma-
terial things (railways, telegraphs), but quite specially in mental things” (Dedekind 1888b).
	 43	 Cf. the use of Geisteswissenschaften in German, later often translated as “cultural sciences.” 
Many 19th-​century philosophers were intensely concerned about them.
	 44	 Note also that, despite his frequent talk of “construction,” Dedekind’s basic tendency is not at all 
constructivistic (in the technical sense). As his theory of the real numbers shows, it is classical and 
objectivistic, just like Frege’s. More on the underlying set theory in the next section.
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(2) When new elements are introduced, they must be defined in terms of opera-
tions and laws found in the previously given domains (the arithmetic of ℂ in the 
case of ideals).45 (3) The new definitions must be completely general, applying 
“invariantly” to all relevant cases (we should not define some irrationals as roots, 
others as logarithms, etc.; we should not employ different means when deter-
mining ideal factors in various cases, as Kummer had done). (4) The definitions 
must offer a solid foundation for the deductive structure of the whole theory; 
they ought to be not just sound definitions, but the basis for rigorous proofs for 
all relevant theorems.

These four desiderata are closely related to Dedekind’s mathematical struc-
turalism, especially (3) and (4). Moreover, they guide his approach to the natural 
numbers too, as we will see in the next section.

4.  Natural Numbers, Sets, and 
Functions: Logicism Systematized

While working on Galois theory and algebraic number theory, Dedekind distills 
out the core concepts of group and field, so as then to investigate them further 
abstractly and generally (similarly for the concepts of ideal, module, and, in later 
work, lattice). When developing his theory of the real numbers, his approach is 
similarly conceptual. The concept of field is again crucial in this context, but also 
that of continuity, defined in terms of cuts. Importantly, these concepts all in-
volve global properties, which affects entire systems of objects—​they are “struc-
tural” in that sense. We noted earlier that mathematical structuralism typically 
also involves the study of interrelations between such systems. This too is true for 
Dedekind’s approach to the reals. Not only is an isomorphism (for ordered fields) 
between the system of cuts and that of the real numbers involved, at least im-
plicitly;46 his domain extension from ℚ to ℝ also brings with it a corresponding 
homomorphism, as he is well aware. And while more heuristic than formally rig-
orous, his comparison of the reals with the intuitive geometric line involves such 
an interrelation too.

Dedekind’s approach to the natural numbers in his 1888 essay displays the same 
general features; but there are also some noteworthy changes. In his approach 

	 45	 This requirement was particularly critical at the time. Today we usually treat number systems 
axiomatically, but this is done (explicitly or implicitly) within the framework of set theory.
	 46	 Similarly, Dedekind acknowledges an isomorphism between his system of cuts and the reals 
constructed via (equivalence classes of) Cauchy sequences, as Cantor, Méray, etc. proposed. This 
is implicit in his remark (letter to Lipschitz, July 27, 1876) that Cantor and Heine have achieved the 
same goals as himself (reduction to the rational numbers, establishment of the continuity property), 
and that their expositions are different “only externally”. See also Sieg and Schlimm (2017).
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to algebra, algebraic number theory, and analysis, Dedekind always deals with 
subsets of the complex numbers (and related operations and functions). When 
dealing with the natural numbers, in contrast, he starts to consider sets (Systeme) 
of objects in complete generality. As he writes: “It very frequently happens that 
different things . . . can be considered from a common point of view, can be asso-
ciated in the mind, and we say that they form a system ′′S  . Moreover, the concept 
of thing involved here is very inclusive: “I understand by thing every object of 
our thought” (Dedekind [1888a] 1963, 44). The other crucial aspect about sets 
S is that their identity is now understood extensionally—​all that matters is that 
“it is determined with respect to every thing whether it is an element of S or not” 
([1988a] 1963, 45). In a footnote Dedekind adds that a decision procedure is not 
required in this connection, thereby distancing himself from Kronecker. Clearly 
his notion of set is classical, not constructivist.

Parallel to this generalized notion of set, Dedekind introduces a generalized 
notion of function—​or “mapping” (Abbildung). In his own words again: “By a 
mapping Φ of a system S we understand a law according to which to every deter-
minate element s of S there belongs a determinate thing called the image of s and 
denoted Φ( )s ” (Dedekind [1888a] 1963, 50, trans. modified).47 As Dedekind’s 
use of the term “law” in this passage indicates, he is consciously building on 
Dirichlet’s notion of function, while also broadening it even further (from an 
arbitrary functional correlation between sets of numbers to one between any two 
sets of objects). And unlike in axiomatic set theory, he does not reduce functions 
to sets of tuples; for him the notions of set and function are equally basic. Indeed, 
both belong to pure logic, in line with our earlier discussion. At a few points, 
Dedekind even seems to suggest that the notion of function or mapping is the 
really basic one.48

What Dedekind proposes in his 1888 essay is, thus, a general logicist frame-
work in which to reconstruct arithmetic (from ℂ all the way down). However, he 
does not formulate basic laws or axioms for it (as Frege was quick to point out).49 
Instead, he applies it in his reconstruction of the natural number sequence, 
i.e., in reducing the latter to logic. The core concept here is that of a simply in-
finite system (einfach unendliches System) which involves the concept of infinity 
for sets. Famously, a set S is (Dedekind-​)infinite if it can be mapped 1-​1 onto a 
proper subset of itself (Dedekind [188a] 1963, 63). A set N is simply infinite if, 

	 47	 In W. W. Beman’s translation (1963) of Dedekind (1888), Abbildung is rendered as “transforma-
tion,” which seems awkward and is less appropriate than “mapping”.
	 48	 As Dedekind writes, he was led to it by scrutinizing counting and numbers. It constitutes “an 
ability without which no thinking is possible”; and in particular, the entire science of numbers is built 
“upon this unique and in any event absolutely indispensable foundation” (Dedekind 1963, 32). He 
does not write anything as strong about the notion of set; compare Ferreirós (2017).
	 49	 Cf. Reck (2019), also for Dedekind’s relation to Frege more generally.
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in effect, there is an element a in N and a 1-​1 function f on N such that N = {a, 
f(a), f(f(a)), . . .}. More rigorously and formally, Dedekind’s definition of being 
simply infinite involves four conditions, including one that uses the abstract con-
cept of a “chain” to express a minimality condition on the set N, thus guaran-
teeing induction for simply infinite systems. 50 It is not hard to see that these four 
conditions constitute a (more abstract) variant of the Peano axioms—​or better, 
the Dedekind-​Peano axioms.

Dedekind’s reconstruction of the natural numbers is again well known, so that 
we will only survey some highlights here (cf. Reck 2003). Important for him is to 
establish both the existence of a simply infinite system and (what we would call) 
the categoricity of that notion—​the fact that any two simple infinities are isomor-
phic. In a well-​known letter to Keferstein (Dedekind 1890), he clarifies that the 
former is meant to ensure the consistency of the notion of simple infinity. And 
with his categoricity theorem, Dedekind makes explicit an aspect not present yet 
in his earlier treatment of the reals. (Any two continuous ordered fields are iso-
morphic too, but this was not proved in 1872.) In addition, categoricity implies, 
as noted in passing, that exactly the same theorems hold for all simply infinite 
systems: i.e., the Dedekind-​Peano axioms are semantically complete.51 Finally, a 
careful justification for proofs by mathematical induction and for definitions by 
recursion is provided.

There are two controversial parts of Dedekind’s 1888 essay. First, his 
(attempted) proof for the existence of a simply infinite system, which proceeds 
via arguing that an infinite system exists, relies on a universal set, which makes 
it fall prey to Russell’s antinomy.52 Second, Dedekind includes the following ad-
ditional step not mentioned so far: start with a simply infinite system (any of 
them will do, since they are all isomorphic); then “neglect the special character 
of the elements, simply retaining their distinguishability and taking into account 
only the relations to one another” ([1888a] 1963, 68) It is exactly at this point in 
his essay that Dedekind adds: “With reference to this freeing the elements from 
every other content (abstraction) we are justified in calling numbers a free crea-
tion of the human mind” (68, emphasis added). However, it is not obvious how 
to interpret Dedekind’s appeal to “abstraction” and “free creation,” especially in a 
non-​psychologistic way.

	 50	 Modernizing his notation slightly, the four conditions are the following: Consider a set S and a 
subset N of S (possibly equal to S). N is said to be simply infinite if there exists a function f on S and an 
element a in N such that (i) f maps N into itself; (ii) N is the minimal closure of {a} under f in S; (iii) 
a is not in the image of N under f; and (iv) f is a 1-​1 function. (Dedekind uses the notion of “chain” in 
(ii), to capture what it means to be the minimal closure of a set under a function.)
	 51	 Compare Awodey and Reck (2002a), also for a discussion of the history of these notions.
	 52	 Dedekind appeals to “the totality of things that can be objects of my thought” (1888a, 64). This 
may again sound psychologistic, but is meant objectively; cf. Klev (2018).
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In correspondence from the same year, Dedekind makes clear that he takes his 
introduction of “the natural numbers” in his 1888 essay to be exactly parallel to 
his introduction of “the real numbers” in 1872, although the “abstraction” aspect 
has now been made more explicit (cf. Dedekind 1888b). Also, in both cases all 
resulting theorems are determined—​entirely objectively—​by the basic concepts 
involved, in the sense that it is determined what holds for any system of objects 
falling under them.53 Beyond that, there are two interpretations of “Dedekind 
abstraction” that have been proposed in the literature. According to the first, 
a novel simply infinite system is introduced by it, a system isomorphic to but 
not identical with the one we started with and, in addition, determined “purely 
structurally.” According to the second interpretation, such abstraction merely 
amounts to treating the original simple infinity in a certain way, namely by iden-
tifying it pragmatically as “the natural numbers,” with the proviso that any other 
simple infinity could play the same role. 54 The case of the reals, or of continuous 
ordered fields, is parallel.

This essay is not the place to decide which interpretation of “Dedekind ab-
straction” is more defensible.55 But with either one of them, we have arrived at a 
structuralist conception of mathematical objects that complements mathemat-
ical structuralism in the methodological sense; the latter leads to the former in 
Dedekind’s writings, i.e., mathematical structuralism to philosophical struc-
turalism. Turning our attention back to mathematical structuralism, note that, 
besides Dedekind’s continued “conceptualism”, the consideration of structure-​
preserving mappings (morphisms) between different systems of objects has be-
come central in his foundational writings. This is most explicit in the categoricity 
theorem from his 1888 essay, which involves isomorphisms between any 
two simply infinite systems. A more implicit case is the treatment of recursive 
definitions and proofs by induction in it, which relates the natural number se-
quence to other recursively generated systems in terms of corresponding 
homomorphisms.56

By 1888, Dedekind has come to rely on a general framework of sets and 
functions for his mathematical structuralism. But as already noted, he does not 
formulate basic laws or axioms for it. There are some indications that implicitly 

	 53	 As Dedekind writes: “The relations or laws, which are derived entirely from the conditions α, β, 
γ, δ in (71) are therefore always the same in all ordered simply infinite systems” (1963, 68). (For those 
conditions, see note 50.)
	 54	 The first interpretation amounts to reading Dedekind as a “non-​eliminative structuralist,” while 
the second amounts to reading him in an “eliminative” way; cf. Reck and Price (2000).
	 55	 A decision based on Dedekind (1888a) alone may be impossible; both sides can appeal to evi-
dence in it. For the first reading, cf. Reck (2003); for the second, Sieg and Morris (2018). Dedekind 
may also have moved from one position to the other, i.e., changed his mind in this connection.
	 56	 From the perspective of category theory, Dedekind’s procedure points toward thinking of N in 
terms of a corresponding universal mapping property; cf. McLarty (1993).
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he works with a naive comprehension principle for sets.57 Because of Russell’s 
and related antinomies, this is no longer attractive to us. What one can still 
do is to carefully reconstruct which more restricted set-​formation principles 
Dedekind actually needs for his overall project. This seems, in fact, to be ex-
actly what Zermelo did while formulating his axiomatization for set theory in 
1908. In retrospect, what Dedekind needs is the following: the power set axiom 
and an axiom of infinity;58 principles for set-​theoretic unions, intersections, or 
subsets more generally (an axiom of separation); some way of introducing or 
reconstructing n-​tuples; and less obviously, the axiom of choice and the axiom of 
replacement (missed by Zermelo originally).

As Dedekind’s work brings out the importance of all these axioms, it makes 
sense that Zermelo, who knew the history well, considered modern set theory 
to have been “created by Cantor and Dedekind” (quoted in Ferreirós 1999, xii 
and 320). Today set theory is no longer considered to be “logic,” however, among 
others because in its axiomatic form it is a specific mathematical theory.

5.  Concluding Remarks

Our main concern in this essay has been Dedekind’s mathematical structur-
alism, understood as a methodology or a style of doing mathematics. We can 
now summarize our main results briefly. From his teachers and mentors in 
Göttingen, especially Dirichlet and Riemann, Dedekind inherited a conceptual 
way of doing mathematics. This involves replacing complicated calculations by 
more transparent deductions from basic concepts. Both Dedekind’s mainstream 
work in mathematics, such as his celebrated ideal theory, and his more founda-
tional writings reflect that influence. Thus, he distilled out as central the concepts 
of group, field, continuity, infinity, and simple infinity. A related and constant as-
pect in his work is the attempt to characterize whole systems of objects through 
global properties.

From early on, Dedekind also pursued the program of the arithmetization of 
analysis—​in the broad sense, from the complex numbers all the way down to 
the naturals. A decisive triumph came in 1858, with Dedekind’s reductive treat-
ment of the real numbers. From the 1870s on, he added a reduction of the nat-
ural numbers to a general theory of sets and mappings. This led to an early form 
of logicism, since he conceived of set theory as a central part of logic; i.e., the 

	 57	 Or equivalently, he might work with a “dichotomy conception” where any division of the uni-
verse of objects into two parts creates corresponding sets; cf. Ferreirós (2017).
	 58	 Zermelo’s axiom of infinity was modeled on Dedekind’s controversial “proof ”; he even called it 
“Dedekind’s axiom.” Its standard descendant, modified by von Neumann, still shows this origin.
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reduction was ultimately to “the laws of thought.” Moreover, in Dedekind’s works 
there is a resolute reliance on the actual infinite—​cuts, ideals, etc. are infinite sets. 
And while problematic in some respects, his attempt to execute a logicist pro-
gram had a decisive effect on the rise of axiomatic set theory in the 20th century.

Its conceptualist and set-​theoretic aspects are central ingredients in 
Dedekind’s mathematical structuralism. But we emphasized another character-
istic aspect that goes beyond both. This is the method of studying systems or 
structures with respect to their interrelations with other kinds of structures, 
and in particular, corresponding morphisms. A historically significant example, 
particularly for Dedekind, was Galois theory. As reconceived by him, in Galois 
theory we associate equations with certain field extensions, and we then study 
how to obtain those extensions in terms of the associated Galois group (intro-
duced as a group of morphisms from the field to itself, i.e., automorphisms). 
Dedekind’s more foundational works provide further examples, especially in 
terms of isomorphisms, such as his celebrated theorem that the Dedekind-​Peano 
axioms are categorical, but also various homomorphism results involving the nat-
ural and real numbers.

As we saw, Dedekind connected his mathematical or methodological struc-
turalism with a structuralist conception of mathematical objects, i.e., a form of 
philosophical structuralism (and the latter too involves categoricity results cru-
cially). Central here was Dedekind’s long-​held view that mathematical objects, 
and paradigmatically numbers, are “free creations of the human mind,” obtained 
by a kind of “abstraction” from more concrete systems of objects. With respect 
to Dedekind’s logicism and his philosophical structuralism we acknowledged 
some controversial features. More can, and should, be said about both of them 
in the end. But we would like to conclude this essay with an observation of a 
different kind.

Dedekind’s methodology was not static—​it kept evolving. In fact, starting in 
the 1880s one can discern a subtle shift in his works, from focusing primarily 
on sets and set-​theoretic constructions to taking functions and map-​theoretic 
constructions as more fundamental (cf. Ferreirós 2017). However, there are only 
some hints to this effect in his writings, and officially both sets and functions 
remain basic. In addition, it was the aspects of his mathematical structuralism 
that we highlighted earlier with which he was most influential—​on figures from 
Hilbert and Noether to Zermelo and Bourbaki. Finally, these aspects remain 
largely intact if one pushes mathematics further in a morphism-​theoretic direc-
tion, as evidenced by 20th-​century category theory and related developments. 59

	 59	 Cf. Corry (2004), Awodey and Reck (2002b), and the essay on Mac Lane in this volume.
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4
 Pasch’s Empiricism 

as Methodological Structuralism
Dirk Schlimm

1.  Introduction

A fundamental tension in philosophy of mathematics, one that goes back at 
least to Plato’s Meno, is that between a view of mathematical entities as being ab-
stract in nature and a view of knowledge as being of concrete (or causal) origin. 
Considered independently, each view can be quite appealing, but their combi-
nation raises the serious difficulty of giving a coherent account of mathematical 
knowledge. Abandoning, or at least substantially weakening, one of these views 
is a common move to resolve this dilemma. One thinker who resisted the urge to 
give up his conviction of the empirical origins of human knowledge was Moritz 
Pasch (1848–​1930).

Throughout his life Pasch referred to his own philosophical outlook as em-
piricist. When he proclaimed in the introduction to his Vorlesungen über neuere 
Geometrie that “geometry is seen as nothing else but a part of natural science” 
(Pasch 1882b, 3), he meant this to be understood literally, in the sense that mathe-
matical theories are based on empirical concepts. Geometric points, for example, 
are introduced at the beginning of his book as those physical objects that cannot 
be divided any further within the limits of what we can observe. Likewise, Pasch 
rejects the common demand that geometric lines should be imagined as being 
infinitely extended, since this precludes them from being (at least in principle) 
perceptible objects. Instead, he considers finitely extended line segments to be 
among the primitive objects of geometry (Pasch 1882b, 4). For him, all mathe-
matical propositions, i.e., not only those of geometry, are ultimately formulated 
on the basis of observations of physical objects, and he maintains that we can 
understand the basic mathematical terms only by indicating appropriate objects 
(“den Hinweis auf geeignete Naturobjecte,” Pasch 1882b, 16).1 The further devel-
opment of mathematics then proceeds through the deduction of propositions 

	 1	 In this context, one also speaks of “ostensive definitions” of the primitive terms.
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and the definition of new concepts, and both of these processes sustain the epis-
temological status of their starting points.

Pasch’s empiricist view of mathematics appears to be at odds with one of the 
basic tenets of structuralism, according to which mathematics is about purely 
abstract structures. Nevertheless, I will argue in the remainder of this chapter 
that Pasch’s mathematical work drove him to adopt an approach that can justly 
be called “structuralist,” in spite of the fact that his deeply held philosophical 
convictions seem to be incompatible with it. In order to do this, I will begin with 
discussing the notion of “methodological structuralism” (Reck 2003) and pro-
pose two minimal conditions that an approach has to satisfy to qualify as being 
structuralist (section 2). I will then look in more detail at Pasch’s work in geom-
etry (section 3) and the foundations of arithmetic (section 4) to ascertain that it 
does indeed satisfy the proposed conditions for minimal methodological struc-
turalism. Thus, I conclude that Pasch’s approach has its rightful place in an ac-
count of the prehistory of mathematical structuralism.

2.  Minimal Methodological Structuralism

The notion of “methodological structuralism” was introduced by Reck (2003, 
371) in order to distinguish the more ontologically oriented views on the na-
ture of mathematics, like those expressed by Resnik (1997) and Shapiro (1997), 
from a certain way of practicing mathematics that is (in principle) independent 
of one’s particular ontological commitments.2 To assess whether a structuralist 
methodology can be found in the investigations of Pasch and others, it will be 
useful to identify some of its characteristic features.

A paradigmatic example of a structuralist methodology is the work in modern 
abstract algebra as presented by van der Waerden (1930). Reck describes this as 
follows:

What modern algebraists do is to study various systems of objects, of both math-
ematical and physical natures (the latter at least indirectly), which satisfy cer-
tain general conditions: the defining axioms for groups, rings, modules, fields, 
etc. More precisely, they study such systems as satisfying these conditions, i.e., 
as groups, rings, etc. (2003, 371)

Thus, while an algebraist might explicitly discuss the field of complex numbers in 
her work, only those properties that are formulated in the field axioms and those 

	 2	 See also the editorial introduction to this volume by Reck and Schiemer.
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that follow from them are considered. That only the relations that are specified by 
the general conditions that define these systems are taken into account, but not 
any other properties that these objects might have as individuals, is what makes 
this approach structural. Here is how Reck formulates this idea:

a methodological structuralist will not be concerned about the further identity 
or nature of the objects in the various systems studied. He or she will simply 
say: Wherever they come from, whatever their identities and natures, in partic-
ular whatever further “non-​structural” properties these objects may have, in-
sofar as a system containing them satisfies the axioms . . . , the following is true 
of it: . . . This is the sense in which methodological structuralism involves a kind 
of abstraction. Here abstraction concerns simply the question of which aspects 
of a given system are studied and which are ignored when working along such 
lines. (Reck 2003, 371)

Notice that for a methodological structuralist “abstraction” is not necessarily un-
derstood as a process that yields some kind of new abstract entities, but rather as 
an attitude of restricting oneself to taking into account only some features of the 
systems under investigation, while disregarding others. In sum, methodological 
structuralism can be described as the study of systems of objects that are char-
acterized, or defined, axiomatically, with an exclusive focus on the relations that 
hold between these objects, while ignoring further questions about the nature of 
the objects. Dedekind’s Was sind und was sollen die Zahlen? (1888) is a perfect 
example of an approach that falls under this definition (see Ferreirós and Reck 
in this volume). However, the insistence on axiomatic definitions seems to be 
too strong, and Reck himself adds the qualification that methodological struc-
turalism is only “typically tied to presenting mathematics in a formal axiomatic 
way” (Reck 2003, 371; my emphasis). We should also note that the second condi-
tion formulated previously (i.e., the focus on relations) leaves open the possibility 
of pursuing structuralist investigations at one time and working along other, 
nonstructuralist lines at other times. Thus, methodological structuralism can be 
one particular approach among others pursued by the same mathematician; an 
approach that can be taken in certain investigations, but that can be ignored in 
others. It is the result of an attitude about how to conduct certain investigations 
that can be independent of one’s philosophical conceptions of mathematics and 
the nature of mathematical objects.

With the refined understanding of methodological structuralism given in 
the previous paragraph we must confront the problem of triviality: Is anything 
at all excluded by the characterization or has now every mathematician be-
come a methodological structuralist? For example, Euclid can be interpreted as 
having studied a system of points and lines in his planar geometry, taking into 
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consideration only those relations between them that were licensed by his ax-
ioms. This suggests a further criterion to distinguish an approach that is explicitly 
intended to be structural from one in which axioms are used to describe a single 
system that is being studied.3 On the one hand, Euclid investigated only one par-
ticular system, which consisted of idealized points and lines, and it seems fair to 
say that he did not envisage other systems of objects to satisfy the same relational 
properties. For Dedekind, on the other hand, it was clear that the natural num-
bers were only one particular instance of a simply infinite system and that there 
were others as well, like the system of his potential thoughts (Gedankenwelt). 
Similarly, in modern algebra groups and fields can be instantiated by many dif-
ferent systems, like numbers, rotations, etc. Based on these reflections, I propose 
the following two conditions that must be satisfied by investigations to count as 
being along the lines of a minimal version of methodological structuralism:

	 (1)	 Focus on relational features of systems of objects.
	 (2)	 The possibility of multiple systems that share these relational features must 

be envisaged.

With these two conditions in hand, we can now look at the works of particular 
authors and assess whether they qualify as being structuralist in methodology.4

3.  Empiricist Structuralism in Geometry

Various aspects of Pasch’s work in geometry appear to be congenial to methodo-
logical structuralism. Pasch presented in his Vorlesungen über neuere Geometrie 
(1882b) the first axiomatization of projective geometry in a way that is consid-
ered to be rigorous by contemporary standards. Indeed, Hilbert’s axiomatiza-
tion of Euclidean geometry, Grundlagen der Geometrie (1899), can be readily 
interpreted along structuralist lines (see Sieg’s article on Hilbert in this volume) 
and was heavily influenced by Pasch. Moreover, Pasch famously also gave a char-
acterization of the nature of deduction that emphasizes the relational features of 
the systems under investigation and which is worth quoting in full:

In fact, if geometry is genuinely deductive, the process of deducing must be in 
all respects independent of the sense of the geometrical concepts, just as it must 

	 3	 For a discussion of various roles and functions of axioms, see Schlimm (2013a), in particular 
49–​52 for their descriptive function.
	 4	 As far as I  can tell, the approaches of the authors presented in this volume all satisfy the 
conditions for minimal methodological structuralism.
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be independent of figures; only the relations set out between the geometrical 
concepts used in the propositions (respectively definitions) concerned ought to 
be taken into account. (Pasch 1882b, 98)5

Pasch’s insistence that, in order to be rigorous, deductions must be independent 
of the meanings of terms and instead rely only on their relational connections, 
as opposed to the particular meanings of the concepts, forms the cornerstone of 
his deductivism, which he himself referred to as “formalism” (Pasch 1914, 121). 
This approach meets the first condition for minimal methodological structur-
alism and thus appears to point to a general structuralist understanding of math-
ematics. In fact, his axiomatic standpoint has been interpreted as foreshadowing 
the idea that a system of axioms implicitly defines an abstract structure (Tamari 
2007, 6 and 96). According to these indications, it seems straightforward to 
consider Pasch a methodological structuralist. However, Pasch also held an 
empiricist philosophy of mathematics, a brief sketch of which was given in the 
introduction to this chapter, which stands in stark contrast to the interpretation 
of axioms as implicit definitions and requires us to take a closer look at his works 
and adopt a more nuanced position.

The empiricist standpoint, according to which the fundamental concepts and 
propositions of mathematics are empirical in nature, is the background for most 
of Pasch’s works, not only in geometry, but also in analysis. For Pasch, the basic, 
or “core” (Kern), propositions that form the starting points of a deductive pre-
sentation of mathematics are “directly based on observations” (1882b, 17) and 
“obtained through experience” (1914, 3). The content of a mathematical disci-
pline like analysis, Pasch maintains, is constituted by facts; these can be derived 
from basic facts, which are themselves expressed by the basic propositions (1914, 
3). However, despite his insistence on the empirical foundation of mathematics, 
Pasch quickly realized that a deductive development of mathematics cannot be 
carried out on the basis of empirical facts alone. This led him to distinguish be-
tween a mathematical set of axioms called a “stem” (Stamm) and a philosophi-
cally grounded, empirical set of axioms (first called “basic principles” and later 
a “core”).6 One of the reasons for this distinction was the observation that the 
axiomatic presentation of a mathematical theory does not necessarily determine 
the meanings of its primitive terms in a unique way. This insight was not based 
on some considerations of first-​order logic or nonstandard models as we might 
be inclined to think nowadays, but on the duality of projective geometry, which 
was identified in the 1820s by Poncelet and Gergonne (Pasch 1914, 142). Duality 

	 5	 All translations are by the author; translations of Pasch (1920b) and Pasch (1921) are based on 
those of Pollard (2010).
	 6	 See Schlimm (2010).
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is the curious mathematical phenomenon in which, if the primitive terms (say 
of “point” and “line,” and the relations “lying on” and “contains”) of a theorem 
of projective geometry are interchanged, the result is again a theorem of projec-
tive geometry. In Pasch’s words, the stem propositions for this discipline form a 
collection of propositions that is “transformed into itself ” if the stem concepts of 
point and line are interchanged.7

This fact, which is the source of duality, provides the proof that the group of 
projective stem propositions may not be considered as a definition of the pro-
jective stem concepts. Rather, it shows how the relations that are expressed by 
the projective stem propositions can be satisfied in more than one way. (Pasch 
1914, 143)

Thus, the form of the axioms does not determine whether the term “point” in-
deed refers to points or to lines and, because the axioms of projective geometry 
cannot fix the meanings of the terms themselves, they cannot be regarded as 
their definitions.8

While some concepts may be defined by the propositions in which they occur, 
Pasch observes that it is not possible that all concepts could be defined in this 
way, because this would allow the possibility “that definitions can generate math-
ematical concepts out of nothing” (1914, 143). He elaborates:

If one would want to claim that a totality of relations σ between concepts β, e.g., 
the basic propositions of arithmetic, could constitute a definition of the totality 
of concepts β, then one would have to be certain that the relations σ could not 
be satisfied in any other way than by the concepts β, excluding also the case 
where the concepts β are permuted. (1914, 143)

What Pasch explicitly rejects here is the understanding of a set of axioms (which 
govern the relations σ) as defining the primitives occurring in them (which 
refer to the concepts β), which is commonly referred to as an implicit definition. 
In fact, in reference to the first edition of Schlick’s Allgemeine Erkenntnislehre 
(1918), which discusses Hilbert’s approach to definitions by axioms, Pasch 
writes that

the expression “implicit definition” has a different meaning when used by Mr. 
Schlick (definition by axioms). I have presented in §72 of Veränderliche und 

	 7	 See Eder and Schiemer (2018).
	 8	 A similar argument is made by Frege in his correspondence with Hilbert (Frege 1976, 58–​80).



94  Dirk Schlimm

Funktion [i.e., Pasch 1914, 142–​143] the concerns that speak against a defini-
tion by axioms. (1920a, 145)

Readers should note that Pasch himself uses the term “implicit definition” in his 
writings, but in a different sense, namely in the sense of contextual definition, not 
in relation to axioms.9 In particular, Pasch does not allow implicit definitions for 
the basic terms, but only for the introduction of new terms using basic or already 
defined terms. An implicit definition, in Pasch’s sense, tells us how to replace an 
expression that contains a new term by an expression that does not contain it.10 
Pasch contrasts them with explicit definitions, whereby something that belongs 
to a genus is defined by specific marks (Pasch 1914, 20). Thus, Pasch’s under-
standing of definitions, which is rooted in his empiricism, is clearly at odds with 
interpreting him as understanding axioms as implicit definitions of the class of 
their models or of an abstract structure.

In light of the preceding considerations, we can see how Pasch’s move of 
distinguishing basic concepts and propositions from stem concepts and prop-
ositions allowed him to keep a deductivist view of mathematics (according to 
which a mathematical discipline is developed deductively from its stem), while 
at the same time retaining his convictions about empiricist foundations for 
mathematics (for the core). For Pasch, to demonstrate the viability of his empir-
icist philosophy of mathematics in general, each stem had to be connected to a 
core. For the case of projective geometry, Pasch showed in his Vorlesungen how 
the stem concepts and propositions can be linked to their empirical basis; I have 
referred to this project as “Pasch’s Programme” (Schlimm 2010). In addition, be-
cause in a purely deductive development of a theory the stem propositions of a 
discipline can play the role of basic propositions (Pasch 1914, 121), Pasch can 
accommodate the observation that mathematicians can disagree on their philo-
sophical views on the nature of mathematics while at the same time agreeing on 
the validity of proofs and theorems. After all, from a purely logical point of view, 
a theory can be developed from either a core or a stem, as long as they are con-
sistent (Pasch 1924, 232).

One reason for Pasch’s insistence on an empirical foundation of mathematics 
is his concern for its use in scientific and everyday applications.

To apply mathematics, the basic concepts must refer to something that is pre-
sent in the world of experience and for which the content of the basic prop-
ositions is meaningful and valid. We acknowledge this connection with 
experience as soon as we consider analysis to be something else than .  .  . an 

	 9	 See Gabriel (1978) and Pollard (2010, 36–​39).
	 10	 His introduction of the term Menge (set) is an example (Pasch 1914, 19).
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internally consistent construction [einen Bau von innerer Folgerichtigkeit]. 
(Pasch 1914, 138)

Thus, although Pasch allows for the possibility of working with meaningless 
terms in mathematics (if the stem is left uninterpreted), or with terms that refer 
to something other than empirical concepts and relations, he believes that a com-
plete picture of mathematics should include an account of its applicability and 
that this is best given by empiricism. In addition, the latter removes any doubt 
about the arbitrariness of mathematics.

The traditional view renders the mathematical point as a concept that does not 
refer to something real; I would like to call it a hypothetical concept. . . . Now, 
if hypothetical concepts and the assumed relations between them (hypothet-
ical propositions, hypotheses) are applied to objects of nature, at first to drawn 
figures, then this remains something arbitrary as long as we do not formulate 
the laws that govern this application; hereby one has to put up with the im-
precision that inheres in the application. It then becomes necessary to make 
two different kinds of hypotheses. Hypotheses of the first kind, which are those 
already mentioned, only relate the hypothetical concepts with each other, not 
with empirical ones; hypotheses of the second kind are to establish a bridge be-
tween hypothetical and empirical concepts. Compared to the empiricist way of 
proceeding this is nothing but a detour. (Pasch 1914, 139)

In short, the need for additional hypotheses that connect the mathematical stem 
concepts to their empirical counterparts when mathematics is applied is used 
as an argument in favor of using empirical concepts from the start. Notice how 
Pasch anticipates the need for connecting the scientific terms of a hypothetico-​
deductive theory with empirical referents; without any reference to Pasch, later 
philosophers of science referred to his hypotheses of the second kind as “coordi-
nating definitions” (Reichenbach 1928, 31), “bridge laws” (Nagel 1961, chap. 11, 
sec. 2.3), or “bridge principles” (Hempel 1966, 72). Considerations of parsimony 
lead Pasch to skip the bridge laws and use empirical hypotheses directly.

Now, where does this discussion leave Pasch with regard to structuralism? 
He certainly would disagree that mathematics is about abstract structures. 
However, he would allow us to hold this view if we wanted to, but at the cost of 
having to explain how these structures can be applied to the world. Pasch him-
self clearly prefers an empiricist account of mathematics for which the problem 
of application does not arise. Nevertheless, his mathematical practice satisfies 
the two conditions for methodological structuralism laid out at the end of sec-
tion 2: The focus on the relations that are expressed by the axioms of a mathe-
matical discipline, not on the nature of its elements, is what guarantees the rigor 
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of mathematical deductions. Mathematicians can develop their theories on the 
basis of stem concepts and propositions, which need not have a determinate ref-
erence, but can have multiple realizations instead; the paradigmatic example of 
such a theory is projective geometry. In fact, it was the duality of projective ge-
ometry that led Pasch to the distinction between a philosophically meaningful 
axiomatic foundation (consisting of core concepts and core propositions) and a 
mathematically sufficient axiomatic basis (consisting of stem concepts and stem 
propositions).

4.  Empiricist Structuralism in Arithmetic

We have seen in the previous section how Pasch’s insistence on rigorous 
deductions together with the surprising fact of the duality of projective geometry 
pushed him toward a minimal version of methodological structuralism, which 
he was able to combine with his empiricism about mathematics by separating 
purely mathematical axioms from philosophically grounded ones. In the pre-
sent section I want to look at Pasch’s work in a different mathematical discipline, 
namely arithmetic, in order to illustrate that the previous considerations were 
not unique to geometry, but arose also in other disciplines. This suggests that 
one ingredient for the emergence of structuralist views of mathematics was a 
particular attitude towards rigorous deduction that was developed in the 19th 
century.11

In addition to geometry, Pasch also worked on the foundations of arith-
metic throughout his entire career; e.g., see Pasch (1882a, 1909, 1914, 1921, and 
1924). The development of mathematical concepts on the basis of empirical ones 
through definitions and deductions, which Pasch presented for geometry, is the 
same approach he adopted for establishing the foundations of number theory 
and analysis. Here, too, Pasch aims at reducing the discipline to a core from 
which everything else can be derived. For him, such a reduction serves to pre-
sent mathematics as a deductive discipline, justifies confidence in its consistency, 
allows us to assess its certainty, and forms the basis for any philosophical reflec-
tion about mathematics, such as the question of its relation to experience (Pasch 
1921, 155).

Pasch disagrees with “the standard practice of putting a more or less finished 
notion of number at the beginning” of one’s mathematical investigations (Pasch 
1921, 155).12 Instead, in his account “the natural numbers do not appear all of a 

	 11	 See Gray (1992) and Detlefsen (1996) for a general overview of these developments.
	 12	 Contrast this with, for instance, the famous saying attributed to Kronecker that “God created 
the whole numbers, everything else is the work of man” (Weber 1893, 15).
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sudden: they stand at the end of a long and difficult path” (Pasch 1920b, 4). Let 
us now briefly examine Pasch’s account of natural numbers, as presented in his 
work on the origin of the concept of number.13 Pasch’s empiricist outlook is for-
mulated clearly in the very first paragraph:

The sort of thought process to be exhibited here might arise in any person 
who, first, considers only the things he himself perceives and distinguishes one 
from another and who, second, credits himself with eternal life and unlimited 
memory. Among the things observed by this person are his own actions. (Pasch 
1920b, 1)14

We notice immediately that Pasch goes beyond assuming what is humanly pos-
sible, but instead posits an ideal agent with human-​like cognitions, perceptions, 
and actions, but endowed with “eternal life and unlimited memory.” While this 
move might seem striking at first, it has been popular among empiricists, who 
would otherwise have to restrict themselves to a finite (and in fact rather small) 
number of experiences; for example, a very similar starting point of a contem-
porary empiricist account of mathematical knowledge is Kitcher’s ideal subject 
(Kitcher 1983, 109–​111). As a careful systematizer, Pasch singles out 11 core 
concepts to describe the actions of the ideal agent: (1) things, (2) proper names, 
and (3) collective names, which are themselves things; the actions of (4) specifying 
a thing, (5) assigning a proper name, and (6) assigning a collective name—​collective 
names can only be assigned to collections of things that were previously specified 
or assigned a proper name by the agent; any such action is (7) an event, which 
can be temporally related to other events by the relations (8) earlier, (9)  later, 
and (10) immediate successor; finally, an ordered sequence of events forms (11) a 
chain of events. By considering names and events (both of which he considers to 
be things) in addition to physical objects Pasch frees the ideal agent from being 
restricted to what is physically present, and by considering experienced events 
the ideal agent is able to introduce order:

I assume that I have experienced some events on which I confer the collective 
name A. By experiencing these events, I have registered observations about 
succession and immediate succession, about precedence and immediate prec-
edence. But the events A also produce in me a comprehensive concept that 

	 13	 Pasch’s “Der Ursprung des Zahlbegriffs” was completed in 1916 and appeared in print in two 
parts, Pasch (1920b) and (1921), which were reprinted together in Pasch (1930a). The approach is 
based on the account given in Pasch (1909), but contains several modifications.
	 14	 The English translations in this section are taken from Pollard (2010).
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combines them into a whole, into a thing that I call the chain of the events A or, 
more briefly, 𝔄. (Pasch 1920b, 17)

So, while we may think of the events A as something like a finite set, {s1, s2, . . . , sn}, 
the chain 𝔄 of events A is more like a finite ordered set: < >s s sn1 2, , ..., . Given that 
Pasch allows the same thing to be given different names and be specified multiple 
times, he introduces the notion of a line for those chains whose elements are all 
specifications of different things.15 The members of a line are those things that 
are specified by the elements of the line. Using these notions, Pasch introduces 
the concept of number as follows: to determine the number of a given collection 
N, first an arbitrary larger line ℨ is obtained, whose members have the collective 
name z and whose first member is called e. Then,

from among the members z that follow e I  can specify one and only one 
member n such that the segment of ℨ reaching as far as n is equivalent to the 
collection N.

In addition to N, all and only the collections that are equivalent to N yield 
this member of the line ℨ.

The thing n is called the number drawn from the line ℨ for the collection N.
Any z other than e can serve as “numbers.” (Pasch 1921, 149)

After extending the use of the term “number” also to the member e of ℨ, and 
introducing the names “one,” “two,” “three,” etc., for the members of ℨ, Pasch 
concludes:

Now all the members of the line ℨ have become numbers. Notches in a stick 
can serve as members of such a line. One notch must be singled out as the first, 
with all the remaining notches appearing to one side of it. The next member of 
the line is always the next notch over. (Pasch 1921, 150)

On the one hand, Pasch’s example of notches on a stick nicely illustrates the em-
pirical character that the natural numbers have for him; on the other hand, it 
also illustrates that for him the numbers are not one single, particular system 
of objects. In fact, it is compatible with this account that Julius Caesar is one of 

	 15	 In (1909) Pasch used the terms Folge and Reihe (sequence and series), but he changed them in 
(1920b) to Kette and Rotte to avoid imbuing terms that already have multiple mathematical meanings 
with new meanings (Pasch 1920b, 17 and 19). While Kette translates straightforwardly as “chain,” the 
term Rotte is less familiar and thus more difficult to translate. In a military formation, a Rotte consists 
of those soldiers or planes that are side by side; in this case an individual is called a Glied. Accordingly, 
Pollard (2010, 68) translates Rotte as “line” (and Glied as “member”), which we follow here, despite 
the fact that Pasch wanted to use a term that does not already have a mathematical meaning.
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the members of ℨ, and thus a number.16 If a collection is empty, then there is no 
member of ℨ that can serve as the number of this collection. For this case, Pasch 
introduces the name “zero” as if it were the name of a thing (using an implicit def-
inition, in Pasch’s sense).

Pasch continues his account by introducing the figures “0”, “1”, . . . , “9”, to-
gether with rules for obtaining greater numerals (technically, these are chains of 
specifications of figures) as distinct names. In this way only simple combinatorial 
processes are required to generate a potentially infinite list of names for numbers.

For each number drawn from ℨ, the figures yield a sign [Zeichen], and the 
sign yields a name. So figure-​chains will satisfy our need for numerical signs 
in every case. . . . Conversely, any figure-​chain one cares to construct can serve 
as a numerical sign, as long as I pick a sufficiently “large” ℨ. (Pasch 1921, 152)

Thus, the system of numerals is a systematically obtained sequence of names that 
can be used to refer to the members of any chain of things that one decides to 
use as numbers. In the first exposition of this way of proceeding, Pasch leaves it 
at that, switching effortlessly and without much ado from numbers as things to 
their names (e.g., “If a number, (i.e., its name) consists only of nines, . . .” (Pasch 
1909, 35); he understands a calculation to be the determination of a fixed name 
(e.g., in the decimal system) of a number that is given by an arithmetical expres-
sion (Pasch 1909, 53). Five years later, in 1914, Pasch is more careful and gives 
more explicit explanations. After noting that the construction of decimal place-​
value numerals yields names for each desired number, he notes:

Once this is achieved, one can disregard which things and which chain of these 
things were originally used; one only needs to hold fixed the names of these 
things, of the numbers. . . . The decimal place-​value name of an absolute whole 
number counts as a fixed name. (Pasch 1914, 33–​34)

On the relevance of the decimal place-​value system for the development of arith-
metic and for everyday life, Pasch approvingly quotes at length a passage from 
Kronecker’s “Über den Zahlbegriff ” (Kronecker 1887, 355).17 In 1921 Pasch 
reiterates the importance of numerals and the difference between numbers as 
things and their names, and here a more structuralist perspective emerges. He 
writes:

	 16	 Frege famously considered this to be a problem for a definition of numbers (Frege 1884, §55).
	 17	 Pasch spent two semesters in 1865–​866 in Berlin, attending lectures by Kronecker and 
Weierstrass. He later mentions these as having exerted a great influence on his thinking about the 
foundations of mathematics (see Pasch 1930b, 7 and Schlimm 2013b, 189). As far I know, Pasch never 
expressed any explicit criticism of Kronecker’s views of the natural numbers (but, see note 12).
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As we moved along, our starting point, the line ℨ, receded entirely into the 
background. We were no longer concerned with our original choice of things to 
serve as members of the line and, so, as numbers—​nor did we care what things 
were added to the line to accommodate larger and larger numbers. We focused 
entirely on our need for names and signs for numbers of every size.

Indeed, once the nomenclature for the natural numbers is secured, we can 
quite disregard whatever things might have gotten us to this point. We need 
only retain the names of these things to perform the task for which the natural 
numbers were intended: determining whether a collection is equal to another 
or is greater than it or less. (Pasch 1921, 153)

Although for Pasch the natural numbers continue to be a system of things, this 
system is not a specific, fixed one, nor does it matter which things we choose. 
It is tempting to speak in this context of an arbitrary choice of representatives, 
but that would be misleading: the chosen things do not represent numbers for 
Pasch, they are numbers. Nevertheless, we can see here a form of abstraction 
from the individual nature of the elements, which is characteristic of a structur-
alist approach. What matters is only the sequential arrangement, or the struc-
ture, of these things, their relations among each other. In addition, it is clear that 
multiple systems of things can instantiate the natural number structure, which is 
characterized by the line ℨ.

We have seen above that, in his more mature writings, Pasch clearly separates 
the numbers (which he conceives of as things) from their names, e.g., the decimal 
place-​value numerals. While acknowledging that we can get by with a system of 
numerals, he does not go so far as identifying the numbers with the numerals 
themselves, in contrast to some of his contemporaries (e.g., Heine and Thomae, 
who advocated “formal” theories of arithmetic and were severely criticized by 
Frege).18 In order to understand Pasch’s account better, it will be useful to com-
pare it to those of two contemporaries that he comments on, namely Alfred 
Pringsheim and David Hilbert.

In his lectures on number theory (1916), Pringsheim introduces numbers 
as an infinite “ordered system of signs [Zeichen] that satisfies certain rules for 
their combination” (Pringsheim 1916, vii), mentioning Heine and Helmholtz as 
other proponents of this view.19 The simplest such system would be a tally system 
based on a single primitive sign, “|”, but for reasons of practicality Pringsheim 
decides to use the decimal place-​value system as the canonical system of nat-
ural numbers (Pringsheim 1916, 7).20 Thus, Pringsheim does not consider the 

	 18	 For a discussion of criticisms (including those by Frege) of this view, which Detlefsen calls “em-
piricist formalism,” see Detlefsen (2005).
	 19	 See Heine (1872, 173) and von Helmholtz (1887, 21).
	 20	 For a critical review, see Hahn (1919).
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system of natural numbers to be unique (because different systems of numerals 
would do), but determined only insofar as it obeys certain rules. Pasch mentions 
Pringsheim’s use of decimal numerals approvingly, but he maintains that his own 
development of them is “completely different in its nature” (Pasch 1921, 153). 
How so? For Pasch numbers are not signs (numerals), but those things that the 
numerals refer to. He also does not want to put the numerals at the beginning of 
arithmetic, but presents the combinatorial concepts and propositions that un-
derlie the use of numerals. Ultimately, Pasch’s interests lie deeper, at the level of 
the combinatorial origins of numbers.

A few years later, Hilbert also put forward an account of arithmetic based 
on sequences of signs in his Neubegründung der Mathematik. Erste Mitteilung 
(1922). Soon afterward, Pasch gave a reconstruction of Hilbert’s approach to 
arithmetic in light of his own (Pasch 1924). While he argues that formulas that 
look like Hilbert’s axioms could be derived from his core propositions, Pasch 
objects to Hilbert’s conception of the nature of mathematical objects. Hilbert 
proclaimed his philosophical standpoint on the foundation of pure mathematics 
as “at the beginning is the sign [Zeichen]”, listing as his first definition that “The 
sign 1 is a number” (Hilbert 1922, 163). First, Pasch disagrees with Hilbert’s con-
ception of signs. Hilbert seems to consider signs (and in particular numbers) 
to be types of inscriptions themselves, whereas for Pasch a sign is an inscrip-
tion type that denotes a thing. The connection between Hilbert’s inscriptions and 
Pasch’s view of numbers is that the former could be considered to be marks, just 
like the notches on a stick, that could serve as the members of the line ℨ (Pasch 
1924, 238). Second, Pasch replaces Hilbert’s signs “1” and “+” by the aliases 
(Decknamen) “e” and “u”, such that Hilbert’s axioms would correspond to stem 
propositions, obtained from the core propositions by the process of formaliza-
tion, i.e., the replacement of meaningful terms by meaningless ones (Pasch 1924, 
237, 239–​240). In other words, while Hilbert presents a particular instance of 
inscription types as numbers, in Pasch’s account it is explicitly recognized that 
these are just one of many possible instantiations. Thus, by building the possi-
bility of multiple instantiations into his account, Pasch’s attitude is clearly more 
structuralist than Hilbert’s, because it also satisfies the second criterion for meth-
odological structuralism, namely envisaging multiple realizations, laid out in 
section 2.

5.   Conclusion

In this chapter two conditions were put forward for a minimal version of meth-
odological structuralism, namely (a) the focus on relational features of systems 
of objects and (b) envisaging the possibility of having multiple systems that share 
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these relational features. Various factors pushed Pasch toward these two aspects 
of mathematics. In his work on geometry the quest for rigorous deductions led 
him to focus on the primitives and relations that are expressed by the axioms and 
to neglect any other properties that mathematical objects might have. The du-
alism of projective geometry forced him to accept the possibility that the axioms 
(stem propositions) can be satisfied by different systems of objects. In Pasch’s 
work on the foundations of arithmetic a structuralist perspective emerged from 
the fact that the canonical names for numbers, namely the decimal numerals, 
could refer to any appropriate system of objects. Thus, despite the fact that 
Pasch maintained an empiricist standpoint, according to which all mathemat-
ical knowledge is grounded on experiences of physical objects, he nevertheless 
came to adopt a methodological structuralism that satisfies both conditions 
(a) and (b). The further development of structuralism toward a more ontolog-
ically oriented position regarding the nature of mathematics went well beyond 
anything that Pasch would have found acceptable. As Dehn remarks, “The fond-
ness for operating with symbols that have gone far beyond what is intuitable has 
a mythical-​revolutionary character; this was completely foreign to Pasch” (Engel 
and Dehn 1934, 128). What we see in Pasch’s work is that methodological struc-
turalism need not be driven by considerations of abstract structures like those 
found frequently in modern algebra and that it can be combined successfully 
with an empiricist philosophy of mathematics.
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 Transfer Principles, Klein’s 

Erlangen Program, and 
Methodological Structuralism

Georg Schiemer

1.  Introduction

Structuralism in the philosophy of mathematics holds that mathematics is the 
science of abstract structures. An alternative characterization of the position 
does not assume structures as the subject matter of mathematics, but rather holds 
that mathematical theories study only the structural properties of their objects.1 
The focus on such properties is closely related to criteria of structural identity of 
mathematical objects. Specifically, it is often held that objects that share the same 
structural properties should be identified. For instance, in the context of non-​
eliminative structuralism, this view figures prominently in recent debates on the 
identity of structurally indiscernible positions in a pure structure.2

As the present volume shows, there exists a rich and multifaceted mathe-
matical prehistory of these philosophical debates. In particular, one can iden-
tify a number of methods and styles of reasoning in 19th-​century mathematics 
that eventually led to a “structural turn” in the discipline.3 The present article 
will focus on one important strand in the mathematical roots of structuralism, 
namely Felix Klein’s group-​theoretic approach to geometry outlined in his 
Erlangen program of 1872. Klein’s program is generally acknowledged today as 
one of the milestone contributions in 19th-​century geometry. Moreover, there 
is a consensus that his novel algebraic approach in geometry—​that is, the study 
and classification of geometries in terms of transformation groups—​had a 

	 1	 These are usually characterized as properties not concerning the intrinsic nature of objects but 
rather their interrelations with other objects in a system. Compare, for instance, Benacerraf (1965) 
and Linnebo and Pettigrew (2014).
	 2	 See, for example, Keränen (2001) and Shapiro (2008). Compare Leitgeb and Ladyman (2008) for 
a critical discussion of this view.
	 3	 See the editorial introduction as well as Reck and Price (2000) for a general overview of relevant 
methodological developments in 19th-​century mathematics.
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Mathematical Structuralism. Edited by: Erich H. Reck and Georg Schiemer, Oxford University Press (2020). © Oxford 
University Press.
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significant impact on the gradual development of geometry into a science of ab-
stract structures.4

Despite the wealth of research on Klein’s program and its significance for sub-
sequent developments in geometry, no close study has so far been dedicated to its 
specific structuralist underpinnings. In particular, Klein’s work has not yet been 
discussed through the lens of modern structuralism.5 In the present chapter, 
I want to fill this gap. In particular, I will address the following questions: how, 
precisely, did Klein contribute to the development of the structural turn in math-
ematics? In what sense was his group-​theoretic approach to geometry struc-
turalist in character? Finally, in what sense did Klein’s account anticipate the 
philosophical debates in structuralism mentioned above?

The aim in this chapter is twofold. The first aim is historical in nature and 
concerns the geometrical background of Klein’s program. In particular, my focus 
will be on work on duality phenomena in 19th-​century projective geometry. The 
chapter will survey different attempts to justify the principle of duality and then 
describe two ways in which the principle was generalized in analytic geometry, 
namely Julius Plücker’s contributions to “general reciprocity” and Otto Hesse’s 
so-​called transfer principles. Roughly speaking, transfer principles were con-
ceived at the time as mappings between geometrical domains that allow one to 
translate theorems about configurations of the one domain into corresponding 
theorems about the second domain. As I will argue, Klein’s group-​theoretic ac-
count in the Erlangen program can be understood as a generalization of this 
work on reciprocity and transfer principles.

The second aim is more philosophical in character. This is to analyze in closer 
detail Klein’s structuralist account of geometrical knowledge. I will argue here 
that his group-​theoretic approach is best characterized as a kind of “methodo-
logical structuralism” regarding geometry (see Reck and Price 2000). Moreover, 
one can identify at least two aspects of the Erlangen program that connect his ap-
proach with present philosophical debates, namely (i) the idea to specify struc-
tural properties and structural identity conditions for geometrical figures in 
terms of transformation groups and (ii) an account of the structural equivalence 
of geometries in terms of transfer principles. Both ideas clearly present “struc-
tural methods” in the sense specified in Reck and Price (2000).

The article is organized as follows. Section 2 will discuss the geometrical back-
ground of Klein’s program. Specifically, different ways to justify the principle of 
duality in projective geometry are outlined in section 2.1. In section 2.2, I dis-
cuss the use of transfer principles in analytic geometry. Section 3 will then turn 

	 4	 See, e.g., Tobies (1981), Wussing (2007), and Gray (2008).
	 5	 See, however, Biagioli (2018) for a recent study of the Klein’s structuralism underlying his work 
on non-​Euclidean geometry.



108  Georg Schiemer

to Klein’s approach: section 3.1 focuses on his group-​theoretic study of geome-
tries in terms of invariants. In section 3.2, I present Klein’s method of “transfer 
by mapping.” Section 4 will then discuss several structuralist themes underlying 
Klein’s conception of geometry. Section 4.1 will focus on Klein’s account of geo-
metrical properties and congruence specified relative to a group of transform-
ations. In section 4.2, I discuss how Klein’s use of transfer principles to identify 
geometries can be generalized to a notion of structural equivalence in category-​
theoretic terms. Section 5 contains a short summary.

2.  Duality and Transfer Principles

The mathematical background of the Erlangen program is known to be rich and 
multifaceted.6 Klein’s group-​theoretic approach in geometry has different roots, 
including algebraic work on permutations groups by Camille Jordan and Évariste 
Galois, Arthur Cayley’s invariant-​theoretic approach in geometry, as well as 
Sophus Lie’s parallel work on geometry, to name just a few. A different influence 
on Klein’s program concerns the development of projective geometry in the 19th 
century. Particularly relevant here are, as we will see, different contributions to 
the principle of duality as well as its generalization in work by Plücker and Hesse. 
In the present section, I will survey these methodological developments in pro-
jective geometry and Klein’s reception of them.

2.1.  The Principle of Duality in Projective Geometry

Projective geometry, as developed by Jean-​Victor Poncelet, Gaspard Monge, 
Joseph Diez Gergonne, Karl G. C. von Staudt, and Moritz Pasch (among many 
others), can be characterized as the study of those geometrical properties of fig-
ures that remain invariant under certain projective transformations.7 This ap-
proach with its focus on projective invariants was certainly relevant for Klein’s 
subsequent characterization of geometries in terms of their transformation 
groups. More generally, the development of projective geometry brought with 
it a certain flexibilization of what count as the primitive elements in a geometry 
and, in turn, a new focus on geometrical form that clearly stimulated Klein’s 
approach.

	 6	 See, in particular, Wussing (2007), Rowe (1989, 1992), and Gray (2008) for detailed studies of 
Klein’s program and its mathematical background.
	 7	 See Torretti (1978) and Gray (2005) on the historical development of projective geometry.
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A central innovation in work by Poncelet, Gergonne, and others was the dis-
covery of the principle of duality for theorems in projective geometry.8 In the 
case of plane geometry, this principle expresses the fact that for every theorem 
concerning certain projective properties of configurations in the plane, one can 
formulate a second theorem with a dual (or reciprocal) structure based on the 
method of dualization, that is, by interchanging the words “point” and “line” as 
well as the relational expressions of “lying on a line” and “meeting in a point.”9 In 
order to illustrate this principle, consider the following pair of well-​known dual 
theorems, namely Pascal’s theorem and Brianchon’s theorem.10 The former the-
orem expresses the following geometrical fact:

Theorem 1: Let A, B, C, D, E, F be six points on a conic that form a hexagon. Then 
the intersection points of the sides AB and DE, FA and CD, and BC  and EF  of the 
hexagon will lie on a line. (See Fig. 1, left diagram.)

Brianchon’s theorem, in turn, states a closely related geometrical fact:

Theorem 2: Let a, b, c, d, e, f be six lines that form a hexagon circumscribing a conic. 
Then the principal diagonals i j, , and k of the hexagon meet in a single point. (See 
Fig. 5.1, right diagram.)

The two theorems express symmetric facts about the projective structure of 
hexagons relative to a conic section. That is, any concrete incidence relation be-
tween points and lines specified relative to one conic can be shown to correspond 
to a dualized relation between lines and points specified relative to the second 
conic. Accordingly, the theorems form an instance of the general principle of 
projective duality: one can deduce Brianchon’s result from Pascal’s result (and 
vice versa) by the previously mentioned technique of dualization, that is, by 

	 8	 The present subsection will closely follow Eder and Schiemer (2018) and Schiemer (2018) in the 
discussion of the principle of projective duality.
	 9	 A corresponding principle of duality for solid geometry states that for any theorem of solid pro-
jective geometry we get another theorem by interchanging the words ‘point’ for ‘plane’ and ‘plane’ for 
‘point’ (as well as of the primitive incidence relations).
	 10	 See again Schiemer (2018) for a more detailed discussion of this example. I would like to thank 
Günther Eder for his permission to use the two diagrams in figure 1 in the present chapter.
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interchanging the primitive terms “point” for “line” as well as all the concepts 
defined in terms of them.

Much work in 19th-​century projective geometry was dedicated to the analysis 
of the principle of duality. Klein’s Vorlesungen über Nicht-​Euklidische Geometrie 
of 1928 contains an interesting retrospective survey of the different approaches 
to a general mathematical explanation of duality phenomena. In particular, he 
distinguishes between three accounts in the geometrical literature from the time 
(see Klein 1928, 38–​39). One approach, which Klein labels the “axiomatic jus-
tification of the principle of duality,” is ascribed to the works of Gergonne and 
Pasch. Duality is explained here purely syntactically, in terms of the strictly sym-
metrical character of the axiom systems describing the projective plane and 
projective space.

The second approach is more interesting for our discussion and was first for-
mulated in Poncelet’s Traité of 1822.11 Duality (or reciprocity) is specified here 
based on Poncelet’s theory of poles and polars and in terms of so-​called polar 
transformations. Roughly speaking, polar transformations are dual correlations 
between figures that can be constructed relative to a given conic section. Based 
on a given conic, such a correlation will map every point in the plane to a certain 
line, its polar, and every line to a single point, its corresponding pole.12 The cen-
tral geometrical property of such transformations is that they preserve the inci-
dence relations between points and lines in a given plane. Following Poncelet, 
this is usually called the reciprocity between poles and polars: if a point lies on a 
line, then the pole of the line will also lie on the polar line corresponding to the 
point (and vice versa).

According to Poncelet, the principle of duality in projective geometry can 
be directly explained in terms of the theory of poles and polars. More specifi-
cally, in the second volume of the book, Poncelet introduces a general method 
of constructing new configurations from existing ones based on polar trans-
formations. Given the fact that a polar mapping preserves the incidence prop-
erties (up to duality) of the original configurations, it follows that the newly 
constructed figures have a reciprocal structure. Thus, polar transformations in-
duce a dual translation of theorems about one figure into theorems about its re-
ciprocal figure.

As will be shown in the next section, dual transformations such as those 
described in Poncelet’s polar theory are explicitly discussed in Klein (1872). 
Moreover, Klein’s subsequent writings on geometry, for instance his second 
volume of Elementarmathematik vom höheren Standpunkte aus (1925), also 

	 11	 See again Eder and Schiemer (2018) and Schiemer (2018) for closer discussions of Poncelet’s 
transformation-​based account of duality.
	 12	 See, e.g., Coxeter (1987) for a modern textbook presentation of polar theory.
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contain detailed discussions of “transformations with a change of the spatial el-
ement” (Klein 1926, 117). However, in contrast to Poncelet’s original account of 
1822, dual transformations are not understood synthetically here, but analyti-
cally in terms of coordinate transformations. This brings us to the third way to 
think about projective duality mentioned in Klein (1928).

The third approach to justify the principle of duality mentioned in Klein’s book 
is arguably the most relevant one for his Erlangen program. The so-​called ana-
lytic justification of duality was first formulated by Julius Plücker (1801–​1868) in 
his work on analytic geometry between the late 1820s and the 1840s. Briefly put, 
Plücker’s approach is based on the analytic representation of geometric concepts 
in terms of equations.13 Duality (or reciprocity) is discussed most extensively in 
the second volume of his Analytisch-​geometrische Entwicklungen (Plücker 1931). 
The principle is explained here in terms of the reinterpretation of symmetric 
equations expressing geometrical configurations.

To illustrate his account, consider the linear equation presenting the concept 
of straight lines in the plane:

	 ux vy+ + =1 0. 	

In the standard interpretation of this equation, u,v are treated as constants that 
determine a collection of points on a line. Plücker’s basic insight was to treat the 
coefficients u,v instead as “line coordinates” similarly to the point coordinates 
x,y. Consequently, if x,y are treated as constants and u,v as variables, then the 
equation determines a collection of lines going through point (x,y). Put differ-
ently, whereas the equation f(x,y) = 0 in its usual interpretation presents a collec-
tion of points (or a point curve) on a line, the reinterpreted equation f(u,v) = 0 
presents a collection of lines or a line curve. Projective duality is explained by 
Plücker in terms of the possibility of reinterpreting equations in this sense. More 
specifically, it is a result of the particular form of this and related bilinear equa-
tions, that is, of the symmetrical role of the point and line coordinates occurring 
in them.

Plücker’s geometrical work from the time is known for the introduction of 
a number of different coordinate systems, including triangle coordinates (in 
Plücker 1830), homogeneous line coordinates for the plane (introduced in 
volume 2 of Entwicklungen of 1831), homogeneous plane coordinates, and line 

	 13	 See Nagel (1939) and Plump (2014) for closer studies of Plücker’s work. See Lorenat (2015) for 
a recent study of the priority dispute on the discovery of duality between Poncelet, Gergonne, and 
Plücker.
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coordinates in space (introduced in Plücker 1846).14 A  central mathematical 
motivation for this generalization of the concept of coordinates was to be able 
to reinterpret analytic equations representing geometrical concepts relative to 
different coordinate systems. As we saw, precisely this method is also used for 
the justification of projective duality. Compare Plücker on this purely analytic 
approach:

Every proof that can be drawn through the connection of general symbols cor-
responds to two such sentences connected to each other by the principle of rec-
iprocity in case we refer with these symbols to point coordinates at one point 
and to line coordinates at another point. (Plücker 1931, viii–​ix)

According to Plücker, there is thus a direct connection between the reinterpre-
tation of an equation presenting an incidence relation in different coordinates 
systems and the general idea of “reciprocity” (or “Gergonne-​Poncelet duality”).

This generalization of the concept of coordinates also brought with it a cer-
tain flexibilization of what counts as the “basic elements of space” in a geometry. 
The main idea underlying Plücker’s account of duality is to consider other elem-
ents than points as the primitive or basic elements in space. We saw that the line 
equation stated earlier can be interpreted in two ways, namely as presenting lines 
as collections of points or points as collections of lines. In the first reading, the 
points are taken as primitive objects and lines are determined as sets of points. In 
the second reading, lines are the primitive objects, and points are determined as 
classes of lines.

Plücker’s insight that different objects can serve as the primitive elements of a 
geometry exercised a strong influence on Klein’s subsequent geometrical work.15 
This is documented in several of Klein’s later writings on the topic, which contain 
detailed discussions of the analytic justification of duality. For instance, Klein 
comments on Plücker’s approach in the second volume of Elementarmathematik 
in the following way:

Now it is Plücker’s conception to look upon these u and v as the “coordinates 
of the line” and as having equal status with the point coordinates x and y, and as 
being considered, at times, as variable instead of them. . . . Now the principle of 
duality resides in the fact, that every equation in x and y, on one hand, and in u 
and v on the other hand, is completely symmetrical. Everything that we said above 

	 14	 See Wussing (2007, 28–​30) and Plump (2014) for further details on Plücker’s work on different 
coordinate systems.
	 15	 Klein was a student and assistant of Plücker at the University of Bonn until Plücker’s death in 
1868. See Rowe (1989) for further details.
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concerning the duality that is inherent in the axioms of connection resides in this 
property. (Klein 2016, 70)16

As Klein emphasizes here and in related writings, this insight presupposes the 
generalized concept of coordinates previously mentioned as well as what he calls 
“Plücker’s general principle of considering any configuration as a space element 
and its constants as coordinates.” (Klein 2016, 72)

Compare the following remark in Klein (1926):

With this idea of the arbitrary “element of space” that can be chosen as the 
starting point of geometry, a complete clarification of the Poncelet-​Gergonnian 
principle of duality is given: since the equation for the incidence of point and 
straight line (in the space of point and plane) is symmetrical in the two elem-
ents, one can interchange the two words in all sentences that are based on the 
mere connection of the two elements. (124)

Thus, given this new concept of coordinates, any type of geometrical configura-
tion can serve as the basic elements in geometry, including conic sections, lines, 
planes, and spheres (among other objects). As we will see in the next section, this 
insight also led Plücker and other geometers to generalize the original version of 
Gergonne-​Poncelet duality.

2.2.  Reciprocity and Transfer Principles

According to the analytic account, the projective duality between points and lines 
in the plane (as well as between points and planes in space) can be explained in 
terms of the analytic presentation of the incidence relations between these geo-
metrical concepts. Compare again Plücker on this point in System der Geometrie 
des Raumes of 1846:

Every geometrical relation is to be viewed as the pictorial representation of 
an analytic relation, which, irrespective of every interpretation, has its inde-
pendent validity. Consequently, the principle of reciprocity properly belongs to 
analysis, and only because we are accustomed to . . . express the matter in geo-
metrical language, does it seems to be an exclusively geometrical principle. . . . 

	 16	 A similar discussion is given in Klein’s Vorlesungen über die Entwicklung der Mathematik im 
19. Jahrhundert (Klein 1926), now for the related case of the analytic equation presenting straight 
lines: u1x1 + u2x2 + u2x2 = 0. Here again, it is the case that the coefficients u1,u2,u3 and the coordinates 
x1,x2,x3 have a strictly symmetrical role in the equation. One can therefore interpret the former as 
“line coordinates” and the equation as expressing a point determined through a bundle of lines.
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Understood purely analytically, the principle of reciprocity is naturally also not 
bound to the dimensions of space or restricted to them. (Plücker 1846, 322)

The account of reciprocity formulated here is thus not just an analytic reformu-
lation of Poncelet’s treatment of duality in synthetic projective geometry, but 
rather an independent justification with a more general applicability in geom-
etry. Moreover, as Plücker mentions in the preceding passage, the principle is 
not limited to a particular dimension of the space to be investigated analytically. 
This insight led him to formulate several alternative generalized notions of rec-
iprocity in his work from the 1820s and 1830s that extend classical Gergonne-​
Poncelet duality in different ways.17

One such extension concerns the introduction of dualities between other ge-
ometrical concepts than points, lines, and planes. For instance, Plücker’s “Über 
ein neues Coordinatensystem” (1930) contains a discussion of Poncelet’s theory 
of reciprocity based on the analytic treatment of the concepts of poles and polars. 
Based on this, Plücker also presents a “generalization” of this theory that applies 
to higher-​order curves. Generally speaking, it is shown here as well as in other 
publications that one can extend duality to any pairs of geometrical objects with 
the same dimension-​number. Thus, any two geometrical concepts whose ana-
lytic representation is based on the same number of independent variables can 
be shown to have dual properties.18

A second extension of Gergonne-​Poncelet duality also introduced in Plücker’s 
work is usually called “linear reciprocity.” A detailed treatment of it can be found 
in his System der analytischen Geometrie of 1935.19 The discussion given here 
concerns the dual correlation between two configurations, where duality is un-
derstood in the usual sense that each point and each line in the first figure is 
mapped to a line and a point in the second, reciprocal figure. Unlike in Poncelet’s 
account of point-​line duality, however, this correspondence is not specified 
within a single geometrical system, that is, within a given projective plane. 
Instead, reciprocity is specified here with respect to the interpretation in two co-
ordinates systems, one based on point coordinates and the other based on line 
coordinates.

Plücker calls two such coordinate systems connected by a polar mapping “re-
ciprocal systems” and describes them as follows:

	 17	 See Nagel (1939) and Plump (2014) for detailed studies of Plücker’s generalized notions of 
reciprocity.
	 18	 Compare, in particular, Nagel (1939) for a study of this generalized notion of reciprocity in 
Plücker’s work. Klein’s Elementarmathematik also contains a detailed discussion of Plücker’s notion 
of reciprocity between different higher-​order curves based on the “Plückerian principle” to use arbi-
trary configurations as the primitive elements of a given space.
	 19	 See, in particular, Plump (2014) for a detailed discussion of this approach.
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We see from this in which sense the relation between the two systems is indeed 
a mutual one. We call such two systems reciprocally related or reciprocal ones 
and the principle resulting from this kind of relationship, by which the relations 
of one of two reciprocal systems can be transferred to the other one, the prin-
ciple of reciprocity. (Plücker 1835, 74)

The principle stated here clearly presents an extension of the kind of inner-​
system duality introduced earlier by Poncelet. Duality is now expressed analyti-
cally as a correlation between geometrical figures in different coordinate systems 
with different primitive spatial elements and not between figures within a given 
system.20

A further generalization of classical duality closely related to Plücker’s 
principle of linear reciprocity concerns so-​called transfer principles in geom-
etry. Roughly speaking, these are analytically defined mappings between dif-
ferent geometrical domains that preserve the relevant projective properties of 
the configurations in question. Interestingly, the term “transfer principle” first 
occurs in Plücker’s own work in the context of his discussion of reciprocity. In 
his System der analytischen Geometrie (1935), Plücker argues that his concept of 
general coordinates implies different transfer principles (Übertragungs-​Principe) 
based on the (re)interpretation of a given analytic equation in different systems. 
A transfer is described here as a mapping between the elements of different co-
ordinate systems that allows one to construct, based on a given figure, a corre-
sponding figure in another system (see Plücker 1835, vii).

This account of geometrical transfer principles was further developed in sub-
sequent work on analytic geometry, in particular by Ludwig Otto Hesse (1811–​
1874). Hesse introduced a particular transfer principle in projective geometry in 
his article “Über ein Übertragungsprinzip” (1866a).21 The principle is based on a 
mapping between points of the complex projective plane and pairs of points on 
the complex projective line that preserves the projective structure of these two 
domains. Hesse informally characterizes his approach as follows:

If one makes to correspond in a univocal way to each point in the plane a pair of 
points on the straight line and, vice versa, to each pair of points on the straight 
line a point in the plane, one has a transfer principle that reduces the geometry 
of the plane to the geometry of the straight line and vice versa. (Hesse 1866a, 15)

The relevant transfer mapping is presented analytically in the following 
way: Hesse introduces a function from points P = (x, y) in the projective plane to 

	 20	 Compare again Klein (2016, 71–​72) for a discussion of this notion of linear reciprocity.
	 21	 See Hawkins (1984) for a closer discussion of Hesse’s transfer principles.
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pairs of points p = {λ1, λ2} on the projective line (i.e., the fundamental line) speci-
fied by the quadratic equation:22

	 φ λ λ( ), , ,x y A B C= + + =λ2 0 	

where A, B, C are linear functions of coordinates x, y.
This mapping between the plane and the fundamental line is structure-​

preserving in the sense that it preserves the primitive projective “relations be-
tween figures” (Figurenverhältnisse) in the two systems. This is established by 
Hesse in terms of a number of “fundamental theorems” (Fundamentalsätze) 
that show how primitive projective properties of the objects in the first system 
correspond to properties of pairs of points on the fundamental line. One such 
theorem concerns the correspondence between the collinearity of points in the 
plane and the involution between point pairs on the projective line: any three 
collinear points P P P1 2 3, ,  correspond to three pairs of points p p p1 2 3, ,  on the pro-
jective line that are in involution (and vice versa).23

As a consequence of this and other fundamental principles, it follows that any 
projective theorem about the configurations of the one domain can be translated 
into a theorem about the configurations the other domain and vice versa. As in 
the case of duality, the method of transfer is thus primarily a method of unifica-
tion in geometry. It allows one to reapply proven results about a given field to the 
objects of a different field. Or, as Hesse puts it:

The principle of transfer developed here gives the opportunity to discover 
a large number of new theorems from the geometry of the straight line. It 
presents a recommendable task . . . to prove these theorems not directly in iso-
lation, but to invent proof methods that let the theorems appear as evident in 
combination. (Hesse 1866a, 20–​21)

Hesse’s method of transfer used for this identification of the projective geometry 
of the plane with that of the fundamental line is closely related to Plücker’s ap-
proach to linear reciprocity. In fact, in his Vier Vorlesungen aus der analytischen 
Geometrie (1866b), Hesse explicitly mentions Plücker’s method of reinterpreting 
equations by the substitution of point coordinates by line coordinates. This 

	 22	 The points on the fundamental line are determined in terms of their distance λ from a given 
point on the line.
	 23	 A second result states that all double points on the fundamental line correspond to the points 
lying on a given conic in plane and vice versa (Hesse 1866a, 17–​20).
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method provides a duplication of dual theorems based on the reinterpretation of 
all formulas used in the proof of a theorem. However, Hesse argues:

This is a very cumbersome approach, however, to reach from a given theorem 
to its corresponding one. Geometry therefore replaces the mediating formulas 
by transfer principles, through which one can immediately deduce the corre-
sponding theorem from a given theorem. In our case this principle is the well-​
known law of reciprocity. (Hesse 1866b, 32)

This passage clearly indicates the close connection between Hesse’s under-
standing of transfer principles and Plücker reciprocity. Whenever a given 
equation representing a mathematical concept can be reinterpreted in 
Plücker’s sense, one can also construct a transfer principle that directly maps 
the objects of the first domain to those of the second domain. In the case of a 
dual transformations (such as Poncelet’s polar transformations), this transfer 
principle is the principle of reciprocity in Plücker’s sense. However, Hesse 
points out, the method is more general than reciprocity and applies also to 
non-​dual mappings, such as the one previously described. Hesse specifies the 
general principle as follows:

In all cases where two geometrical theorems result from different geometrical 
interpretations of the same analytic formula, a transfer principle can be discov-
ered that replaces the proving formulas in a large number of cases. (1866b, 32)

Thus, according to him, the possible reinterpretation of a given analytic ex-
pression in different coordinate systems indicates the existence of a structure-​
preserving mapping between them that can also be defined analytically. The fact 
that theorems about different geometrical objects can be proven from the “the 
same analytic source” shows that one can construct a mapping between these 
domains that induces a direct translation between the theorems.

Before turning to a closer discussion of Klein’s Erlangen program in the next 
section, let me quickly take stock here. Given the methodological developments 
in projective geometry already surveyed, one can identify two general struc-
turalist ideas implicit in the work of Poncelet, Plücker, and Hesse. The first one 
concerns a deliberate indifference with respect to the nature of the primitive 
spatial elements used for the construction of geometrical configurations and in-
stead a focus on their “invariant form.” The second one concerns the emphasis 
on structure-​preserving mappings that allow one to transfer the structure of one 
geometrical system to a different system. As will be shown in the following sec-
tion, Klein’s work presents a group-​theoretical reformulation and further gener-
alization of both ideas.
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3.  Klein’s Erlangen Program

Klein’s program was first outlined in his “Vergleichende Betrachtungen über 
neuere geometrische Forschungen” (1872), a programmatic pamphlet dis-
tributed during his inauguration speech at the University of Erlangen.24 Klein 
presents here a novel method to study and to classify different geometries in 
terms of their corresponding transformation groups. While there is scholarly de-
bate on the actual impact of Klein’s article for subsequent research in geometry, 
it is clear that the Erlangen program contributed significantly to a new under-
standing of the subject matter of geometrical theories.25 In the following, I will 
restrict my attention to the presentation of some of the key concepts developed 
in 1872 (as well as in related writings) and discuss how they are related to the 
developments in projective geometry sketched above.

3.1.  A Group-​Theoretic Approach

Klein’s approach is motivated by a number of seemingly disconnected fields 
and methods in 19th-​century geometry. Geometry, he writes, “which is after all 
one in substance, has been only too much broken up in the course of its recent 
rapid development into a series of almost distinct theories, which are advancing 
in comparative independence of each other” (1872, 216).26 Klein’s aim in 1872 
was therefore to formulate a “general principle” that allows for the comparison 
and classification of these different geometrical fields. This was, roughly put, the 
methodological idea that each geometry should be identified with a space and a 
group of transformations acting on it that leave the relevant geometrical proper-
ties invariant.

This algebraic approach to studying the properties of figures clearly brought 
with it a more abstract conception of the subject matter of geometrical theories. 
Two issues are noteworthy here. The first point concerns Klein’s specific un-
derstanding of a geometrical space. It is clear from Klein (1872) as well as from 

	 24	 A revised version of the article was published in Mathematische Annalen in 1893 and then again 
in 1921 in the first volume of Klein’s collected works (Klein [1921–​23] 1973). In the following, I quote 
from the English translation by Haskell published in 1892/​1893.
	 25	 Compare Rowe (1989) on this point. See Wussing (2007) for a study of the influence of Klein’s 
approach for the subsequent development of abstract group theory. Compare, in particular, Hawkins 
(1984) and Birkhoff and Bennett (1988) for partly conflicting assessments of the relevance of Klein’s 
article for subsequent geometrical research.
	 26	 This is true despite the fact that projective geometry has developed into a fundamental geomet-
rical theory in work by Cayley and Klein in the sense that it not only characterizes the non-​metrical 
properties of configurations but can also be used to represent the metrics of both Euclidean and non-​
Euclidean geometries. See, in particular, Biagioli (2016) for a discussion of Cayley’s work and Klein’s 
projective model of non-​Euclidean geometry.
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related writings that space is not primarily meant to be physical or intuitive in 
his account. Rather, geometries study the configurations in formal “manifolds” 
of arbitrary dimensions “that have been developed from geometry by making 
abstraction from the geometric spatial image, which is not essential for purely 
mathematical investigations” (Klein 1872, 216). Klein gives an explicit charac-
terization of the notion in his article “Über die sogenannte Nicht-​Euklidische 
Geometrie (2. Aufsatz)” (1873), which was also written in 1872:

If n variables x x xn1 2, ,...,  are given, the infinity to the nth value systems we ob-
tain if we let the variables x independently take the real values from −∞ to +∞, 
constitute what we shall call, in agreement with usual terminology, a manifold 
of n  dimensions. Each particular value (x x xn1 2, ,..., ) is called an element of the 
manifold. (Klein 1873, 116)

The basic spatial elements of a geometry are therefore not genuine geomet-
rical objects such as points or lines, but rather tuples of numbers assigned to the 
variables in question.27 Klein’s approach is in line here with the purely analytic 
approach in geometry of Plücker and Hesse discussed in the previous section. 
As Klein points out in 1872, the reference to genuinely spatial concepts or spa-
tial representation is to be used only for pedagogical purposes. In his own terms, 
given this purely analytic approach of manifolds, “space-​perception has then 
only the value of illustration” (Klein 1872, 244).

The second issue to be mentioned here concerns Klein’s understanding of the 
notion of geometrical transformations. In his view, one can take “the totality of 
configurations in space as simultaneously affected by the transformations, and 
speak therefore of transformations of space” (Klein 1872, 217). Transformations 
in this sense can include those between spatial elements of the same kind (such 
as transformations between points), but also those with a change of spatial elem-
ents (such as dual mappings).

While Klein gives only an informal description of such spatial transform-
ations and of the geometrical properties preserved by them, his focus on numer-
ical manifolds suggests that they are also treated analytically. In fact, while Klein 
remains silent on this issue in 1872, he gives a detailed discussion of the analytic 
representation of various transformations in related writings. For instance, in 
his 1873 paper, transformations of manifolds are described analytically in the 
following sense:

	 27	 In his discussion of manifolds of arbitrary dimensions in 1872, Klein refers both to Hermann 
Grassmann’s Ausdehnungslehre as well as to Bernhard Riemann’s theory of general manifolds. See 
Scholz (1980) for a historical survey of the development of the concept.
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A transformation of a manifold into itself is understood as the process that 
leads from every element to one corresponding element (or several). One may 
want to specify the transformation in terms of n equations, in which the cor-
responding element depends on the respective original one. The type of equa-
tions and their respective relation is at first irrelevant for the concept. In the 
following, we will always presuppose, however, that they are invertible. The in-
verted equation presents what should be called inverted transformation. (Klein 
1873, 117)

Transformations of a space are thus represented as transformations of coordi-
nates within one or between distinct coordinate systems, specified in terms of a 
number of analytic or algebraic equations describing the functions between the 
coordinates.28

Klein’s work after 1872 also contains an extensive discussion of the geomet-
rical transformations first mentioned in the Erlangen program. Consider his 
monograph Elementarmathematik vom höheren Standpunkte aus of 1908. The 
“analytic presentation” is described here as follows:

The analytic expression of a point transformation is what analysis calls the in-
troduction of new variables  ′x , ′ ′y z, :

We can interpret such a system of equations geometrically in two ways, I might 
say actively and passively. Passively, it represents a change in the coordinate 
system, i.e., the new coordinates ′ ′ ′x y z, ,  are assigned to the point with the 
given coordinates x y z, , .  .  .  . In contrast with this, the active interpretation 
holds the coordinate system fixed and changes space. To every point x y z, , , the 
point ′ ′ ′x y z, ,  is made to correspond, so that there is, in fact, a transformation 
of the points in space. It is with this conception that we shall be concerned in 
what follows. (Klein 2016, 81–​82)

	 28	 Sophus Lie’s Theorie der Transformationsgruppen presents the first systematic treatment of 
the notion of a spatial transformation (Lie 1893). Compare Hawkins (2000) for a detailed study of 
Lie’s work.
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Klein’s distinction between an “active” and a “passive” interpretation of the equa-
tions presenting a transformation is interesting here. The latter account seems 
similar to Plücker’s account of linear reciprocity, and more specifically, to Hesse’s 
analytic presentation of transfer principles between different geometrical fields. 
The former, active account specifies transformations relative to a given coordi-
nate system as a permutation of all points that also induces a transformation of 
all configurations in the manifold.

Returning to Klein’s 1872 article, it is plausible to assume that this under-
standing of analytically defined coordinate transformations within a fixed coor-
dinate system also forms the background of his Erlangen program. Klein argues 
here that one can view different geometrical fields such as Euclidean or projec-
tive geometry as determined by a class of relevant transformations. These are the 
class of isometries in the first case and the projections (including collineations 
and dual transformations) in the second case. Moreover, given that the trans-
formations of such a class always have inverses and that any two of them can 
be merged into a new composed transformation, it follows that these classes—​
equipped with a suitable composition operator—​also form groups in the alge-
braic sense of the term. Compare Klein on this point:

The most essential idea required in the following discussion is that of a group 
of space-​transformations. The combination of any number of transformations 
of space is always equivalent to a single transformation. If now a given system 
of transformations has the property that any transformation obtained by com-
bining any transformations of the system belongs to that system, it shall be 
called a group of transformations. (Klein 1872, 217)29

Klein mentions a number of geometrical transformations that form a group in 
this sense: the class of all movements in a given space; the class of rotations rela-
tive to a given point; the class of collineations; as well as the group consisting of 
all linear substitutions that leave the metric properties unchanged. Klein calls 
the latter group the “principal group” (Hauptgruppe) of a space and the corre-
sponding geometrical discipline “elementary geometry.” Dual transformations 
in the sense specified in the previous section are also mentioned by Klein in this 
context. In particular, he argues that while such transformations do not form a 

	 29	 It should be noted that Klein does not state the modern axiomatic conditions for abstract groups 
here (including the associativity of the group operations and the existence of a neutral element). His 
specification of the concept of groups of transformations in terms of a closure condition for the com-
position of transformations is directly based on Jordan’s theory of permutation groups given in his 
Traité. Compare Wussing (2007, 186) for a detailed survey of Klein concept of groups and his mathe-
matical background.
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group by themselves, the class of collineations and dual mappings does form a 
group (Klein 1872, 217).

Given this conceptual framework, Klein showed in 1872 that groups of 
transformations allow one to specify the notion of geometrical properties of 
configurations in a given manifold. More specifically, his proposal was to char-
acterize the relevant properties of a given geometry in terms of an invariance 
condition specified relative to a group. Thus, given a geometry X with a transfor-
mation group GX, properties of figures are specified as geometrically relevant if 
they are preserved under the transformations of group GX. This approach is first 
characterized informally with respect to the invariance relative to the “principal 
group”:

Geometric properties are not changed by the transformations of the principal 
group. And, conversely, geometric properties are characterized by their re-
maining invariant under the transformations of the principal group. For if we 
regard space for the moment as immovable, etc., as a rigid manifoldness, then 
every figure has an individual character; of all the properties possessed by it as 
an individual, only the properly geometric ones are preserved in the transform-
ations of the principal group. (Klein 1872, 218)

As Klein points out, this invariance-​based method not only applies to “elemen-
tary geometry” of three-​dimensional space, but more generally to any geometry 
of a formal manifold of arbitrary dimensions that can be characterized in terms 
of a group of transformations.

This shift of attention from concrete figures to manifolds leads to a “general-
ization of geometry” that is significant in at least two respects. First, Klein’s ap-
proach led to the new situation that different (and partly conflicting) geometrical 
fields were to be treated on equal footing, that is, as equally justified. Or, as Klein 
puts it, “There is no longer, as there is in space, one group distinguished above 
the rest by its signification; each group is of equal importance with every other” 
(Klein 1872, 218). Second, the group-​theoretic method implies a radically new 
conception of the nature of a geometrical theory. A geometry is now conceived as 
a tuple consisting of a manifold (of a given dimensionality) and a group of trans-
formations acting on this manifold. Consequently, the general task of a geom-
eter is to study those properties of geometrical configurations that are preserved 
under the transformations in question. Put differently, given this new frame-
work, geometry turns into an invariant theory for the given group:

Given a manifold and a group of transformations of the same: to investigate 
the configurations belonging to the manifold with regard to such properties 
as are not altered by the transformations of the group. . .  . Given a manifold 
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and a group of transformations of the same: to develop the theory of invariants 
relating to that group. (Klein 1872, 218–​219)30

As we saw previously, the transformations in question are generally under-
stood as coordinate transformations expressed by a number of analytic equa-
tions. Consequently, geometrical invariants also have to be specified analytically, 
namely in terms of equations between coordinates and constants representing 
a geometrical concept that remain preserved under the transformations of a 
given group.

While Klein does not give a more detailed discussion of the invariant theory 
related to his group-​theoretic approach in 1872, it is developed in his subsequent 
work.31 For instance, Klein’s Elementarmathematik contains a section titled 
“Group Theory as a Geometrical Principle of Classification” where the analytic 
invariant theory of various geometries is discussed in further detail. Klein shows 
here that elementary or “metrical” geometry is characterized by the group of cer-
tain special linear substitutions corresponding to the principal group specified in 
1872. Geometrical invariants are then given by analytic expressions that remain 
unaltered by such substitutions. In Klein’s terms, “the geometry is thus the invar-
iant theory of these linear substitutions” (Klein 2016, 153).

3.2.  Transfer by Mapping

Klein’s main focus in 1872 was not the study of particular geometries in isola-
tion but rather the comparison of different theories in terms of their transfor-
mation groups. Thus, group theory was to provide a unifying approach that 
allowed for the classification of different geometrical systems studied at the time. 
More specifically, Klein’s idea to introduce an order of generality between dif-
ferent geometries is based on a relation between their transformation groups. 
Recall that geometries are conceived in Klein’s program as consisting of a mani-
fold and a group of transformations acting on it. Given two such geometries, say  
A = < >M A,  and B = < >M B, , geometry B can be characterized as a subgeometry 
of A if transformation group B forms a subgroup of A. It follows from this that 
every invariant property studied in A (i.e., relative to the transformations in A) is 

	 30	 As is shown in Wussing (2007), Klein’s use of the notion of invariants can be seen as a conces-
sion to the earlier invariant-​theoretic approach in geometry, e.g., in work by Cayley and Clebsch, that 
strongly influenced Klein’s own group-​theoretic approach.
	 31	 Lie’s Theorie der Transformationsgruppen contains a detailed presentation of invariants of trans-
formation groups (Lie 1893). Compare also Fano (1907) for a study of the invariants of different 
transformations groups discussed by Klein and others.
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also an invariant in B but not vice versa. Moreover, all theorems of A turn out to 
be theorems of B.

Klein discusses a number of geometrical theories in 1872 that can be ordered 
in this way in terms of the relation of subgroups or group extensions. His ge-
neral approach is to construct subgroups of a given transformation group by 
restricting the latter to transformations that leave invariant a given spatial ele-
ment or a given configuration (such as a conic section). The main example in 
this respect concerns “elementary geometry,” specified by the principal group of 
geometrical transformations. It is shown that the group of projective transform-
ations forms an extension of this group. It follows from this that every property 
of projective geometry is also a property of elementary geometry but not vice 
versa. Compare Klein on this point:

We inquire what properties of the configurations of space remain unaltered by 
a group of transformations that contains the principal group as a part of itself. 
Every property found by an investigation of this kind is a geometric property of 
the configuration itself; but the converse is not true. (Klein 1872, 220)

Thus, while the projective properties—​including metrical properties such as 
the cross-​ratio for a given set of points—​are also invariant under the transform-
ations of the principal group, properties such as sameness of lengths of segments 
are not invariant in the projective setting.32

A second approach to interrelate different geometries in Klein (1872) concerns 
so-​called transfer principles. Such principles are introduced by Klein as a general 
method to show the equivalence of geometries in section 4, titled “Übertragung 
durch Abbildung.” The method of “transfer by mapping” is informally character-
ized here as follows:

Suppose a manifoldness A has been investigated with reference to a group B. If, 
by any transformation whatever, A be then converted into a second manifold-
ness ′A , the group B of transformations, which transformed A into itself, will 
become a group ′B , whose transformations are performed upon ′A . It is then a 
self-​evident principle that the method of treating A with reference to B at once 
furnishes the method of treating ′A  with reference to ′B , i.e., every property of 
a configuration contained in A obtained by means of the group B furnishes a 
property of the corresponding configuration in ′A  to be obtained by the group

′B . (Klein 1872, 223)

	 32	 By the same method, Klein shows that various non-​Euclidean geometries form subgeometries 
of projective geometry. See, in particular, Biagioli (2016) and Torretti (1978) on Klein’s discussion of 
non-​Euclidean geometries and the relation to Arthur Cayley’s work a generalized metric. Compare 
Brannan et al. (2011) for a modern presentation of the hierarchy of Kleinian geometries.
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To paraphrase Klein’s approach in modernized terms: consider two geometries, 
both understood as tuples consisting of a manifold and a group of transform-
ations acting on it, that is, G  = < >A B,  and ′G  = < ′ ′>A B, , respectively. A transfer 
principle between G  and ′G  is a mapping between the manifolds f: A → ′A  that 
induces an isomorphism between the corresponding groups B and ′B  acting on 
them. It follows that every invariant property of configuration in A determined 
with respect to the transformations in B can be mapped to a corresponding 
invariant property of configurations in ′A  with respect to ′B . Moreover, the 
transfer principle allows one to translate every theorem of geometry G  into a cor-
responding theorem of geometry  ′G .

Given Klein’s account of transfers by representation, several points of com-
mentary are in order. First, principles of this form play a crucial role in his ge-
neral program to classify different geometrical fields investigated at the time. He 
discusses a number of concrete examples of such principles that connect different 
theories in his 1872 article. This includes a transfer principle between the “theory 
of binary forms” given by the group of “∞3 linear transformations” of a straight 
line and the “projective geometry of systems of points systems on a conic” in 
the plane (determined by the linear transformations of the conic into itself). The 
transfer principle in question, Klein argues, preserves the relevant properties of 
configurations in the two domains. As a consequence, the two geometries are 
shown to be equivalent:

The theory of binary forms and the projective geometry of systems of points on 
a conic are one and the same, i.e., to every proposition concerning binary forms 
corresponds a proposition concerning such systems of points, and vice versa. 
(Klein 1872, 223)33

This account of transfer principles presented in 1872 is strongly influenced 
by preceding geometrical research.34 In particular, Klein explicitly refers to 
Lie’s work as well as to his own article “Über Liniengeometrie und metrische 
Geometrie” (1872a) for a discussion of another transfer principle connecting 
line geometry with the metric geometry in four variables. As is shown there, this 
mapping allows one to “transfer the complete content of metrical geometry to 
line geometry” and thus induces a “translation into the language of line geom-
etry” (Klein 1872a).

Moreover, the discussion of transfer principles in Klein’s 1872 paper was 
strongly influenced by the developments in projective geometry surveyed in the 

	 33	 A second, analogous example concerns the elementary geometry of the plane and the projective 
geometry of a quadratic surface with a given fixed point (Klein 1872, 224).
	 34	 See, in particular, Rowe (1989) for a detailed study of Klein’s work on transfer principles and its 
mathematical background.
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previous section, in particular, by Plücker’s and Hesse’s work on generalized rec-
iprocity and transfer principles. Interestingly, in Klein’s article, the very notion of 
“transfer” is first mentioned in the context of his discussion of the development 
of projective geometry:

Every space-​transformation not belonging to the principal group can be used to 
transfer the properties of known configurations to new ones. Thus we apply the 
results of plane geometry to the geometry of surfaces that can be represented 
upon a plane; in this way long before the origin of a true projective geometry 
the properties of figures derived by projection from a given figure were inferred 
from those of the given figure. (Klein 1872, 220–​221)35

How are the transfer principles developed in projective geometry related to 
Klein’s own use of “transfers by mapping”? As we saw, transfers were introduced 
in Plücker’s and Hesse’s work as mappings between different coordinate systems 
that induce a translation of the theorems about the projective properties of fig-
ures. Klein’s method generalizes such principles in the sense that the structure 
preserved by them is now expressed group-​theoretically, that is, in terms of an 
isomorphism relation between the groups of transformations associated with 
two manifolds.36

A third point to mention here also concerns the projective background of 
Klein’s concept of transfers. Section 5 of the article, titled “On the Arbitrariness 
in the Choice of the Space Element,” shows that such principles can be used 
to connect geometries describing manifolds with different spatial elements 
(Raumelemente) such as points, lines, higher-​order curves, etc. Compare Klein 
on this point:

As element of the straight line, of the plane, of space, or of any manifoldness to 
be investigated, we may use instead of the point any configuration contained in 
the manifoldness, a group of points, a curve or surface, etc. As there is nothing 
at all determined at the outset about the number of arbitrary parameters upon 
which these configurations shall depend, the number of dimensions of our line, 

	 35	 As he points out, the transfer of geometrical properties is then generalized in work by Poncelet 
and others in terms of the introduction of dual transformations, i.e., those based on a change of the 
elements of space that preserve several symmetrical incidence properties (Klein 1872, 221).
	 36	 Klein, in his 1872 article, does not explicitly use the notion of group isomorphism. However, it is 
clear from his related writings from the time that this notion or, in his terms, the “similarity” between 
groups of transformations was assumed in the background of his discussion of transfer principles. 
See his definition of this notion given in 1873: “Two transformation groups are said to be similar if 
we can associate the transformations of the one group to the transformations of the other group such 
that composition of corresponding transformations yields corresponding transformations” (118).
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plane, space, etc., may be anything we like, according to our choice of the ele-
ment. (Klein 1872, 224)

The indifference to the basic nature of geometrical objects expressed here 
clearly echoes Plücker’s idea of a generalized concept of coordinates and the 
flexibilization of the basic elements of space that comes with it. As we saw in the 
previous section, Plücker thought of the dimensionality of a space as determined 
by the number of independent variables needed to present the basic spatial elem-
ents in analytic terms. Thus, for instance, a plane is two-​dimensional if points are 
assumed as the basic elements; it is five-​dimensional if conic sections are taken as 
the basic elements. This is precisely the idea also underlying Klein’s discussion of 
manifolds in 1872.37

Given this Plückerian account of “spatial elements,” Klein’s central observa-
tion is that the choice of the basic elements and thus of the dimensionality of a 
given manifold is of secondary importance for the investigation of geometries. 
What is relevant, from a mathematical point of view, are their group of trans-
formations and the algebraic relations between them. Compare again Klein on 
this central “structuralist” insight:

But so long as we base our geometrical investigation on the same group of 
transformations, the geometrical content [Inhalt der Geometrie] remains un-
changed. That is, every theorem resulting from one choice of space element will 
also be a theorem under any other choice; only the arrangement and correla-
tion of the theorems will be changed. The essential thing is thus the group of 
transformations; the number of dimensions to be assigned to a manifold is only 
of secondary importance. (Klein 1872, 224–​225)

A number of concrete examples of geometries of manifolds with different spa-
tial elements are mentioned by Klein whose equivalence can be established in 
terms of transfer principles. One such example concerns a mapping between the 
system of pairs of points on a conic and the plane with straight lines as the basic 
elements. This mapping assigns to each pair of points ( , )λ λ1 2  on a conic the 
line that intersects the conic at points ( , )λ λ1 2  (and vice versa).38 It thus induces 
an isomorphism between the group of linear transformations of the conic in it-
self and the group of linear transformations of the lines in the plane that leave 
the conic invariant. Interestingly, in the discussion of this and several related 

	 37	 In fact, in a corresponding note in his article, Klein explicitly refers to Plücker’s work on “how to 
regard actual space as a manifoldness of any number of dimensions by introducing as space-​element 
a configuration depending on any number of parameters, a curve, surface, etc.” (Klein 1872, 245).
	 38	 See Fano (1907, 358–​359) for a detailed analytic presentation of this mapping and the resulting 
equivalence theorem.
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results, Klein explicitly mentions Hesse’s work: “The correlation here explained 
between the geometry of the plane, of space, or of a manifoldness of any number 
of dimensions is essentially identical with the principle of transference proposed 
by Hesse (Borchardt’s Journal, vol. 66)” (Klein 1872, 225).

4.  Structuralist Themes

The geometrical research surveyed in the last two sections strongly contributed 
to a general structural turn in 19th-​century mathematics. In particular, the sys-
tematic use of transformations and transfer principles both in projective ge-
ometry and in Klein’s program brought with it a new conception of the subject 
matter of geometry: geometry was no longer understood as the study of concrete 
figures in intuitive space, but rather as a theory of abstract forms or invariant 
properties and thus as a branch of pure mathematics. Klein’s group-​theoretic 
classification of different geometrical fields in terms of transformation groups in 
1872 is often considered a culmination point of this development.39

How is the group-​theoretic approach in geometry related to modern debates 
on structuralism? It seems natural to describe Klein’s account as a kind of “meth-
odological structuralism,” a position first introduced by Reck with respect to 
Dedekind’s foundational work on analysis and arithmetic.40 This account differs 
from other philosophical theories of structuralism in the sense that it is more 
concerned with mathematical methodology than with metaphysical issues 
concerning the nature of structures. As Reck points out, structural methods in 
modern mathematics usually imply some form of abstraction from the subject 
matter or the particular nature of the objects described by a mathematical theory 
(Reck 2003, 371).41

Regarding Klein’s work, one can identify two different types of structural ab-
straction in his approach to geometry. The first type is specified relative to a given 
geometry and concerns the abstraction from particular configurations in order 
to study their invariant properties. The second type is related to Klein’s use of 
transfer principles. It concerns the abstraction from particular manifolds and 

	 39	 Compare, for instance, Tobies who writes that Klein’s Erlangen program “formed a deci-
sive turning point for the geometry of the 19th century. Klein’s use of the group concept supported 
approaches to structural mathematical thinking formed at the end of the 19th century. (Tobies 
1981, 36–​37, my trans.) See, in particular, Biagioli (2018) for a recent study of Klein’s geometrical 
structuralism.
	 40	 See, in particular, Reck (2003) as well as Reck and Price (2000) for a more general discussion of 
the position.
	 41	 Thus, methodological structuralism can be viewed as the philosophical analysis of styles of rea-
soning introduced in modern mathematics that allow the mathematician to abstract from particular 
representations of objects in a system by highlighting their purely structural features or properties.
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their basic spatial elements in order to identify the structural content shared by 
different geometries. In the remaining part of the chapter, I will analyze these 
two structuralist ideas in Klein’s work.

4.1.  Invariance and Structural Indiscernibility

A central “structuralist” idea underlying the geometrical developments previ-
ously sketched concerns the emphasis on invariant properties. Projective ge-
ometry in Poncelet’s Traité and in subsequent work was viewed as the study of 
properties of spatial configurations that remain invariant under different types 
of projections. Generally speaking, invariance criteria were used as a method to 
carve out those properties that are geometrically relevant. A second and related 
idea concerns the notion of the geometrical identity (or congruence) of figures. 
In Euclidean geometry, two figures are usually taken to be distinct if there exist 
some metrical properties that allow one to discriminate between them. From 
a projective point of view, however, the same two figures will be treated as in-
distinguishable in case there exists a projective transformation between them. 
Thus, the identity of figures is determined here in terms of a primitive concept of 
structure-​preserving transformations.

Obviously, these two ideas in projective geometry formed an important 
background for Klein’s own group-​theoretic approach. In fact, in his 1872 
paper, the issue of projective identity is explicitly mentioned in his discussion 
of the extension of the “principal group” by projective transformations. As 
Klein puts it:

But projective geometry only arose as it became customary to regard the orig-
inal figure as essentially identical with all those deducible from it by projection, 
and to enunciate the properties transferred in the process of projection in such 
a way as to put in evidence their independence of the change due to the projec-
tion. (1872, 221)

As was mentioned in section 2, the notion of projective identity discussed 
here was further generalized in work on duality and general reciprocity. Dual 
mappings between figures based on Poncelet’s theory of poles and polars allow 
one to identify symmetric incidence relations in a figure that are preserved by 
such transformations. Moreover, dual figures that share reciprocal properties are 
usually treated as identical. Compare again Klein on this point:

From the modern point of view two reciprocal figures are not to be regarded as 
two distinct figures, but as essentially one and the same. (1872, 221)
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Thus, in cases of dual figures, geometers abstract also from the particular nature of 
the basic elements of geometrical figures (e.g., points or lines in the case of plane 
geometry).

Arguably, the most systematic expression of these structuralist insights re-
garding the role of invariants and the nature of geometrical identity is developed 
in Klein’s program. As we saw, both notions are specified here relative to a given 
group of transformations. Thus, the “elementary” metrical properties of a figure 
in a given manifold are specified relative to the principal group, its projective 
properties are specified relative to the extended group of projections and so on. 
Related to this, a criterion of structural identity is given based on the transform-
ations of a given group.42

Expressed more formally in set-​theoretic terms, Klein’s account can be 
brought into the following form: let M  be a manifold and G  a group of trans-
formations f M M: →  acting on M :

Definition 1 (G-​property): A property P of figures in M  is a G-​property if is it 
invariant relative to G , i.e., for any F M1 ⊆ : if P F1( ) then for all  f G P f F∈ ( )( ): 1 .

Geometrical properties are conceived extensionally here as classes of 
configurations of a given manifold. A definition of geometrical identity or con-
gruence of figures can be given within the same framework:

Definition 2 (G-​congruence): Two figures F1, F2 ⊆ M are G-​congruent if there 
exists a transformation f ∈ G such that  f F F1 2( ) = .

This notion of G-​congruence can be viewed as an expression of the structural 
identity of figures: two congruent figures are identical with respect to their struc-
tural content or in terms of sharing the same geometrical properties. Similarly, 
the notion of a G-​property can be taken to express the structural properties of a 
given geometry in terms of an invariance condition.43

	 42	 In a recent analysis of the Erlangen program by Marquis, these two ideas are also emphasized 
as the philosophically relevant aspects of Klein’s approach: “(Transformation groups) constitute in a 
precise sense the algebraic encoding of a criterion of identity for geometric objects, or to be more pre-
cise for geometric object-​types. Second, the same transformation groups also encode a definite cri-
terion of meaningfulness for geometric predicates, or, equivalently, a definite criterion for geometric 
properties” (Marquis 2009, 12).
	 43	 Notice that, in both definitions, the notion of geometrical structure assumed here is strongly 
context-​relative. What counts as a structural property of the figures of a manifold depends critically 
on the particular transformation group associated with a geometry. Analogously, the congruence 
conditions for figures within a manifold are also specified in a given geometrical context. Thus, for 
instance, congruence in affine geometry is specified relative to the group of affine transformations; in 
Euclidean geometry, it is specified relative to the group of isometries, and so on.
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How is Klein’s view related to modern structuralism? Given the preceding dis-
cussion, several points come to mind here. First, Klein’s work on invariants under 
transformation groups seems closely connected to the structuralists’ focus on 
structural properties of mathematical objects. As mentioned in the introduction, 
one way to characterize the structuralist thesis is to say mathematical theories 
describe only structural properties of the objects of their subject domain.44 For 
instance, Benacerraf ’s “What Numbers Could Not Be” (Benacerraf 1965) first 
emphasized that Peano arithmetic is concerned only with the relations between 
numbers in ω-​sequences and not with particular set-​theoretic presentations of 
them. Klein’s approach is similar to Benacerraf ’s emphasis on purely structural 
properties. In fact, the former’s proposal to think of geometrical properties of 
figures as invariants relative to a transformation group can be viewed as an early 
attempt at a mathematically precise characterization of the notion in the context 
of geometry.

A second point to mention here concerns Klein’s understanding of the con-
gruence of geometrical configurations. His account is similar in several respects 
to recent philosophical work on structuralist identity criteria. We saw that two 
figures can be identified, according to Klein, in case there exists a transformation 
of the elements of a space that maps one figure to the other one. One can think 
of such “internal” identity criteria specified relative to transformation groups in 
two ways, either (i) as expressing the sameness of figures in a manifold with re-
spect to their structural properties or (ii) as expressing the identity of the abstract 
form shared by these figures.45

The first reading connects Klein’s account with recent debates on the iden-
tity of structurally indiscernible objects mentioned in the introduction.46 Briefly 
put, this debate concerns the question whether a version of Leibniz’s principle of 
the identity of indiscernible objects presents an adequate identity criterion for 
structural mathematics. The principle in question holds that two mathematical 
objects are identical in case that they share the same structural properties. More 
formally, for any two objects X, Y and structural properties P:

	 X Y P P X P Y= ⇔ ∀ ⇔: ) )( ( ( ). � (PII)

Different versions of (PII) have been discussed in mathematical structuralism. 
For instance, it has been considered as a criterion of the identity of places in 
structures in Shapiro’s ante rem structuralism.

	 44	 Compare Korbmacher and Schiemer (2017) for a detailed study of the notion of structural 
properties in mathematics and its possible explications.
	 45	 Compare again Marquis (2009) for a more detailed discussion of this.
	 46	 See note 2 for references.
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A related discussion can be found in recent work on a structuralist account of 
mathematics based on homotopy type theory. Awodey (2014) emphasizes that in 
mathematical practice, isomorphic objects—​that is, objects that share the same 
invariant properties—​are usually not distinguished from each other. He takes 
the idea of treating isomorphic objects as identical to be a general “principle of 
structuralism” that should be reflected in any philosophical study of modern 
mathematics.47 Given Klein’s own remarks on the identity of figures stated pre-
viously, his approach seems well captured by Awodey’s understanding of math-
ematical identity. The identity of mathematical objects is thus not treated as a 
primitive notion but as a form of mathematical equivalence defined relative to 
transformation groups.

The second way to interpret Klein’s remarks on congruence, namely as the 
identity of the abstract shapes of configurations, is also related to non-​eliminative 
structuralism.48 To see this, compare Marquis’s insightful discussion of Klein’s 
notion of identity based on a distinction between “types” and “tokens”:

One aspect of this criterion of identity has to be emphasized immediately: what 
we are characterizing with its help are types of geometric figures, not tokens of 
these figures. . . . Thus, a transformation group specifies the types that are ad-
missible in a geometric space, it determines what there “is” or what can be in a 
space in an essential way. (Marquis 2009, 20–​21)

Thus, according to Marquis, the congruence of figures given by a transformation 
group induces an identity condition for types of figures. For instance, the study 
of dual transformations between the figures of a given manifold gives a notion of 
identity for the duality types of figures. Consequently, one can think of the sub-
ject matter of geometry not only in terms of the invariant properties, but also in 
terms of these congruence types of figures.

This philosophical interpretation of Klein’s approach presents a particular 
version of structuralism discussed in the recent literature, namely in re struc-
turalism.49 This is, roughly put, the view that mathematical theories describe 
abstract structures as their subject matter but that these structures do not 
exist independently of concrete representations instantiating them. One way 
of thinking about this dependence relation between a structure and its con-
crete instantiations is again based on the notion of structural abstraction. Thus, 

	 47	 Structural properties are characterized here in terms of the notion of isomorphism invariance as 
well as in terms of the definability in a type theoretic language (Awodey 2014).
	 48	 See Reck and Price (2000) for a general overview of different structure theories.
	 49	 Compare Shapiro (1997) for a closer discussion of in re as opposed to ante rem structuralism.
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abstract structures are said to be gained from concrete mathematical systems by 
abstracting away all non-​relevant properties of the objects in question.50

The Kleinian account of figure types can be understood as a version of in re 
structuralism concerning the subject matter of a particular geometry. As we saw, 
the study of a space relative to a group of transformations G allows one to treat 
the concrete configurations in the manifold as instances (or tokens) of more ge-
neral figure types. A figure type can be instantiated or exemplified by all figures 
occurring in the manifold that are congruent relative to G. However, the abstract 
types do not exist independently of their concrete representations but are func-
tionally dependent on them.51 Moreover, one can think of this dependence rela-
tion between types and concrete figures in terms of a notion of abstraction. As 
Marquis puts this: “A transformation group is a way to abstract types from spe-
cific tokens” (2009, 21). Given the set-​theoretical reconstruction of his approach, 
one can characterize this notion of Kleinian abstraction more formally in terms 
of the following abstraction principle:

Definition 3 (Kleinian abstraction): Given a geometry < >M G,  and the corre-
sponding congruence relation ~G, for any two figures F F M1 2, ∈  we have

	 Type Type1 2 1 2( ) ( ) ~ .F F F FG= ⇔ 	

Thus, the types of two figures in a manifold are identical in case that they are con-
gruent relative to the transformation group G.52

4.2.  Transfer Principles and Structural Equivalence

The second type of structural abstraction developed in Klein’s program is related 
to his use of transfer principles. As we saw, his method of transfer by mapping is 
closely motivated by previous work on the generalization of Poncelet-​Gergonne 
duality by Plücker and Hesse. In Klein’s work, the equivalence of two geometries 

	 50	 See, in particular, Linnebo and Pettigrew (2014) for a recent systematic study of a form of ab-
straction based structuralism.
	 51	 Compare again Marquis on this point: “Working with the transformations amounts to working 
with types instead of working with tokens. Notice, though, that the transformations are applied 
to tokens of these types and clearly the existence of the latter depends directly on the existence, or 
should we say the presence, of the former. Thus, a transformation group indicates the presence of ge-
ometric types whose existence depends on the existence of geometric tokens” (Marquis 2009, 21).
	 52	 Notice that this definition of abstraction is again relative to a given choice of a group of transform-
ations. Thus, what counts as an abstract type of a figure differs relative to different groups. To give a simple 
example: ellipses, parabola, and hyperbola are figure types relative to Euclidean geometry and the group 
of isometries. In contrast, in projective geometry, these types are reduced to the single, more general type 
‘conic’, given the fact that ellipses, parabola, and hyperbola are equivalent in the projective setting.
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is formulated in a group-​theoretic framework: a transfer is a structure-​preserving 
mapping between two manifolds that induces an isomorphism between the 
group of transformations acting on the manifolds. As Klein shows, this fact 
induces a translation between the theorems of the two geometries in question. 
While his own discussion of transfer principles remains rather schematic in his 
1872 article, one can give the following reconstruction of his approach:

Definition 4 (Equivalent geometries):  Two geometries <M, G> and < ′>′M G,  
are equivalent if there exists a bijection F: M → ′M  and a group isomorphism 
α: G G→ ′ induced by F such that for all x ∈ M and for all g ∈ G: F(g(x)) = (α(g))
(F(x)).

A transfer principle in this group-​theoretic sense is thus a mapping between 
two manifolds that allows one to construct an isomorphism between two trans-
formations groups that preserves the group actions on the respective manifolds 
(see Figure 2).53

Given Klein’s approach, two points of commentary are in order here. First, 
notice that by identifying geometries based on their isomorphic transformation 
groups, one clearly abstracts from the particular nature of the basic objects of 
a geometry and instead focuses on its general invariant form. The abstraction 
involved here is more general, however, than the one described in the previous 
section. It concerns not the specific character of particular figures in a given 
manifold, but rather the manifolds themselves. In order to grasp the “real con-
tent” of a given geometry, Klein argues, the specific character of the spatial elem-
ents in the domain is irrelevant. What is relevant is the structural content of a 
geometry characterized by its transformations group.54

	 53	 Given that α is a group isomorphism, also the composition of transformations as well as the in-
verse function on transformations are preserved.
	 54	 Compare Marquis (2009) for a similar assessment of Klein’s approach.

F

x

g

y

F

M Mʹ

yʹ

α

α(g)

xʹ

Figure 2  A transfer principle between manifolds M and M'
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Moreover, given Klein’s indifference to the basic ontology of geometrical 
objects, his account of transfer principles can be viewed as a general criterion 
for the structural equivalence of geometries. To use one of his own examples, 
the theory of binary forms and the projective geometry of points on a conic are 
taken to be equivalent in the sense that they share the same structural content, 
independent of their particular geometrical domains. This sameness of structure 
is expressed by the fact that their corresponding groups or transformations are 
isomorphic (or, in Klein’s terms, “similar”).

How is the structuralism implicit in Klein’s account of transfer principles re-
lated to contemporary philosophy of mathematics? Surprisingly, there is still yet 
little discussion on possible criteria of the structural equivalence of mathematical 
theories in the present debate. As we saw in the previous section, structuralists 
are mainly concerned with questions regarding the nature of abstract structures 
and, to a lesser degree, with the question of when two structures should be taken 
to be equivalent.55 Nevertheless, there is a close connection between Klein’s ap-
proach and subsequent developments in category theory. In fact, category theory 
is often considered as a “conceptual extension” or “generalization” of Klein’s pro-
gram. Consider, for instance, the following well-​known passage from Eilenberg 
and Mac Lane’s article “General Theory of Natural Equivalences” of 1945:

This may be regarded as a continuation of the Klein Erlanger Programm, in the 
sense that a geometrical space with its group of transformations is generalized 
to a category with its algebra of mappings. (237)

The relation between the study of categories and Klein’s program expressed here 
seems to be this: in Klein’s account, the structure of a geometry is expressed in 
terms of the group of transformations acting on a given manifold. Similarly, cat-
egory theory can be understood as the study of particular categories in terms 
of their objects and structure preserving mappings.56 As in Klein’s account, the 
category-​theoretic study of objects such as graphs or monoids can be under-
stood as the study of the invariant properties expressible in terms of structure-​
preserving mappings between these objects.

I cannot develop any further here the question in what sense category theory 
can be viewed as a generalization of Klein’s group-​theoretic approach in geom-
etry.57 However, it will be interesting to point to two connections between Klein’s 
conceptual approach and an account of mathematical structuralism motivated 

	 55	 See, in particular, Resnik (1997) and Shapiro (1997) on the characterization of the equivalence 
of mathematical structures based on the notion of definitional equivalence.
	 56	 See Awodey (2010) for a textbook presentation of category theory.
	 57	 See, in particular, Marquis (2009) for an extensive study of this question and the historical de-
velopment of category theory more generally.
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by category theory.58 A first point of contact between Klein’s account and catego-
rical structuralism concerns the indifference with respect to the nature of mathe-
matical objects considered. Categorical structuralists explicitly share Klein’s view 
that what matters in mathematics are not the particular mathematical objects 
or their set-​theoretic representations but rather their “invariant form.” Thus, the 
objects in a particular category are not supposed to have any properties other 
than those specifiable in terms of mappings between them. Compare Awodey on 
this structuralist conception of objects:

This lack of specificity or determination [of particular objects] is not an acci-
dental feature of mathematics. . . . Rather it is characteristic of mathematical 
statements that the particular nature of the entities involved plays no role, but 
rather their relations, operations, etc.—​the “structures” that they bear—​are 
related, connected, and described in the statements and proofs of theorems. 
(2004, 59)

The second point of contact concerns the notion of the structural equivalence 
of theories. We saw that Klein’s motivation for his Erlangen program was not to 
study geometries in isolation but to compare different geometries investigated at 
the time in terms of their transformation groups. Similarly, research in category 
theory is usually not confined to the isolated study of particular mathematical 
categories but mainly concerns the study of relations between different catego-
ries. The central concept used for this task is that of a functor, i.e., a structure-​
preserving mapping between categories:

Definition 5 (Functor): A functor between categories C and D is a mapping F: C 
→ D of objects to objects and arrows to arrows such that

(a)	 F f A B F f F A F B( : ) ( ) : ( ) ( )→ = →

(b)	 F A F A( ) ( )1 1=

(c)	 F g f F g F f( ) ( () ) =

A functor is a mapping between two categories that leaves invariant the do-
main and codomains of mappings, the identity mappings, and the composi-
tion of mappings. Consequently, each categorical property specifiable in the 

	 58	 See, for instance, Awodey (1996) and McLarty (2004) for different versions of categorical 
structuralism.
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one category will be transferred by the functor into a categorical property of the 
objects in the second category (see Awodey 2010, 8–​9).

It seems natural to think of functors as a mathematical generalization of 
Klein’s notion of transfers. We saw earlier that Klein’s Erlangen program gives 
an account of the “essential sameness” of geometries in terms of transfer prin-
ciples. A plausible category-​theoretic reconstruction of this Kleinian notion of 
inter-​theoretic equivalence can be given in terms of the concept of categorical 
equivalence:

Definition 6 (Equivalence of categories): An equivalence of categories C and D 
consists of a pair of functors E: C → D and F: D → C such that there are natural 
isomorphisms:59

	 E F D ≅ 1 	

	 F E C ≅ 1 	

Given the conceptual similarity between Klein’s program and category theory 
as a general framework for structural mathematics, one can consider this no-
tion of categorical equivalence as a generalization of Klein’s notion of structural 
equivalence.60 In both cases, the structure of a given theory is determined by the 
algebraic properties of mappings or transformations. Moreover, two theories are 
considered to be identical on a structural level in case there exists a mapping that 
allows one to transfer the algebraic structure of one theory to the other theory.61

5.  Conclusion

Klein’s Erlangen program of 1872 presents a landmark contribution to algebraic 
reasoning in geometry and, more generally, to the gradual implementation of 
a structural approach in modern mathematics. The aim in this chapter was to 
further substantiate these claims and to specify Klein’s particular version of geo-
metrical structuralism. As we saw, his account is based on the systematic use of 

	 59	 Notice that this notion is more general than the isomorphism of categories: functors E and F 
are not required to be inverses of each other, but only “pseudo-​inverses.” This means that for any D ∈ 
D: E ◦ F(D) ≅ D, not necessarily E ◦ F(D) = D. See Awodey (2010).
	 60	 See again Marquis (2009) for a closer discussion of the relation between Klein’s work and 
modern category theoretic concepts.
	 61	 See Barrett and Halvorson (2016) for a recent proposal to explicate the equivalence of scientific 
theories in terms of the notion of categorical equivalence.
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transformation groups in order to specify the invariants of configurations in a 
manifold as well as the structural content of geometries.

The chapter focused on two thematic points:  the first one was an impor-
tant strand of the mathematical background of Klein’s program, namely dif-
ferent proposals to generalize the principle of duality in 19th-​century geometry. 
This included Plücker’s purely analytic study of dualities between geometrical 
configurations of any dimension. It was shown how his approach led to the for-
mulation of different transfer principles in projective geometry. Moreover, Klein 
developed his own account of geometry in direct continuation with these “struc-
turalist” methods of Plücker and Hesse. Specifically, his approach presents a gen-
eralization by group-​theoretic means of two ideas first developed in preceding 
geometrical research, namely (i) the use of structure-​preserving mappings in rec-
iprocity and transfer principles and (ii) the focus on invariant form in the analytic 
presentation of geometrical figures and their properties.

The second aim in this chapter was to connect Klein’s conception of geometry 
with current debates on structuralism. As we saw, there are at least two points of 
contact between his ideas and more recent philosophical work. The first concerns 
Klein’s approach to specify geometrical properties and the notion of congruence 
(or equivalence) of configurations relative to a given group of transformations. 
This approach clearly mirrors recent work on structural properties and struc-
tural identity conditions for mathematical objects in non-​eliminative structur-
alism. More specifically, building on recent work by Marquis, we saw that Klein’s 
approach can be interpreted as a version of in re structuralism for geometry, ac-
cording to which the real subject matter of a geometry consists of abstract figure 
types specifiable in terms of a congruence relation.

The second point of contact concerns Klein’s proposal to specify the struc-
tural equivalence of two geometries based on transfer principles. This approach 
is closely related to later attempts to think about mathematical objects (and the 
equivalence of theories) in category-​theoretic terms. In particular, a natural gen-
eralization of Klein’s “transfer by mapping” approach can be given in terms of 
the notion of categorical equivalence of categories of theories. This analogy with 
modern category theory also suggests to treat Klein’s specific geometrical struc-
turalism as a precursor of more recent accounts of categorical structuralism, that 
is, attempts by Awodey and others to capture the philosophers’ talk about mathe-
matical structures in the language of category theory.
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6
 The Ways of Hilbert’s Axiomatics: 

Structural and Formal
Wilfried Sieg

It is a remarkable fact that Hilbert’s programmatic papers from the 1920s still 
shape, almost exclusively, the standard contemporary perspective of his views 
concerning (the foundations of) mathematics; even his own, quite different work 
on the foundations of geometry and arithmetic1 from the late 1890s is often un-
derstood from that vantage point. My essay pursues one main goal, namely, to 
contrast Hilbert’s formal axiomatic method from the early 1920s with his struc-
tural axiomatic approach from the 1890s. Such a contrast illuminates the circu-
itous beginnings of the finitist consistency program and connects the complex 
emergence of structural axiomatics with transformations in mathematics and 
philosophy during the 19th century; the sheer complexity and methodological 
difficulties of the latter development are partially reflected in the well known, but 
not well understood correspondence between Frege and Hilbert. Taking seri-
ously the goal of formalizing mathematics in an effective logical framework leads 
also to contemporary tasks, not just historical and systematic insights; those are 
briefly described as “one direction” for fascinating work.

1.  Context

Hilbert gave lectures on the foundations of mathematics throughout his career. 
Notes for many of them have been preserved and are treasures of information; 
they allow us to reconstruct the path from Hilbert’s logicist position, deeply 
influenced by Dedekind and presented in lectures starting around 1890, to the 
program of finitist proof theory in the early 1920s. The development toward proof 
theory begins, in some sense, in 1917, when Hilbert gave his talk “Axiomatisches 
Denken” in Zürich. This talk is rooted in the past and points to the future. As to 
the future, Hilbert suggested:

	 1	 Arithmetic is understood in this early work not as dealing with natural but rather with real 
numbers.
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We must—​that is my conviction—​take the concept of the specifically mathe-
matical proof as an object of investigation, just as the astronomer has to con-
sider the movement of his position, the physicist must study the theory of his 
apparatus, and the philosopher criticizes reason itself. (Hilbert 1918, 1115)

Hilbert recognized in the next sentence that “the execution of this program is at 
present, to be sure, still an unsolved problem.” If one takes formalization of math-
ematical proofs as an important part of this program, then initial tentative steps 
were taken at the 1904 International Congress of Mathematicians in Heidelberg. 
Hilbert presented there an equational fragment of elementary number theory 
and used its formal structure as the basis for a syntactic consistency proof (by 
induction on derivations).

Four years earlier, Hilbert had articulated the need of a consistency proof 
for arithmetic in the Second Problem of his famous talk at the International 
Congress of Mathematicians in Paris; he wrote:

I wish to designate the following as the most important among the numerous 
questions that can be asked with regard to the axioms: to prove that they are not 
contradictory, that is, that a finite number of logical steps based upon them can 
never lead to contradictory results. (Hilbert 1900b, 1104)

The axioms really concern analysis, i.e., the theory of complete ordered fields, 
and Hilbert points for their formulation to his paper Über den Zahlbegriff, which 
had been delivered at the meeting of the German Association of Mathematicians 
in September 1899. Its title indicates a part of the intellectual context, as 
Kronecker had published 12  years earlier a well-​known paper with the same 
title (Kronecker 1887). In that paper, Kronecker sketched a way of introducing 
irrational numbers, without accepting the general notion. It is precisely to the 
general concept that Hilbert wanted to give a proper foundation—​using the ax-
iomatic method. The axiom system Hilbert formulated for the real numbers is 
not presented in the contemporary formal-​logical style. Rather, it is given in an 
algebraic way and assumes that a system exists whose elements satisfy the axio-
matic conditions; consistency proofs were to discharge that assumption. Because 
of this existence assumption, Hilbert and Bernays called this methodological ap-
proach existential axiomatics in the 1920s; I want to call it structural axiomatics 
and contrast it with formal axiomatics.

Section 2 of this chapter discusses structural axiomatics, whereas section 4 is 
devoted to the emergence and significance of formal axiomatics. The recognition 
of the dramatic difference between the two and the very character of the former 
is crucial for elucidating the different perspectives Frege and Hilbert expressed 
in their correspondence concerning Hilbert’s Grundlagen der Geometrie; that 
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topic is treated in the short interlude between sections 2 and 4. It is ironic that 
Frege saw a way of formulating Hilbert’s view and the characteristic abstract ele-
ment of modern mathematics, but insisted on a narrow misunderstanding. What 
then is the methodological approach of structural axiomatics around 1900? How 
and for what purpose did Hilbert move, almost 20 years later, from it to formal 
axiomatics, using Frege’s work as mediated by Whitehead and Russell’s Principia 
Mathematica (1910–​13)?

2.  Structural Axiomatics

To begin with, Hilbert points out in Über den Zahlbegriff that the axiomatic way 
of proceeding is quite different from the genetic method used in arithmetic; it 
rather parallels the ways of geometry.

Here [in geometry] one begins customarily by assuming the existence of all the 
elements, i.e., one postulates at the outset three systems of things (namely, the 
points, lines, and planes), and then—​essentially after the model of Euclid—​
brings these elements into relationship with one another by means of certain 
axioms of linking, order, congruence, and continuity. [Hilbert should have in-
cluded the axiom of parallels.] (Hilbert 1900a, 1092)

The geometric ways are taken over for the arithmetic of real numbers or rather, 
one might argue, are reintroduced into arithmetic by Hilbert; after all, they do 
have their origin in Dedekind’s work on arithmetic and algebra. Hilbert frames 
and formulates the axioms for the real numbers in his (1900a) as follows: “We 
think a system of things, and we call them numbers and denote them by a, b, 
c. . . . We think these numbers to be in certain mutual relations, whose precise 
and complete description is obtained through the following axioms.” Then the 
axioms for an ordered field are formulated and rounded out by the requirement 
of continuity via the Archimedean principle and the axiom of completeness.

This formulation is not only in the spirit of the geometric ways, but mimics 
Hilbert’s contemporaneous and axiomatic presentation of Grundlagen der 
Geometrie, which is viewed even today as paradigmatically modern.

We think three different systems of things: we call the things of the first system 
points and denote them by A, B, C, . . . ; we call the things of the second system 
lines and denote them by a, b, c, . . . ; we call the things of the third system planes 
and denote them by α, β, γ, . . . ; . . . We think the points, lines, planes in certain 
mutual relations . . . ; the precise and complete description of these relations is 
obtained by the axioms of geometry. (Hilbert 1899, 437)
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Five groups of geometric axioms follow and, in the original Festschrift, the fifth 
group consists of just the Archimedean principle. In the French edition of 1900 
and the second German edition of 1903, the completeness axiom is included. 
The latter axiom requires in both the geometric and the arithmetic case that 
the assumed structure is maximal, i.e., any extension satisfying the remaining 
axioms must already be contained in it. Hilbert’s completeness formulations 
are frequently criticized as being metamathematical and, to boot, of a peculiar 
sort. However, they are just ordinary mathematical ones, if the abstract alge-
braic character of the axiom systems is kept in mind; they provide structural 
definitions of Euclidean space and the continuum, respectively. In the case of 
arithmetic we can proceed as follows: call a system Acontinuous when it satis-
fies the axioms of an ordered field and the Archimedean axiom, and call it fully 
continuous if and only if A is continuous and for any system B, if A B⊆  and B is 
continuous, then B A⊆ . So Hilbert’s axioms characterize fully continuous sys-
tems in analogy to the way in which Dedekind’s conditions characterize simply 
infinite ones in (Dedekind 1888), or in which the axioms of group theory char-
acterize groups.

Hilbert thought about axiom systems in this structural way already in his 
first lectures on the foundations of geometry. He had planned to give them in 
the summer term of 1893, but their presentation was shifted to the following 
summer term. Using the notions System and Ding so prominent in (Dedekind 
1888), he formulated the central question as follows:

What are the necessary and sufficient and mutually independent conditions a 
system of things has to satisfy, so that to each property of these things a ge-
ometric fact corresponds and conversely, thereby making it possible to com-
pletely describe and order all geometric facts by means of the above system of 
things? (Hilbert *1894, 72–​73)

At a later point, Hilbert inserted the remark that this system of things provides 
a “complete and simple image of geometric reality.” In the introduction to the 
notes for the 1898–​99 lectures Elemente der Euklidischen Geometrie, this ques-
tion is connected with Hertz’s Prinzipien der Mechanik:

Using an expression of Hertz (in the introduction to the Prinzipien der 
Mechanik) we can formulate our main question as follows: What are the nec-
essary and sufficient and mutually independent conditions a system of things 
has to be subjected to, so that to each property of these things a geometric fact 
corresponds, and conversely, thereby having these things provide a complete 
“image” of geometric reality. (Hilbert *1898–​99, 303)
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One can see here the shape of a certain logical or set-​theoretic structuralism in the 
foundations of mathematics and physics.2 But what are the things whose system 
is implicitly postulated? As late as 1922 Hilbert articulated the axiomatische 
Begründungsmethode for analysis as follows:

The continuum of real numbers is a system of things that are connected to 
each other by certain relations, so-​called axioms.3 In particular the definition 
of the real numbers by Dedekind cuts is replaced by two continuity axioms, 
namely, the Archimedean axiom and the so-​called completeness axiom. In fact, 
Dedekind cuts can then serve to determine the individual real numbers, but 
they do not serve to define [the concept of] real number. On the contrary, con-
ceptually a real number is just a thing of our system. . . . The standpoint just 
described is altogether logically completely impeccable, and it only remains 
thereby undecided, whether a system of the required kind can be thought, i.e., 
whether the axioms do not lead to a contradiction. (Hilbert 1922, 1118)

The remark “conceptually a real number is just a thing of our system” does not 
answer any question concerning the (nature of the) things making up the system, 
but it expresses a crucial element of structural axiomatics and is fully in line with 
Dedekind’s views. In addition, the issue of consistency had been an explicit part 
of Dedekind’s logicist program, and the further discussion of that issue will re-
veal details of Hilbert’s position.

In the 19th century, logicians viewed the consistency of a notion from a se-
mantic perspective as requiring a model. That is the way we put matters, whereas 
those earlier logicians, including Frege, saw themselves as facing the task of 
exhibiting a system that falls under the notion. Dedekind addressed the consist-
ency problem for the notion of a simply infinite system exactly from such a tradi-
tional view. The methodological need for doing that is implicit in his (1872), but 

	 2	 At this point one might also ask: What is the mathematical connection, in particular, between 
arithmetic and geometric structures? The informal comparison of the geometric line with the system 
of cuts of rational numbers in Dedekind’s (1872) contains almost all the ingredients to establish 
these structures to be isomorphic; missing is the concept of mapping. That concept was available to 
Dedekind by 1879 and, with it, these considerations can be extended to show that arbitrary, fully con-
tinuous systems are isomorphic. The methodological remarks in (Dedekind 1888) about the arith-
metic of natural numbers can now be extended to that of the real numbers.
	 3	 This is a peculiar formulation, even in the original German. As it happens, Hilbert formulated 
matters more precisely in his letter of September 22, 1900, addressed to Frege: “I am of the opinion 
that a concept can be logically determined only through its relations to other concepts. These re-
lations, formulated in particular statements, I call axioms and thus I arrive at the view that the ax-
ioms . . . are the definitions of the concepts.”

Here is the German text: “Meine Meinung ist eben die, dass ein Begriff nur durch seine Beziehungen 
zu anderen Begriffen logisch festgelegt werden kann. Diese Beziehungen, in bestimmten Aussagen 
formulirt [sic!], nenne ich Axiome und komme so dazu, dass Axiome  .  .  .  die Definitionen der 
Begriffe sind.”
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it is formulated most clearly in a letter to Keferstein dated February 27, 1890, a 
little more than a year after the publication of Was sind und was sollen die Zahlen?

After the essential nature of the simply infinite system, whose abstract type is 
the number sequence N , had been recognized in my analysis (71, 73) the ques-
tion arose: Does such a system exist at all in the realm of our thoughts? Without 
a logical proof of existence, it would always remain doubtful whether the no-
tion of such a system might not perhaps contain internal contradictions. Hence 
the need for such a proof (articles 66 and 72 of my essay).

In article 66, Dedekind attempted to prove the existence of an infinite system 
within logic and, on the basis of that “proof,” he provided in article 72 an example 
of a simply infinite system that was to guard against internal contradictions of 
the very notion.

Hilbert turned his attention to natural numbers around 1904 and used 
Dedekind’s conditions for simply infinite systems, not as part of a structural def-
inition, but as formal axioms. Until then he had taken for granted their proper 
foundation and focused on the notion of real numbers. Hilbert’s retrospec-
tive remarks in (*1904) make this quite clear: the general concept of irrational 
number had created the “greatest difficulties,” and Kronecker represented this 
point of view most sharply.4 Those difficulties, Hilbert now claims, are over-
come when the concept of natural number is secured, as the further steps toward 
real numbers can be taken without a problem. (It remains a puzzle why that was 
not as clear to Hilbert in 1899 as it had been to Dedekind in 1888; but see the 
discussion below.) This dramatic change of view raises the question, what did 

	 4	 These issues are discussed in (Hilbert *1904, 164–​167). The remark concerning Kronecker is 
found on pp.  165–​166:  “Die Untersuchungen in dieser Richtung [foundations for the real num-
bers] nahmen lange Zeit den breitesten Raum ein. Man kann den Standpunkt, von dem dieselben 
ausgingen, folgendermaßen charakterisieren: Die Gesetze der ganzen Zahlen, der Anzahlen, nimmt 
man vorweg, begründet sie nicht mehr; die Hauptschwiergkeit wird in jenen Erweiterungen des 
Zahlbegriffs (irrationale und weiterhin komplexe Zahlen) gesehen. Am schärfsten wurde dieser 
Standpunkt von Kronecker vertreten. Dieser stellte geradezu die Forderung auf:  Wir müssen in 
der Mathematik jede Tatsache, so verwickelt sie auch sein möge, auf Beziehungen zwischen ganzen 
rationalen Zahlen zurückführen; die Gesetze dieser Zahlen andrerseits müssen wir ohne weiteres 
hinnehmen. Kronecker sah in den Definitionen der irrationalen Zahlen Schwierigkeiten und ging so 
weit, dieselben gar nicht anzuerkennen.”

Here is the English translation: The investigations in this direction [concerning the foundations 
for real numbers] took the largest space for a long time. The standpoint from which they started 
can be characterized as follows: the laws for integers, the cardinal numbers, are taken for granted 
without any further justification; the main difficulty is seen in the extensions of the number concept 
(irrational and furthermore complex numbers). This standpoint was most strongly represented by 
Kronecker. He in fact required outright: in mathematics, we have to reduce every fact, however com-
plicated it may be, to relations between whole rational numbers; the laws for these numbers, on the 
other hand, we have to accept without much ado. Kronecker saw difficulties in the definitions of irra-
tional numbers and went so far as not to recognize them at all.
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Hilbert see then as the “greatest difficulties” for the general concept of irrational 
numbers?

A somewhat vague, but nevertheless informative answer emerges from 
Hilbert’s earlier discussion of a consistency proof for arithmetic; such a proof, 
Hilbert writes in Über den Zahlbegriff, should use “a suitable modification of fa-
miliar methods of reasoning.” In the Paris lecture he suggested finding a direct 
proof and made “familiar methods of reasoning” more explicit:

I am convinced that it must be possible to find a direct proof for the consist-
ency of the arithmetical axioms [as proposed in Über den Zahlbegriff for the 
real numbers], by means of a careful study and suitable modification of the 
known methods of reasoning in the theory of irrational numbers. (Hilbert 
1900b, 1104)

Hilbert believed at this point, it seems, that the genetic buildup of the real num-
bers could somehow be exploited to yield the blueprint for a semantic consist-
ency proof in Dedekind’s style. There are, however, difficulties with the genetic 
method that prevent it from easily providing a proper foundation for the general 
concept of irrational numbers. Hilbert’s concerns are formulated most clearly in 
(Hilbert *1905, 10–​11):

It [the genetic method] defines things by generative processes, not by 
properties—​what must really appear to be desirable. Even if there is no objec-
tion to defining fractions as systems of two integers, the definition of irrational 
numbers as a system of infinitely many numbers must appear to be dubious. 
Must this number sequence be subject to a law, and what is to be understood 
by a law? Is an irrational number being defined, if one determines a number 
sequence by throwing dice? These are the kinds of questions with which the ge-
netic perspective has to be confronted.

Precisely this issue was to be overcome (or to be sidestepped) by the axiomatic 
method. In Über den Zahlbegriff Hilbert writes:

Under the conception described above, the doubts that have been raised against 
the existence of the totality of real numbers (and against the existence of infinite 
sets generally) lose all justification; for by the set of real numbers we do not have 
to imagine, say, the totality of all possible laws according to which the elem-
ents of a fundamental sequence can proceed, but rather—​as just described—​
a system of things whose mutual relations are given by the finite and closed 
system of axioms I–​IV. (Hilbert 1900a, 1095)
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In his Paris lecture he articulated that point and re-​emphasized that “the con-
tinuum . . . is not the totality of all possible series in decimal fractions, or of all 
possible laws according to which the elements of a fundamental sequence may 
proceed.” Rather, it is any system of things whose mutual relations are governed 
by the axioms; the completeness axiom, in particular, guarantees the continuity 
of the system without depending on any method of generating real numbers. The 
consistency proof is “the proof of the existence of the totality of real numbers.” 
Hilbert expanded the second point by saying,

In the case before us, where we are concerned with the axioms for real numbers 
in arithmetic, the proof of the consistency of the axioms is at the same time 
the proof of the mathematical existence of the totality [Inbegriff] of real num-
bers or of the continuum. Indeed, when the proof for the consistency of the 
axioms shall be fully accomplished, the doubts, which have been expressed oc-
casionally as to the existence of the totality of real numbers, will become totally 
groundless. (Hilbert 1900b, 1105)

Could Hilbert think of addressing the consistency problem “by a careful study 
and suitable modification of the known methods of reasoning in the theory of 
irrational numbers,” if he did not have in mind, ever so vaguely, the construction 
of a particular (Dedekindian) logical model?

Hilbert had known since 1897, through his correspondence with Cantor, 
about the difficulties in set theory and their impact on Dedekind’s foundational 
work. Nevertheless, he did not move away from his programmatic position and 
the associated strategy for proving consistency until 1903 or 1904 at the latest. 
In the summer term of 1904, Hilbert lectured on Zahlbegriff und Quadratur des 
Kreises, and the notes written by Max Born reveal a significant change: Hilbert 
examines the paradoxes for the first time and sketches various foundational 
approaches. These discussions are taken up in his talk at the Heidelberg Congress 
in August of that year, where he presents a syntactic approach to the consistency 
problem. The goal is still to guarantee the existence of a suitable system, but the 
method of proof is inspired by one important aspect of the earlier investigations; 
he, in contrast to Dedekind, had formulated a quasi-​syntactic notion of consist-
ency already in his (1899) and (1900a); namely, no finite number of logical steps 
leads from the axioms to a contradiction. This notion is quasi-​syntactic, as no 
deductive principles are explicitly provided.

Hilbert viewed the geometric axioms not only as characterizing a system 
of things that presents a “complete and simple image of geometric reality,” 
but viewed them also in a very traditional way:  the axioms must allow us to 
purely logically establish all geometric facts. Dedekind held such a view quite 
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explicitly with respect to his “axioms” for natural numbers, i.e., the characteristic 
conditions for simply infinite systems; see his (1888, #73). Hilbert described this 
pivotal deductive role of axioms in the introduction to the Festschrift in a meth-
odologically refined way:

The present investigation is a new attempt at formulating for geometry a simple 
and complete system of mutually independent axioms; it is also an attempt at 
deriving from them the most important geometric propositions in such a way 
that the significance of the different groups of axioms and the import of the 
consequences of the individual axioms is brought to light as clearly as possible. 
(Hilbert 1899, 436)

The same perspective is expressed in the Paris lecture, where Hilbert states, first 
of all, that the totality of real numbers is “a system of things whose mutual rela-
tions are governed by the axioms set up and for which all propositions, and only 
those, are true that can be derived from the axioms by a finite number of logical 
inferences.” Then, two fundamental problems have to be confronted for both ge-
ometry and arithmetic:

The necessary task then arises of showing the consistency and the complete-
ness of these axioms; i.e., it must be proved that the application of the given 
axioms can never lead to contradictions, and, further, that the system of axioms 
suffices to prove all geometric [and arithmetic] propositions. (Hilbert 1900a, 
1092–​1093)

It is not clear whether completeness of the axioms requires the proof of all true 
geometric (arithmetic) propositions or just of those that are part of the estab-
lished corpora.

Independent of this issue is the question, which logical inferences are 
admitted in proofs? Frege criticized Dedekind on that point in the preface to his 
Grundgesetze der Arithmetik, claiming that the brevity of Dedekind’s develop-
ment of arithmetic in (Dedekind 1888) is only possible “because much of it is not 
really proved at all.” He continues:

Nowhere is there a statement of the logical or other laws on which he builds, 
and, even if there were, we could not possibly find out whether really no others 
were used—​for to make that possible the proof must be not merely indicated 
but completely carried out.

Apart from demanding that the logical principles be made explicit, Frege hints 
at an additional aspect of such a systematic presentation that applies to Hilbert’s 
Grundlagen der Geometrie as well. That aspect will be discussed in section 4, 
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whereas the next section attempts to clarify, with the broader understanding of 
structural axiomatics we have gained, the main issue in the correspondence be-
tween Frege and Hilbert.

 3.   Interlude

My discussion is concerned exclusively with the six letters that were exchanged 
between Frege and Hilbert in the period from December 1899 to September 
1900; they are all concerned with Hilbert’s Grundlagen der Geometrie (and are 
found in Frege 1980). Frege wrote the opening letter to Hilbert on December 27, 
1899; in it he seeks clarification on some important methodological questions 
pertaining to the Grundlagen. Frege reports that he had discussed parts of the 
work with his Jena colleagues Thomae and Gutzmer, and that they were not al-
ways clear about Hilbert’s “real view” (eigentliche Meinung). As a start, Frege 
asks about Hilbert’s use of “Erklärung” and “Definition”; they seem to be used 
for similar purposes, but by using both Hilbert presumably wants to indicate a 
difference—​which is not clear to them. What makes matters even more diffi-
cult to understand, Frege points out, is the fact that axioms are taken to define 
relations under the heading Erklärung. Thus, it appears to Frege, Hilbert does 
not respect the sharp boundaries between axioms and definitions. Definitions 
are, after all, Festsetzungen (“determinations,” “stipulations,” or “agreements”), 
whereas axioms are true statements that are not be proved, as our knowledge 
of them arises from a source that is different from logic. That leads Frege to the 
observation that the truth of axioms guarantees that they do not contradict each 
other, and that no separate proof of consistency is required. Although that is of 
course a perspective different from Hilbert’s, there seems to be some common 
ground when Frege remarks, in the context of independence proofs for the ax-
ioms, “You had to take a higher standpoint, from which Euclidian geometry 
appears as a special case of a more general [case].” (Frege 1980, 11)

In his response of December 29, 1899, Hilbert points out that, for example, 
the Erklärung for the concept “between” is indeed a proper definition, as its char-
acteristic conditions (Merkmale) are given by the group of axioms II 1–​II 5 that 
involve “between.” If one wants to take “definition” in the exact traditional sense, 
he writes, then one would have to say:

“Between” is a relation for the points of a line that satisfies the following charac-
teristic conditions: II 1 . . . II 5. (Frege 1980, 11)

Later on, he emphasizes that he has absolutely no objection, if Frege wanted to 
simply call his axioms characteristic conditions (cf. footnote 3). Having discussed 
the striking and much-​emphasized difference of their views concerning 
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consistency and truth, Hilbert comes back to what he very strongly views as the 
main issue (Hauptsache) and asserts:

The renaming of “axioms” as “characteristic conditions” is a pure formality and, 
in addition, a matter of taste—​in any event, it is easily accomplished. (Frege 
1980, 12).

This assertion holds sensibly for relations like “between,” but not—​as Hilbert 
then also claims—​for the basic objects, e.g., points. The latter claim is in con-
flict with Hilbert’s own view he describes next (Frege 1980, 13), namely that “any 
theory is only a framework [Fachwerk] or a schema of concepts together with the 
necessary relations between them.” The basic elements (Grundelemente), Hilbert 
says, “can be thought in arbitrary ways.”

Neither Hilbert nor Frege remembered that Dedekind presented in his (1888) 
under the heading Erklärung the definition of a simply infinite system: a system 
N is simply infinite if and only if there is an element 1 and a mapping Φ, such 
that the characteristic conditions (α)–​(γ) hold for them.5 This structural defini-
tion can be seen as providing a second-​level concept in the sense in which Frege 
discusses it in his next letter of January 6, 1900 (Frege 1980, 17); Hilbert could 
have easily reformulated his Erklärung as a Dedekindian one: a triple of systems 
P, L, and E is a Euclidian space if and only if there are relations . . . , such that 
the characteristic conditions I–​V (i.e., the geometric axioms in groups I through 
V) hold for them. Given such a common perspective, there would have been no 
reason for the fundamental disagreement Frege saw; indeed, there would have 
been a precise logical articulation of the abstract character of the emerging 
modern mathematics.6

4.  Formal Axiomatics

Hilbert insisted that theorems in geometry or arithmetic must be established 
by a finite sequence of logical steps from the axioms; for the arithmetic of nat-
ural numbers Dedekind made exactly the same demand, considering as starting 
points of proofs the characteristic conditions for simply infinite systems. Since 
“axiom” can be taken for Hilbert as synonymous with “characteristic condition,” 
Dedekind and Hilbert share this perspective on proof. Frege, starting with his 

	 5	 These characteristic conditions “correspond” to the so-​called Peano axioms and express the fol-
lowing: (α) –​ ϕ is a mapping from N to N; (β) –​ N is the chain of the system {1}; (γ) –​ 1 is not in the ϕ 
image of N; (δ) –​ ϕ is a similar (injective) mapping.
	 6	 There are important connections to 19th-​century theories of concept formation, in particular 
to those formulated by H. Lotze in his Logik of 1843 as well as in the expanded editions of 1874 and 
1880. There are good reasons to think that Dedekind was influenced by them already very early on in 
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1879 Begriffsschrift, precisely described the logical steps that can be taken in 
order to obtain “gapless” proofs and asserted later that in his logical system “in-
ference is conducted like a calculation,” but observed:

I do not mean this in a narrow sense, as if it were subject to an algorithm the 
same as . . . ordinary addition or multiplication, but only in the sense that there 
is an algorithm at all, i.e., a totality of rules which governs the transition from 
one sentence or from two sentences to a new one in such a way that nothing 
happens except in conformity with these rules. (Frege 1984, 237)

In his 1902 review of Hilbert’s Grundlagen der Geometrie, Poincaré radicalized 
the formal character of the axiomatic conditions and the algorithmic nature of 
logical rules, in a different context and for a different purpose; he writes:

M. Hilbert has tried, so to speak, putting the axioms in such a form that they 
could be applied by someone who doesn’t understand their meaning, because 
he has not ever seen either a point, or a line, or a plane. It must be possible, ac-
cording to him [Hilbert], to reduce reasoning to purely mechanical rules.

Poincaré brings out this essential formal, mechanical aspect in a dramatic 
way and reinterprets the idea of strict formalization as machine executability.7 
Indeed, he suggests giving the axioms to a reasoning machine, like Jevons’s log-
ical piano, and observing whether all of geometry could be obtained. Such a me-
chanical formalization might seem “artificial and childish,” Poincaré remarks, if 
it were not for the important question of completeness:

Is the list of axioms complete, or have some of them escaped us, namely those 
we use unconsciously? . . . One has to find out whether geometry is a logical 
consequence of the explicitly stated axioms or, in other words, whether the ax-
ioms, when given to the reasoning machine, will make it possible to obtain the 
sequence of all theorems as output [of the machine].

his career; Dedekind’s stay in Göttingen as a student and then Privatdozent (from 1850 to 1858) fell 
completely into the period Lotze was professor of philosophy there (from 1844 to 1880). The paral-
lelism of Dedekind’s general reflections on concepts in his (1854) and the expanding remarks on their 
significance in the preface to (Dedekind 1888) is rather striking, as are their view that arithmetic is 
a part of logic. However, a very distinctive notion of “abstraction” is centrally used by Lotze already 
in the 1843 Logik and allows a cohesive understanding of Dedekind’s way of introducing “abstract” 
concepts. That has been worked out in a paper I wrote with Rebecca Morris. The paper was accepted 
for publication in 2015 and published as (Sieg and Morris 2018). (2018)

	 7	 How these considerations are woven into a broader philosophical and mathematical web is 
discussed in my paper On Computability (2009a), in particular on pp. 535–​561.
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The completeness problem is not formulated as a “mechanical” one in Hilbert’s 
Festschrift, but the issue of what logical steps can be used in proofs is coming to 
the fore in Hilbert’s lectures through references to logical calculi.

The syntactic approach to consistency proofs Hilbert suggested in his 1904 
Heidelberg talk uses formal axioms and a logical calculus that is extremely 
restricted—​it is purely equational! In the summer term 1905, Hilbert gave 
lectures under the title Logische Prinzipien des mathematischen Denkens; they are 
as special as those from 1904, but for a different reason: one finds in them a crit-
ical examination of logical principles and a realization that a broader logical cal-
culus is needed that captures, in particular, universal statements and inferences.8 
In his subsequent lectures on the foundations of mathematics, Hilbert does not 
really progress beyond the reflections presented in his (*1905) until 1917:  in 
the Zürich talk Axiomatisches Denken a new perspective emerges. In that essay, 
Hilbert remarks that the consistency of the axioms for the real numbers can 
be reduced, by employing set theoretic concepts, to that of integers. Hilbert 
continues:

In only two cases is this method of reduction to another more special domain 
of knowledge clearly not available, namely, when it is a matter of the axioms for 
the integers themselves, and when it is a matter of the foundation of set theory; 
for here there is no other discipline besides logic to which it were possible to 
appeal.

But since the examination of consistency is a task that cannot be avoided, it 
appears necessary to axiomatize logic itself and to prove that number theory 
and set theory are only parts of logic. (Hilbert 1918, 1113)

Hilbert remarks that Russell and Frege provided the basis for this approach.
The detailed study of Principia Mathematica began, however, already in 1913 

and resulted in the remarkable 1917–​18 lectures Prinzipien der Mathematik, the 
very first lectures on modern mathematical logic. All the tools for formally de-
veloping mathematics (number theory, but also analysis) were made available 
in these lectures and are in the background of the work of the Hilbert group 
during the 1920s. The material was published only 10 years later in (Hilbert and 
Ackermann 1928). As to the formalization issue, one finds this remark at the 

	 8	 How important those lectures were can be seen from a letter Hilbert sent to his friend Hurwitz 
in late 1904 or early 1905, definitely after the Heidelberg talk: “It seems that various parties started 
again to investigate the foundations of arithmetic. It has been my view for a long time that exactly the 
most important and most interesting questions have not been settled by Dedekind and Cantor (and a 
fortiori not by Weierstrass and Kronecker). In order to be forced into the position to reflect on these 
matters systematically, I announced a seminar on the ‘logical foundations of mathematical thought’ 
for next semester.” In Dugac (1976, 271).
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very end of the lecture notes, after the beginnings of analysis had been developed 
and, in particular, the least upper bound principle had been established: “Thus 
it is clear that the introduction of the axiom of reducibility is the appropriate 
means to turn the ramified calculus into a system out of which the foundations 
for higher mathematics can be developed” (Hilbert *1917–​18, 246).

The 1917–​18 lectures gave a full and rigorous mathematical presentation of 
first-​ and higher-​order logic, including a careful distinction between syntax and 
semantics.9 There was, however, no immediate return to a syntactic approach 
to the consistency problem. Poincaré’s incisive analysis of the “proof theoretic” 
approach in Hilbert (1905), but also Hilbert’s own insight into its shortcomings, 
shifted his attention from the stand he had advocated in Heidelberg. Hilbert 
came back to it only in the summer semester of 1920. The notes from that term 
contain a consistency proof for the same fragment of arithmetic that had been 
investigated in 1904. Its formulation is informed by the investigations of the 
1917–​18 term: the language is more properly described; the combinatorial ar-
gument is sharper (albeit a bit different from that given in 1904), and it is further 
simplified in (Hilbert 1922). The details are important for (the development of) 
proof theory, but I emphasize here only the overarching strategic point of the 
modified argument; namely, Hilbert insists that Poincaré has been refuted.

Poincaré’s objection, claiming that the principle of complete induction can 
only be proved by complete induction, has been refuted by my theory. (Hilbert 
1922, 167)

In the second part of this paper, the formal theory is expanded beyond the purely 
equational calculus. This expansion has one peculiarity, namely, that negation is 
applied only to identities. Hilbert gives as the reason for this severe restriction 
that the formal system is to be kept constructive. Thus, we can conclude that in 
(Hilbert 1922) the proper metamathematical direction of Hilbert’s finitist pro-
gram had not yet been taken.

The paper was based on talks Hilbert had given in the spring and summer 
of 1921 in Copenhagen and Hamburg. The first of three Copenhagen talks was 
devoted to the role of mathematics in physics and has been preserved as a man-
uscript in Hilbert’s own hand. It is worth quoting its last paragraph in order to 
re-​emphasize Hilbert’s broad vision for mathematics.

	 9	 In Hilbert’s lecture, a proof of the semantic completeness of the logical calculus for sen-
tential logic is indicated; it is formulated and proved in Bernays’ Göttingen Habilitationsschrift 
(Bernays 1918).
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We went rapidly through those chapters of theoretical physics that are currently 
most important. If we ask, what kind of mathematics do physicists consider, 
then we see that it is analysis that serves physicists in its complete content and 
extension. Indeed, it does so in two different ways: first it serves to clarify and 
formulate their ideas, and second—​as an instrument of calculation—​it serves to 
obtain quickly and reliably numerical results, which help to check the correct-
ness of their ideas. Apart from this face seen by physicists, there is a completely 
different face that is directed toward philosophy; the features of that face de-
serve no less our interest. That topic will be discussed in my subsequent talks. 
(Hilbert *1921, 28–​29)

In his “subsequent talks” Hilbert expounded his philosophical perspective, but 
argued also against the constructive stand of Brouwer and Weyl. In the 1922 
essay he contrasts their constructivism with his own, claiming that Weyl has 
“failed to see the path to the fulfillment of these [constructive] tendencies” and 
that “only the path taken here in pursuit of axiomatics will do full justice to the 
constructive tendencies”:

The goal of securing a firm foundation for mathematics is also my goal. I should 
like to regain for mathematics the old reputation for incontestable truth, which 
it appears to have lost as the result of the paradoxes of set theory; but I believe 
that this can be done while fully preserving its accomplishments. The method 
I follow in pursuit of this goal is none other than the axiomatic method; its es-
sence is as follows. (Hilbert 1922, 1119)

Having described the essential nature of the axiomatic method, he points to the 
task of recognizing the consistency of the arithmetical axioms including, at this 
point, axioms for number theory, analysis, and set theory. This task leads now to 
the investigation of formalisms, in which parts of mathematics can be carried 
out. The concepts of proof and provability are thus “relativized” to the underlying 
formal axiom system, but Hilbert emphasizes:

This relativism is natural and necessary; it causes no harm, since the axiom 
system is constantly being extended, and the formal structure, in keeping with 
our constructive tendency, is becoming more and more complete. (Hilbert 
1922, 1127)

Hilbert’s version of constructivism comes in not only through the construction 
of ever more complete formalisms for the development of mathematics, but most 
importantly through their effective character; after all, it is the effectiveness of 
the basic concepts, in particular of the concept of (formal) proof, that makes it 
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possible to investigate the formalisms from a restricted mathematical, “finitist” 
point of view.

The term finite Mathematik (finitist mathematics) appears for the first time in 
the 1921–​22 notes.10 Hilbert and Bernays give no philosophical explication; they 
rather develop finitist number theory, which they do not view as encompassing 
all of finitist mathematics. On the contrary, they envision a dramatic expan-
sion in order to recognize why and to what extent “the application of transfinite 
inferences [in analysis and set theory] always leads to correct results.” We have to 
expand, so they demand, the domain of objects that are being considered:

I.e., we have to apply our intuitive considerations also to figures that are not 
number signs. Thus we have good reasons to distance ourselves from the ear-
lier dominant principle according to which each theorem of pure mathematics 
is ultimately a statement concerning integers. This principle was viewed as 
expressing a fundamental methodological insight, but it has to be given up as a 
prejudice.

We have to adhere firmly to one demand, namely, that the figures we take 
as objects must be completely surveyable and that only discrete determin-
ations are to be considered for them. It is only under these conditions that our 
claims and considerations have the same reliability and evidence as in intuitive 
number theory. (Hilbert *1921–​22, Part III, 4a–​5a)

Hilbert and Bernays had thus arrived at a new standpoint that was to serve 
as the basis for consistency proofs, and formulated the goal of establishing 
the correctness of formally provable finitist statements.11 The new approach 
involves induction and recursion principles for the broader class of “figures,” 
that is, for effectively generated syntactic objects, like terms or formulas or 

	 10	 What is the status of “finit” in “finite Mathematik” in historical regard? Was it introduced from 
a special philosophical perspective that emerged in the early 1920s? The way in which the concept is 
actually introduced in (*1921–​22), very matter-​of-​factly, almost leads one to suspect that Hilbert and 
Bernays employ a familiar one. That suspicion is hardened by aspects of the past and an attitude that 
is pervasive until 1932: as to the attitude, finitism and intuitionism were considered as coextensional 
until Gödel and Gentzen proved in 1932 the consistency of classical arithmetic relative to its intu-
itionist version; as to aspects of the past, Hilbert himself remarked that Kronecker’s conception of 
mathematics “essentially coincides with our finitist mode of thought.”

The concrete background of the term “finitism” should be a topic of thorough historical analysis 
and definitely include Bernstein’s paper (1918). I just state as a fact that in the lecture notes from 
the 1920s no detailed discussion of “finite Mathematik” is found. The most penetrating analysis is 
given in (Bernays 1930), still emphasizing the coextensionality of finitism and intuitionism. Indeed, 
Bernays interprets Brouwer’s mathematical work as showing that considerable parts of analysis and 
set theory can be “given a finitist foundation.” For a contemporary and informed discussion, see (Tait 
1981) and (Tait 2002).
	 11	 The claim that consistency implies (mathematical) existence is no longer maintained; see in 
particular Bernays’s later reflections in a note from between 1925 and 1928 that was published in Sieg 
(2002).
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proofs. That is clearly articulated in the second half of the 1921–​22 lectures 
and carried out with strikingly novel, genuinely proof-​theoretic techniques. 
Hilbert and Bernays proved in these lectures the consistency of a quantifier-​
free fragment of formal elementary number theory, roughly what is now called 
primitive recursive arithmetic (PRA); the argument is sketched and the meth-
odological approach is described in (Hilbert 1923)—​a talk Hilbert gave in 
September 1922.

In the notes for other lectures from the early 1920s, one finds innovative 
meta-​mathematical work, in particular, the introduction of the epsilon calculus 
and the associated substitution method, which tries to overcome in leaps and 
bounds the obstinate difficulties of giving finitist consistency proofs for strong 
formal theories, but in the end that work is unsuccessful. The reason for this 
failure was revealed already in 1931 for the theories that were of central interest, 
analysis and set theory: Gödel’s second incompleteness theorem states for them 
that their consistency cannot be proved by means that are formalizable in those 
very theories. For the general formulation of the incompleteness theorems 
(as pertaining to all formal theories containing a modicum of number or set 
theory) Gödel needed an adequate notion of computability characterizing the 
“formality” of formal theories. In the 1964 postscriptum to his 1934 Princeton 
lectures, he argued that Turing’s work provides such a notion of mechanical pro-
cedure, and that it is actually “required by the concept of formal system, whose 
essence it is that reasoning is completely replaced by mechanical operations on 
formulas” (Gödel 1964, 370). The second incompleteness theorem is usually 
taken in the way I formulated it earlier: finitist consistency proofs cannot be 
obtained for theories that are sufficiently strong; in other words, Hilbert’s fi-
nitist program has been refuted for theories like analysis or set theory. The first 
incompleteness theorem is frequently taken to refute Hilbert’s view that there 
is no ignorabimus in mathematics. However, that is not Gödel’s view at all. In 
the 1964 postscriptum he explicitly states that the incompleteness theorems 
“do not establish any bounds for the power of human reason, but rather for the 
potentialities of pure formalism in mathematics” (370). For him, Hilbert’s no-​
ignorabimus view is not connected to “pure formalism,” as I’ll point out in the 
next section.

5.  One Direction

Gödel begins his (193?) by recalling Hilbert’s famous words, “For any precisely 
formulated mathematical question a unique answer can be found.” He takes 
these words to mean that for any mathematical proposition A there is a proof 
of either A or not-​A, “where by ‘proof ’ is meant something which starts from 
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evident axioms and proceeds by evident inferences.” He argues that the incom-
pleteness theorems show that something is lost when one takes the step from this 
notion of proof to a formalized one: “It is not possible to formalize mathematical 
evidence even in the domain of number theory, but the conviction about which 
Hilbert speaks remains entirely untouched. Another way of putting the result is 
this: it is not possible to mechanize mathematical reasoning.”

It is important to recognize early and deep roots of Hilbert’s foundational 
thinking. His work in geometry and arithmetic around 1900 gave or indi-
cated systematic developments, within the framework of structural axiomatics. 
A  more formal presentation was sought already in Hilbert (*1905), but was 
viewed as extremely difficult. It is equally important to see that the study of 
Principia Mathematica raised the prospect of formalizing mathematics on the 
broad basis of type or set theory. In order to more closely reflect mathematical 
practice, Hilbert and Bernays even developed in (*1921–​22) a new kind of log-
ical calculus with axioms for all the logical connectives; these axioms were later 
basic for the introduction and elimination rules of Gentzen’s natural deduction 
calculi.12 But the more urgent proof theoretic issues surrounding the consistency 
problem shifted attention away from the formal representation of mathematical 
practice. With the advance of computer technology and the myriad problems 
that can be addressed mathematically, it is important, however, to construct 
formal frameworks in which mathematics can be formally developed not only 
“in principle,” but actually and intelligibly.

To achieve that goal, it has been argued for a long time, computers have to 
take over routine parts of argumentation, so that human users can focus on the 
broader conceptual and strategic aspects of proof construction. In spite of much 
exciting contemporary work in (interactive) theorem proving, there is still no 
somewhat general theory of mathematical proof (as Hilbert had called for in 
1917). I have taken the lack of a general theory as one central reason to formulate 
and implement strategies for automated proof search; the work I have been doing 
in this direction is described in (Sieg 2010). This is a first step not toward a general 
theory, but rather toward the more modest goal of finding intelligible proofs that 
reflect (and are inspired by) logical and mathematical understanding. Even this 
step already forces us, on the one hand, to make explicit the conceptual ingenuity 
underlying successful human proof construction; it asks us, on the other hand, to 
integrate it with proof-​theoretic features of derivations (subformula properties 
of normal forms) for the sake of efficiency.

Coming back to the beginning of this essay, we clearly have to analyze 
concepts and articulate characteristic conditions for them, but we must also 

	 12	 This connection is sketched in (Sieg 2010, 197–​198).
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consider mathematical arguments as they present themselves “in experience,” so 
to speak; that is how Dedekind in (Dedekind 1890) described his attitude toward 
the notion of natural numbers. That requires enriching suitable formal frames 
by leading ideas for particular parts of mathematics, thus, an effective conceptual 
organization that can be expressed through appropriate heuristics.13 Saunders 
Mac Lane, one of the last logic students in Hilbert’s Göttingen and a friend of 
Gentzen, wrote his thesis (Mac Lane 1934) with this general goal. He published 
an English summary (1935) that emphasizes the crucial programmatic features. 
In particular, it is pointed out that proofs are not “mere collections of atomic 
processes, but are rather complex combinations with a highly rational struc-
ture.” When reflecting in 1979 on his early work, Mac Lane ended with the re-
mark: “There remains the real question of the actual structure of mathematical 
proofs and their strategy. It is a topic long given up by mathematical logicians, 
but one which still—​properly handled—​might give us some real insight” (Mac 
Lane 1979, 66). It seems to me that we have the computational and logical tools 
to successfully tackle Mac Lane’s “real question.”

Appendix

The text that follows is a (small) part of the lectures Hilbert gave, with the assis-
tance of Bernays, in the winter semester of 1917–​18. As an example of the sys-
tematic presentation and penetrating analysis the axiomatic method affords, 
Hilbert discussed at first the axiom system for Euclidean geometry and then gave 
proofs of consistency and independence. It is the beginning of that section of 
the lectures that is presented here. The noteworthy fact is the emphasis on the 
assumption of a system of objects, etc., the core feature of structural axiomatics. 
There is no hint of a finitist proof-​theoretic approach to the consistency problem, 
neither here nor later in these lectures when the system of arithmetic (for real 
numbers) is being discussed; at the very end, one rather finds the suggestion 
that the theory of types (with the axiom of reducibility) provides the appropriate 
means for developing the foundations of higher mathematics. This is an echo of 
the logicist leanings Hilbert had expressed in his Zürich lecture Axiomatisches 
Denken (Hilbert 1918).

	 13	 Three particular examples are discussed in my (2010): Gödel’s incompleteness theorems, the 
Cantor-​Bernstein theorem, and the Pythagorean theorem.
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German Text (Hilbert 1917–​18, 19–​20)

Zu dem geometrischen Axiomensystem, dessen Aufstellung ich das letzte 
Mal beendet hatte, sei zunächst bemerkt, dass die Anordnung der Axiome 
im Einzelnen zwar eine gewisse Willkür aufweist, im grossen aber doch 
mit Notwendigkeit bestimmt ist. Bei Untersuchungen über mögliche 
Vereinfachungen dieses Axiomensystems hat man darauf zu achten, dass 
Kürzungen durch eine Reduktion der Annahmen nicht immer von Vorteil sind, 
insofern dadurch die Uebersicht leiden kann.

Wenden wir uns nun zur genaueren Diskussion des vorgelegten Systems 
der geometrischen Axiome, so ist zuerst die Frage der Widerspruchslosigkeit zu 
behandeln. Diese Frage ist darum die wichtigste, weil durch einen Widerspruch, 
zu dem die Konsequenzen aus den Axiomen führen würden, dem ganzen System 
seine Bedeutung genommen wäre. Das Axiomensystem ist ja so aufzufassen, 
dass über dem Ganzen die Annahme steht, es gebe drei Arten von Dingen, die 
wir als Punkte, Geraden und Ebenen bezeichnen und zwischen denen gewisse 
Beziehungen bestehen, welche durch die Sätze, die wir Axiome nennen, 
beschrieben werden. Diese Annahme wäre offenbar gegenstandslos, wenn man 
von den Axiomen durch richtige Schlussfolgerungen zu einem Satz und auch 
zu seinem Gegenteil gelangen könnte. Die Unmöglichkeit eines solchen Falles 
nennen wir die Widerspruchslosigkeit des Axiomensystems.

Den Beweis der Widerspruchslosigkeit für die Axiome der Geometrie werde 
ich führen durch Aufweisung eines Systems von Gegenständen, die miteinander 
in solcher Weise verknüpft sind, dass sich eine Zuordnung dieser Gegenstände 
und Verknüpfungen zu den in den geometrischen Axiomen vorkommenden 
Gegenständen und Beziehungen herstellen lässt, bei welcher sämtliche Axiome 
erfüllt sind. Die Gegenstände, auf die ich mich hierbei als auf etwas Gegebenes 
berufe, sind der Arithmetik entnommen, und das Beweisverfahren kommt 
also darauf hinaus, dass die Widerspruchslosigkeit der Geometrie auf die 
Widerspruchslosigkeit der Arithmetik zurückgeführt wird, indem gezeigt wird, 
dass ein Widerspruch, der sich bei den Folgerungen aus den geometrischen 
Axiomen ergäbe, auch innerhalb der Arithmetik einen Widerspruch zur Folge 
haben müsste.

 Translation

As to the geometric axiom system whose exposition I  completed last time, 
I would like to remark, first of all, that the particular ordering of the axioms 
shows in the small a certain arbitrariness, but in the large it is determined with 
necessity. When investigating possible simplifications of this axiom system 
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one has to observe carefully that shortenings by reducing the [number of] 
assumptions is not always advantageous, as such a reduction may diminish the 
overall perspicuity.

When turning attention now to the more precise discussion of this system 
of geometric axioms, the question of consistency has to be addressed first. This 
question is the most important one, because the whole system would lose its 
significance if a contradiction could be inferred from the axioms. After all, the 
axiom system is to be understood as being completely covered by the assumption 
that there are three kinds of things we refer to as points, lines, and planes, and 
that certain relations obtain between them that are described by the statements 
we call axioms. This assumption obviously would be groundless if it were possible 
to obtain a statement and its negation from the axioms by correct inferences. The 
impossibility of such a case is called the consistency of the axiom system.

I will carry out the consistency proof for the axioms of geometry by exhibiting a 
system of objects that are connected to each other in a particular way; these objects 
and connections can be associated with the objects and relations that occur in the 
geometric axioms in such a way that all the axioms are satisfied. The objects to 
which I appeal as something given are taken from arithmetic, and the method 
of proof amounts to reducing the consistency of geometry to the consistency of 
arithmetic. We do this by showing that a contradiction that could be inferred 
from the geometric axioms must lead to a contradiction within arithmetic.
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7
 Noether as Mathematical Structuralist

Audrey Yap

1.  Introduction

Emmy Noether’s student B. L van der Waerden wrote of her that the maxim by 
which she always let herself be guided was that “all relations between numbers, 
functions, and operations become clear, generalizable, and truly fruitful only 
when they are separated from their particular objects and reduced to general 
concepts.” This chapter will show how Noether’s emphasis on abstraction and 
generalization of frameworks and results contributed to the abstract conception 
of structure found in contemporary mathematics. Doing so will demonstrate her 
contribution to structuralist methodology, though she did not herself advocate 
many philosophical views that we now associate with articulations of structur-
alism, such as the idea that structures are the real objects of mathematical study. 
Instead, Noether can be seen as exemplifying what Reck and Price (2000) have 
called methodological structuralism, as opposed to philosophical structuralism. 
The former approach notes that many of the entities studied in mathematics, 
such as various different number systems and geometrical spaces, are studied 
primarily in terms of their structural features, and considers this to be the proper 
approach to mathematical practice. Further, it contends that it is of no real math-
ematical concern what the intrinsic nature of such mathematical entities might 
be above and beyond such structural features. What distinguishes this approach 
from philosophical structuralism is that the methodological structuralist is only 
purporting to make claims about how we ought to do mathematics, namely 
confining the scope of the view to mathematical practice. Philosophical struc-
turalism goes beyond the claims about correct practice to ask what the further 
implications of a structuralist methodology might be:

The way many contemporary philosophers of mathematics (as well as 
philosophers of language and metaphysicians) specify it further is this: How 
are we supposed to think about reference and truth along these lines, e.g., in 
the case of arithmetic? And what follows about the existence and the nature of 
the natural numbers, as well as of other mathematical objects, even if the an-
swer doesn’t matter mathematically? Put more briefly, what are the semantic 

Audrey Yap, Noether as Mathematical Structuralist  In: The Prehistory of Mathematical Structuralism. Edited by: Erich H. 
Reck and Georg Schiemer, Oxford University Press (2020). © Oxford University Press.
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and metaphysical implications of a structuralist methodology? (Reck and Price 
2000, 346–​347)

We might answer these semantic and metaphysical questions in a variety of dif-
ferent ways, from “thin” views that reject the very question of the real nature of 
mathematical entities, perhaps in favor of a formalist or inferential characteriza-
tion, to “thick” Platonist views that consider structures to be real, if nonphysical, 
entities. While a lot of focus in contemporary structuralism has to with these 
philosophical questions, they rest on a characterization of mathematical practice 
that is nevertheless underpinned by methodological structuralism. While one 
can articulate a methodological structuralist view without committing oneself to 
any particular version of philosophical structuralism, the converse would seem 
like a strange move. After all, endorsing philosophical structuralism without also 
believing it to be the correct, or at least an appropriate, way of doing mathematics 
would suggest that the correct answers to the philosophical questions rest on 
an ill-​advised methodology. This, while perhaps logically consistent as a view, 
seems nonetheless to be self-​undermining.

To return to Noether, then, the purpose of this chapter is to demonstrate how 
she contributes to this philosophical tradition by enabling the very mathemat-
ical developments that make it possible to be a methodological structuralist in 
the first place. I will do this by tracing her development as a mathematician and 
seeing the ways in which she came to exemplify a structuralist approach to math-
ematical practice and lay the technical groundwork for further work on math-
ematical structure. This biographical look at Noether will follow the periods 
into which Hermann Weyl divided her career and methodological styles when 
he delivered her obituary. First, in Noether’s early work, she worked in an algo-
rithmic, constructive style, having begun her career studying under Paul Gordan. 
But she truly grew into her own as an algebraist, having been encouraged to study 
abstract algebra by Ernst Fischer. In the second period Weyl identifies, Noether 
worked on invariant theory, some of which comprised her habilitation work, 
but then turned to the theory of ideals, which is arguably one of her most im-
portant mathematical contributions, and the most important for structuralism. 
This chapter will focus primarily on Noether’s middle and later work rather than 
her work under Gordan, which she had a tendency to dismiss later on in life. 
Though in many ways, her contributions to ideal theory are generalizations of 
work that had already been done by others, most notably Dedekind, it is exactly 
her emphasis on generalization that embodies her pioneering approach to ab-
stract algebra and contributed to the abstract conception of structure used in 
contemporary mathematics. For example, Noether’s work on commutative rings 
was similar to Dedekind’s Theory of Algebraic Integers, but proved the results 
for arbitrary integral domains and domains of general rings. And her work on 
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non-​commutative rings generalized work in representation theory. I also point 
out that it was not just in Noether’s own work, but also in her influence on her 
students such as Mac Lane and van der Waerden, who went on to provide their 
own significant contributions to algebra, in which her structural approach to 
mathematics can be seen.

Several themes will emerge in outlining the development of Noether’s 
methodological structuralism. One will be a commitment to abstraction and 
generalization—​consistently finding ways to treat objects from a perspective that 
showcases the underlying concepts rather than relying on features of individual 
number systems. Another will be the use of axiomatic methods; indeed, the 
structural approach is often associated with the axiomatic approach in the his-
torical literature, and in Noether’s case in particular, we can see her use of axioms 
as exemplifying her commitment to working with structural definitions. Indeed, 
according to a well-​known classification of axioms due to Feferman (1999), the 
type of axioms that Noether primarily uses are called structural axioms. These 
organize the practice of mathematics by providing the definitions of well-​known 
and recurring types of structures. They can be contrasted with foundational ax-
ioms, which are taken to be universal throughout mathematics by providing 
definitions for fundamental concepts such as number and set. Finally, we can 
see what Koreuber (2015) has called “conceptual mathematics,” an approach that 
has been described by Stein (1988) as follows: “The role of a mathematical theory 
is to explore conceptual possibilities—​to open up the scientific logos in general, in 
the interest of science in general” (Stein 1988, 252). This point of view is often as-
sociated with Cantor’s and Dedekind’s advocating free creation in mathematics, 
but can be seen in Noether’s methodology as well. We can see that she is not too 
preoccupied with the extent to which the concepts she studies are instantiated, 
preferring instead to focus on the relationships between them.

What follows, though, will be organized biographically rather than themat-
ically, as we shall see how these tendencies emerge in Noether’s thought as she 
develops as a mathematician. The next two sections will discuss the three epochs 
into which Weyl divided her work. The first will briefly discuss Noether’s early 
work on invariant theory, starting with the formal and algorithmic approach 
influenced by Gordan, and moving on to her adoption of the Hilbert-​style ap-
proach to invariants. The second section will consider her work in algebra and 
the development of the general theory of ideals as well as her contributions to 
non-​commutative algebras. Throughout each of these periods we can see ways 
in which the themes of generality and axiomatization inform her approach. 
I will conclude the chapter by relating Noether’s methodological structuralism 
to some contemporary philosophical structuralist views articulated by Schiemer 
(2014), Landry (2011), and Awodey (1996, 2004), and considering the extent to 
which they are compatible with each other.
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2.  Invariant Theory

Emmy Noether’s doctoral dissertation was written under Paul Gordan at 
Erlangen, entitled “On Complete Systems of Invariants for Ternary Biquadratic 
Forms.” Invariant theory is a branch of algebra whose early systematization can 
be attributed to Arthur Cayley, but which is now often associated with the work 
of Hilbert and Gordan. The development of Noether’s structural approach to 
mathematics can be seen in her departure from Gordan-​style work on invariants 
in favor of a Hilbert-​style approach. As we will see, she did not start out as a 
methodological structuralist, having been trained in systems of complex sym-
bolic calculations and equations by her supervisor.

Briefly, the study of invariants considers transformations of polynomial forms. 
An invariant of a polynomial form is an expression in its coefficients that changes 
only by a factor determined in a fixed manner by the transformation. This area 
of mathematical research arose from the work of Cayley, James Sylvester, and 
others, on the algebraic relationships that hold between the coefficients of 
higher-​degree polynomial forms (Kosmann-​Schwarzbach 2011, 29–​30). To 
put this more precisely,1 a polynomial form is a homogenous polynomial—​one 
whose nonzero terms all have the same degree. This might be done by adding an 
extra variable. The discriminant of a polynomial is a fixed quantity determined 
by an equation on its coefficients. For example, the quadratic form is given by

	 F Ax B xy Cyx y( , ) = + +2 2 	

and its discriminant is given by ∆F B AC= −2 . Now suppose that we transform 
our initial polynomial form by substituting the variables x y,  with linear combin-
ations of new variables ′ ′x y,  and substitution coefficients α β γ δ, , , :

	 x x y= ′ + ′α β 	

	 y = ′+ ′γ δx y .	

This transformation defines a new form ′ ′ ′F x y( , ) each of whose coefficients 
′ ′ ′A B C, ,  depends on the substitution coefficients as well as the initial coefficients 

A B C, , . In general, an invariant of F x y( , ) is an expression IF in the coefficients of 
F such that any transformation of F  into a form ′F , such as

	 F x y F x y x y F x y( , ) ( , ) ( , ),= ′ + ′ ′ + ′ = ′ ′ ′α β γ δ 	

	 1	 This exposition is largely drawn from McLarty (2012).
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is such that IF ′ = −( )αδ βγ nIF . So the analogous expression IF ′  in the coefficients 
of ′F  is the product of IF and some power of an expression in the substitution 
coefficients. As it happens, for the quadratic form, the discriminant ∆F = B2 − 
AC is an invariant—​and in fact, all of its invariants are powers of the discrimi-
nant. This in some sense lets us think of the discriminant as providing a complete 
system of invariants for the quadratic form.

Gordan’s best-​known contribution to invariant theory was the solution of his 
eponymous problem: given any polynomial form in two variables of arbitrary 
degree, he was able to develop a method for calculating a finite complete system 
of invariants for that form. That is, he found a routine through which such a fi-
nite basis for the invariants of any binary polynomial form could be calculated. 
Its main drawback, however, was that actually carrying out these calculations for 
forms of higher degree proved to be relatively infeasible. A lot of Gordan-​style 
mathematics involved applying symbolic transformation rules to complex equa-
tions; this frequently involved prohibitively long lists of formulas, and the devel-
opment of routines that were impractical actually to carry out.

Noether did work on Gordan-​style problems using these very methods for 
some time, but would abandon his algorithmic approach in favor of a new ap-
proach to invariant theory developed by David Hilbert. This is likely due to the 
influence of one of Gordan’s successors, Ernst Fischer, who was a proponent of 
the Hilbert-​style approach to invariants, and had a clear influence on Noether’s 
development. This eventually led to her being invited to Göttingen by Hilbert 
and Felix Klein. The dramatic differences between Hilbert’s and Gordan’s respec-
tive approaches to invariant theory can be seen in Hilbert’s own solution of the 
Gordan Problem, in which he provided a proof by contradiction of the exist-
ence of a finite basis for certain invariants. This means that he did not produce 
an actual finite basis, nor a procedure through which one could be determined. 
Instead, his proof by contradiction simply demonstrated that one must exist, 
whatever it may look like.

Upon reading the proof, Gordan is said to have remarked, “Das ist nicht 
Mathematik; das ist Theologie [This is not mathematics; this is theology]” 
(Kimberling 1981, 11), though it has been pointed out that the extent of Gordan’s 
resistance to Hilbert’s proof is often exaggerated (McLarty 2012). Certainly a 
non-​constructive proof would have seemed illegitimate from the perspective of 
Gordan’s algorithmic methodology, and he did not initially find Hilbert’s proof 
to be clear. But our interest here lies in the fact that for his student Noether, this 
marked a turn toward such non-​constructive approaches to invariant theory, 
and to mathematics more generally.

Noether’s subsequent work in differential invariant theory, some of which 
constituted her 1919 habilitation work, proved to be extremely significant in 
theoretical physics—​ a connection she was able to develop further in Göttingen 
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working with Hilbert, who had already discussed with Einstein the possibility of 
enlisting Noether’s help on some open problems with general relativity. In par-
ticular, conservation laws such as the law of conservation of energy did not seem 
to work the same way within the framework of general relativity as they did in 
classical mechanics. Some connections between invariant theory and the con-
servation of quantities had already been made by mathematicians such as Joseph 
Lagrange, but, as Kosmann-​Schwarzbach (2011) argues, it was with Noether that 
these connections were made in their full generality. Differential invariants are 
sought in the case of forms whose coefficients are functions; when they are not 
constant functions, their derivatives are found in the transformed expressions. In 
her approach to differential invariants, we can already see evidence of Noether’s 
conceptual approach to mathematical problems:

The second study, Invariante Variationsprobleme, which I have chosen to pre-
sent for my habilitation thesis, deals with arbitrary, continuous groups, finite or 
infinite, in the sense of Lie, and derives the consequences of the invariance of a 
variational problem under such a group. These general results contain, as par-
ticular cases, the known theorems concerning first integrals in mechanics and, 
in addition, the conservation theorems and the identities among the field equa-
tions in relativity theory. (Noether 1919, quoted in Kosmann-​Schwarzbach 
2011, 49)

What this quotation illustrates is that the conservation laws in physics for which 
she is famous are special cases of more general theorems that she was able to 
prove about Lie groups. As Kosmann-​Schwarzbach (2011) points out, the sym-
bolic Gordan-​style method of calculating these invariants could find solutions, 
but did not reveal any general connections. Instead, Noether’s more conceptual 
view, in which the invariants in the conservation laws are seen as special cases of 
something more general, was the first full treatment of this problem. But beyond 
this important work that was crucial to modern physics, she did not continue 
this line of research for much longer, and turned instead to work in algebra and 
the theory of ideals, a domain that would further showcase her ability to think in 
terms of general concepts and the relationships between them, and continue the 
development of her methodological structuralism.

3.  Rings and Ideals

The second period of Noether’s mathematical work that I will explore covers her 
work in abstract algebra, especially her groundbreaking contributions to ideal 
theory in the 1920s. The important pieces here are her 1921 paper “Idealtheorie 
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in Ringbereichen” and subsequent 1926 paper “Abstrakter Aufbau der 
Idealtheorie.” Many of the foundations for ideal theory were laid well before then 
by Ernst Kummer, working on factorization problems in the cyclotomic integers, 
and further developed by Leopold Kronecker so that they could be extended 
to systems of complex numbers. However, a contrasting approach, explicitly 
rejecting Kummer’s and Kronecker’s more algorithmic methods, was taken by 
Richard Dedekind in several versions of his theory of algebraic integers, and it 
is the latter’s work that is taken up and generalized by Noether, to become what 
we now think of as ideal theory proper. We will see through this history how 
Dedekind’s structural approach was further refined and generalized by Noether.

In 1846, Kummer introduced ideal prime factors for the cyclotomic integers, 
which had turned out to be quite useful in the study of higher reciprocity laws.2 
Cyclotomic integers are integers of the form

	 a a an
n

0 1+ + +θ θ... , 	

where the ai ∈ ℤ and θ is a primitive p-​th root of unity, a complex number ≠ 1 
such that θp = 0. For such integers, Kummer discovered that unique factoriza-
tion fails for p = 23, and published this result in 1844. This means that in rings of 
cyclotomic integers ℤ[θ], where θ is a primitive p-​th root of unity as previously 
described, Kummer was able to find distinct decompositions of some ring elem-
ents into irreducible factors. Kummer’s development, then, of the notion of ideal 
prime factors was intended to restore some, albeit weakened, form of unique fac-
torization to the rings he was studying.3 But what he defined when he introduced 
them were not the ideal prime factors themselves, but rather the multiplicity by 
which they divided cyclotomic integers in the rings in question. The idea was 
that if we conjecture the existence of the divisors, we can provide rules for calcu-
lating divisibility by them. The methods for determining the calculations were 
also limited in their application, which sufficed for Kummer’s purposes, since he 
was studying reciprocity laws rather than aiming to develop a theory of ideals in 
his own right (Edwards 1980, 1992). But for further applications, it was useful to 
develop a more general description of divisibility by these ideal factors, for which 
we turn to Kronecker. In Kummer’s 1859 paper on reciprocity laws, in which the 
most general version of his own theory appeared, he wrote that

	 2	 At the time, Kummer just regarded these as a special kind of complex number, but now we have 
a geometrical interpretation of these kinds of integers which warrants the use of the term “cyclotomic 
integers,” since the roots of cyclotomic polynomials lie on the unit circle in the complex plane.
	 3	 Though as it turned out, his work in this area was also applied to Fermat’s last theorem. See 
Edwards (1977) for more details on Kummer’s theory and its applications in that area.
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Kronecker would very soon (nächstens) publish a work “in which the theory of 
the most general complex numbers” [meaning, surely, the most general alge-
braic number field] “is completely developed with marvelous simplicity in its 
connection with the theory of decomposable forms of all degrees.” (Edwards 
1992, 7)

No such theory appeared until 1881, when Kronecker published his Grundzüge 
einer arithmetischen Theorie der algebraischen Grössen. In this work, Kronecker 
developed a theory of divisors, which did generalize Kummer’s theory to some 
extent, applicable as it was to general algebraic number fields (though Kronecker, 
as a constructivist, would likely not have accepted several algebraic number 
fields that we do today). While Kronecker’s theory, like Kummer’s, was based on 
a divisibility test, the main difference between the two is that Kronecker’s does 
not test for divisibility by an ideal prime factor, but for divisibility by the greatest 
common divisor, which may be ideal or prime (or both). Further, Kronecker 
does not make use of the notion of a prime because primality is relative to the 
particular field in question, while the idea of a greatest common divisor is not 
(Edwards 1980, 353). Then in Kronecker’s version of divisor theory, he is able 
to determine, independent of the underlying field, whether or not the greatest 
common divisor of some numbers divides an algebraic integer, in a more general 
fashion than Kummer’s theory can.

However, in the interim period between Kummer’s announcement and the 
appearance of Kronecker’s Grundzüge, Richard Dedekind went through sev-
eral versions of his own theory of ideals, which would lay some important 
foundations for Noether’s own work in the area. In contrast with Kummer and 
Kronecker, Dedekind’s approach to ideal theory was to explicitly define the 
ideal divisors in terms of sets of numbers in the domain. So he does not focus, as 
Kummer and Kronecker do, on the multiplicity by which a given ideal divides a 
number. Rather, he focusses on the properties possessed by collections of num-
bers that are divisible by some given factor. In other words, for any algebraic in-
teger a in our domain, we consider the collection of all multiples of a, denoted by 
i(a). This is called the principal ideal (Hauptideal) generated by a. It is easy to see 
that these ideals satisfy certain closure properties. Namely,

	 (1)	 If b and c both belong to i(a), then both b + c and b − c belong to i(a).
	 (2)	 If b belongs to i(a), then for any c in the domain, bc also belongs to i(a).

But now, we realize that a did not have to be an algebraic integer in the first 
place. Even if it was one of Kummer’s ideal prime factors, i(a) would still satisfy 
(1) and (2). And indeed, these two conditions turn out to be both necessary and 
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sufficient for characterizing the ideal numbers, as each algebraic integer can be 
identified with its unique principal ideal.

Now, Dedekind comments several times on his dissatisfaction with Kummer’s 
theory and his reasons for developing his own theory in such a different way. In 
particular, he writes that

the greatest circumspection is necessary to avoid being led to premature 
conclusions. In particular, the notion of product of arbitrary factors, actual 
or ideal, cannot be exactly defined without going into minute detail. Because 
of these difficulties, it has seemed desirable to replace the ideal number of 
Kummer, which is never defined in its own right, but only as a divisor of actual 
numbers ω in the domain 𝖔, by a noun for something which actually exists. 
(Dedekind 1877, 94)

So an improvement of Dedekind’s theory over Kummer’s is that the ideal divisors 
are now identified with things that actually exist and are defined in their own 
right. Dedekind also writes that it was this very consideration—​that the mathe-
matical objects should form the basis of the theory—​that led him to develop his 
theory of ideals in his distinctive way. While Kummer (and Kronecker) have a 
divisibility test at the heart of their theory, at the heart of Dedekind’s theory is the 
set-​theoretic notion of an ideal. To obtain unique factorization, each ideal cor-
responds to a well-​defined list of “prime ideals,” each of which divides it with a 
particular multiplicity. The concepts of multiplication and division are also given 
set-​theoretic interpretations.

An ideal A is a multiple of B, or is divisible by B, exactly when every number 
in A is also in B, or when A is a subset of B. Yet alongside that notion, we also 
have the definition of multiplication for ideals such that for ideals A and B, their 
product AB is defined to be the set of all numbers ab and their sums such that 
a ∈ A and b ∈ B. Now, one way to see the central problem of the work is as the 
task of showing that divisibility in this sense coincides with multiplication in this 
sense. For Dedekind writes that we see immediately that AB is divisible by both 
A and B, but “establishing the complete connection between the notions of di-
visibility and multiplication of ideals succeeds only after we have vanquished the 
deep difficulties characteristic of the nature of the subject” (Dedekind 1877, 60). 
For certainly, the definition of multiplication suggests an alternate notion of di-
visibility (analogous to that in the integers) such that A is divisible by B exactly 
when there is another ideal R such that A = BR. And what Dedekind aimed at 
showing is that the two notions of divisibility coincide. The difference between 
Dedekind and Kummer’s approaches to divisibility is an excellent illustration of 
the difference between the conceptual approach that we will see in Noether, and 
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the algorithmic approach that Kronecker employed. As part of his criticism of 
Kummer, Dedekind wrote that

Kummer did not define ideal numbers themselves, but only the divisibility of 
these numbers. If a number α has a certain property A, to the effect that α sat-
isfies one or more congruences, he says that α is divisible by an ideal number 
corresponding to the property A. While this introduction of new numbers is 
entirely legitimate, it is nevertheless to be feared at first that the language which 
speaks of ideal numbers being determined by their products, presumably in 
analogy with the theory of rational numbers, may lead to hasty conclusions and 
incomplete proofs. And in fact this danger is not always completely avoided. 
On the other hand, a precise definition covering all the ideal numbers that 
may be introduced in a particular numerical domain 𝖔, and at the same time 
a general definition of their multiplication, seems all the more necessary since 
the ideal numbers do not actually exist in the numerical domain 𝖔. To satisfy 
these demands it will be necessary and sufficient to establish once and for all the 
common characteristic of the properties A,B,C, . . . that serve to introduce the 
ideal numbers, and to indicate, how one can derive, from properties A,B cor-
responding to particular ideal numbers, the property C corresponding to their 
product. (Dedekind 1877, 57)

Then the methodological issue that Dedekind has with the Kummer-​style al-
gorithmic approach is that it might lead to imprecise definitions or perhaps in-
coherent ones. Given that Dedekind is not a mathematical Platonist (though 
Kummer and Kronecker are no Platonists either), the importance of precise 
definitions in ensuring the proper, legitimate creation of mathematical objects 
is not to be underestimated. The underpinnings for Dedekind’s structuralism 
are arguably based in the potential for precise logical definition (Reck 2003; Yap 
2009), and this approach is continued by Noether in her own work (Yap 2017).4

Noether’s paper “Idealtheorie in Ringbereichen” (Noether 1921) generalizes 
Dedekind’s unique factorization results for the algebraic integers into the more 
abstract setting of arbitrary rings. Given the introduction of the ring axioms be-
tween Dedekind’s work and Noether’s, this was a natural extension of the con-
ceptual approach that both favored. In Noether’s case, the focus on finding the 
best definitions possible for the concepts was characteristic of her methodolog-
ical structuralist approach. Now, since Noether’s work greatly resembles and 
builds on Dedekind’s, I will not go through many of the details here, though they 
are discussed in other places (Corry 2004; Yap 2017). She also defines ideals as 

	 4	 Avigad (2006) and (Reck and Ferreirós, this volume) provide more in-​depth treatments of 
Dedekind on ideal theory in particular, so we will return again to Noether.
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sets, rather than focusing on ideal divisors, and defines concepts such as divis-
ibility and decomposition in terms of set-​theoretic concepts like inclusion and 
intersection.

The main difference between Noether’s and Dedekind’s contributions to 
ideal theory is in their generality, one of our central themes, though it is better 
described as an extension of Dedekind’s methodological trajectory than as a 
change. In writing about Dedekind’s own work on ideal theory, Avigad (2006) 
notes among the advantages of the axiomatic method that it allows for greater 
generality, and that it allows for a smoother transference of prior results. While 
other treatments of ideals, including Dedekind’s, had relied on properties of al-
gebraic integers that can be taken for granted, Noether was defining ideals in a 
more arbitrary setting. Rather than being able to rely on known facts about con-
crete mathematical entities, the decomposition theorems that Noether proved 
had to follow from general defining properties of sets of elements in a ring. The 
main thing in Noether (1921) that was taken for granted as a property of ideals 
was the ascending chain condition (a.c.c), which states that every chain of ideals 
ordered by inclusion has a maximal element. More precisely, if we have a chain 
of ideals I1 ⊆ I2 ⊆ I3 ⊆  . . .  , then there is an index n after which all the ideals 
are equal, so In = In+1 =  . . .  . This condition was explicitly used to prove her de-
composition results, but in 1921 was simply stated without proof. In contrast, 
Noether (1926) made it explicit that the a.c.c. was simply a condition on rings 
that Noether was interested in.

Her 1926 “Abstrakter Aufbau der Idealtheorie” made the axiomatic approach 
(another central theme) even more explicit and laid out the structural conditions 
that rings might satisfy at the outset. In this case, the a.c.c. was just one of the 
conditions that rings might or might not satisfy. Others included a multiplica-
tive unit element and a lack of zero divisors. But in contrast to 1921, these were 
not assumed, but treated as contingent. This means that throughout the work, 
Noether considered rings that satisfied different conditions, so that we discover 
what follows from each one. Frequently over the course of the work, she will 
specify what type of ring ℜ is intended to be: whether it need only be a ring of 
some kind or whether it also needs to satisfy some other properties such as the 
a.c.c. These rings, then, are seen simply as instances of mathematical entities that 
satisfy various conditions. The use of the axiomatic method, then, is to facilitate 
the use of merely structural definitions of objects. It also allowed Noether to gen-
eralize, in that she could abstract away from different standardly assumed prop-
erties of mathematical entities, to consider more general cases of objects.

One other example of abstracting away from a standardly assumed property 
is commutativity. Though it is a standard property of algebraic integers, Noether 
in 1926 is careful to specify when a ring under discussion needs to be commuta-
tive, and when it only needs to satisfy the basic ring axioms or other conditions. 



Noether as Mathematical Structuralist  177

That approach was sufficiently fruitful that she eventually worked seriously on 
theories of non-​commutative rings, as part of her continuing research trajectory 
toward studying entities of greater and greater generality. But even before her 
published work on the subject in the 1930s, we can see the structural approach 
at work, in which commutativity is only presupposed when it is required and 
theorems are proved with as much generality as possible. For instance, the theory 
of integers is initially introduced in terms of a commutative ring with no zero 
divisors and a multiplicative unit (Noether 1926, 29), while various isomorphism 
theorems presuppose nothing beyond the ring axioms (Noether 1926, 39).

The move toward the non-​commutative setting, however, is importantly 
modern. In giving up commutativity for multiplication, we take a step away from 
the intended interpretation of ideals as ideal divisors for the algebraic integers, 
to consider what else rings as structures could be used to represent, allowing 
for a wider domain of application. The concept of module that she used in her 
work on ideals turned out to be a helpful device when it came to representation 
theory, a branch of algebra that uses vector spaces as representations of groups. 
Since the vector spaces used in representation theory can be seen as special cases 
of modules over rings, Noether was once again able to provide a more general 
structure to use as a mathematical tool (Noether 1929). The work on represen-
tation theory in hypercomplex numbers was also further extended into the do-
main of non-​commutative algebras (Noether 1933).

Noether’s move to a more general setting such as the theory of rings yielded 
the ability to make use of tools that describe very general relationships between 
structures, such as homomorphisms and isomorphisms. In 1926, she explicitly 
assumes only ring properties (and module properties, respectively), without any 
other axioms, in order to prove several isomorphism theorems, and theorems 
relating rings to their quotients. These results are then used for calculations with 
relatively prime ideals and subsequent decomposition results. Such theorems, as 
Noether herself notes, can be seen in Dedekind as well, but only as special cases 
of her own results (Noether 1926, 41). We will also see in the next section that 
this use of morphisms is further developed by some of Noether’s students who 
went on to lay the foundations of category theory.

And although we find little in the way of autobiographical reflection on her 
approach to mathematics, Noether’s colleagues and students provide a fairly uni-
form picture.5 With respect to Noether’s use of generalization as a way of de-
veloping mathematically fruitful connections, Weyl observes in his memorial 
address,

	 5	 Dedekind as well does not do much philosophical writing, and many of the philosophical 
positions we now attribute to him are extrapolated from his criticisms of other approaches and ge-
neral methodological comments. So it seems fair to take a similar interpretive stance with respect to 
Noether.
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She possessed a most vivid imagination, with the aid of which she could visu-
alize remote connections; she constantly strove toward unification. In this she 
sought out the essentials in the known facts, brought them into order by means 
of appropriate general concepts, espied the vantage point from which the whole 
could best be surveyed, cleansed the object under consideration of superfluous 
dross, and thereby won through to so simple and distinct a form that the ven-
ture into new territory could be undertaken with the greatest prospect of suc-
cess. (Weyl 1981, 147)

This quotation could be taken to apply to both ideal theory and representation 
theory, as branches of algebra in which Noether was able to develop this more 
general vantage point. In the case of ideal theory, Noether was able to connect 
Fraenkel’s definition of a ring to Dedekind’s work on algebraic integers in order 
to give a more general treatment of the latter’s factorization theorems. And in the 
case of representation theory, she connected work from Frobenius and Dickson 
in order to develop a general treatment of non-​commutative algebras. Also, the 
full quotation that opened this chapter can be found in another of Noether’s obit-
uaries, in which her student van der Waerden writes,

One could formulate the maxim by which Emmy Noether always let herself 
be guided as follows: All relations between numbers, functions, and operations 
become clear, generalizable, and truly fruitful only when they are separated from 
their particular objects and reduced to general concepts. For her this guiding 
principle was by no means a result of her experience with the importance of 
scientific methods, but an a priori fundamental principle of her thoughts. 
She could conceive and assimilate no theorem or proof before it had been ab-
stracted and thus made clear in her mind. She could think only in concepts, 
not in formulas, and this is exactly where her strength lay. In this way she was 
forced by her own nature to discover those concepts that were suitable to serve 
as bases of mathematical theories. (van der Waerden 1981, 101)

Both Weyl and van der Waerden are consistent in their assessment of Noether as 
fundamentally committed to what I have called methodological structuralism; she 
was a mathematician who, at least in her mature work, preferred to think about 
the relationships between concepts rather than developing formulas or doing 
calculations. So while the generality of her thinking and fruitful use of axiomatics 
is apparent, situating Noether within a taxonomy of modern structuralist views 
is to some extent speculative, given the lack of her own philosophical writing. 
Nevertheless, we can consider which philosophical structuralisms are compatible 
with Noether’s own methodological structuralism, and the extent to which her 
methodological views could support one philosophical picture over another.
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4.  Structuralism, Categories, and Invariants

There is no such thing as a single canonical philosophical structuralist view. They 
tend to at least have in common a view of mathematical objects as defined or 
determined by the structures to which they belong and some commitment to 
methodological structuralism. Sometimes, this means that mathematical objects 
are seen as “thin” or “incomplete” in the sense that they have no distinguishing 
properties other than those they possess in virtue of belonging to a particular 
mathematical structure. While mathematical objects may have other proper-
ties, such as the fact that the number one might have the property of being the 
number of moons of Earth, this is an accidental property that the number has, 
rather than one making it the thing that it is.

Within these relatively broad constraints, there are a range of positions, as 
well as a variety of different classifications of such views.6 For our purposes, 
it will be most useful to compare Noether’s mathematical methodology to 
two views that are closely connected to the areas of mathematics in which she 
worked:  category-​theoretic structuralism, as articulated by Awodey (1996, 
2004)  and Landry (2011), and invariant-​based structuralism as outlined by 
Schiemer (2014). Noether’s connection to category theory comes directly 
through her students and others who worked with her. For instance, Saunders 
Mac Lane, credited as one of the founders of category theory, studied with 
Noether in Göttingen, and is also an important figure in the history of struc-
turalism (McLarty, this volume). Invariant-​based structuralism builds on much 
of the work done by category-​theoretic structuralists, but also accounts for is-
sues raised for structuralism by, e.g., Carter (2008). Both are explicitly based 
on the idea of structure as it can be captured by various branches of abstract 
mathematics.

The reason for bringing in categories and invariants is the fact that the very 
concept of structure as it is used in mathematics can be hard to pin down as a 
single unified concept. Category theory has sometimes been discussed as a po-
tential foundation for mathematics generally, but as Awodey describes it, it can 
also be used as a way to understand what we mean when we talk about mathe-
matics as a field that deals essentially with structures. This might not be an easy 
task, because of the wide variety of mathematical structures and the number of 
different areas in mathematics that use them. The appeal of category theory as 
a kind of foundation for mathematics, then, is appealing because of its gener-
ality and flexibility in characterizing different kinds of mathematical structures. 
Landry (2011), for instance, gives a list of different categories that can be used to 

	 6	 See Reck and Price (2000); Parsons (1990); Hellman (2005) for various classifications of different 
structuralist positions.
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organize the mathematical structure involved in the concepts of group, set, and 
topological space, among others. All that we need to do is assign different kinds 
of entities to be objects and morphisms.

However, in offering categories as a means for the analysis of structure, the 
kind of foundation that category theory offers is not a foundation in the tradi-
tional sense—​what Awodey calls “bottom up.” Rather,

The “categorical-​structural” [approach] we advocate is based instead on the 
idea of specifying, for a given theorem or theory only the required or rel-
evant degree of information or structure, the essential features of a given 
situation, for the purpose at hand, without assuming some ultimate know-
ledge, specification, or determination of the “objects” involved. (Awodey 
2004, 56)

What this means is that the categorical foundations only need to be foundations 
insofar as they allow us to specify what is essential about the objects that we 
are interested in. So categories can serve as a foundation for mathematics be-
cause of the flexible way in which they permit the characterization of a diverse 
range of mathematical structures. This alternative approach also results in a 
different interpretation of the schematic nature of mathematical theories. I can 
illustrate this in terms of Noether’s 1926 work, in which she is very careful to 
specify which properties of rings she is assuming in each section, for which 
definitions. For example, when Noether begins her introduction of prime and 
primary ideals, she simply says to let ℜ be a commutative ring, and is clear that 
no other assumptions are required. We can read this hypothetically, as stating 
that the definitions and theorems apply if an object satisfies the properties for 
being a commutative ring.

But this is unlike an eliminative structuralist view, or one in which we remove 
reference to individual mathematical objects by reinterpreting mathematical 
statements as being implicitly universally quantified. For in order for them to be 
interpreted in terms of universal quantification, there must be a preexisting do-
main over which we quantify. Rather, Awodey (2004) advocates for the indeter-
minacy in the objects being taken seriously, rather than taking a modal approach 
as does, for instance, Hellman (1989). Further, rather than the focus being on 
the relations between objects (as a focus on the relations presupposes the relata), 
morphisms in categories are a perfectly good autonomous concept on which to 
base the analysis of structure (Awodey 2004, 61). They are also a natural exten-
sion of the isomorphisms and homomorphisms on modules that Noether uses 
in 1926. In this more general situation, so long as the category of rings is suffi-
cient to model the different types of rings, commutative, Dedekindian, etc., that 
Noether is interested in, it can form a perfectly good basis for her definitions. In 
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that case, these various rings would simply be objects in the category ring, while 
ring homomorphisms are its morphisms.7

So even though Noether’s work on ideals and rings preceded the develop-
ment of categories, the top-​down approach to category-​theoretic foundations 
that Awodey and Landry advocate are a natural philosophical overlay atop 
Noether’s mathematical structuralism. I have already noted Noether’s deft use 
of axioms in her work on the theory of rings, and the extent to which it matured 
over time to place increased emphasis on the conceptual and structural of rings. 
For instance, the later work, such as her 1926 paper, focused on the connections 
between the properties of various rings and the theorems that could be proved 
about them, and this meshes nicely with many characterizations of mathemat-
ical practice to which category-​theoretic structuralism claims to be faithful:

The structural perspective on mathematics codified by categorical methods 
might be summarized in the slogan: The subject matter of pure mathematics 
is invariant form, not a universe of mathematical objects consisting of logical 
atoms. This trivialization points to what may ultimately be an insight into the 
nature of mathematics. The tension between mathematical form and substance 
can be recognized already in the dispute between Dedekind and Frege over the 
nature of the natural numbers, the former determining them structurally, and 
the latter insisting that they be logical objects. (Awodey 1996, 235)

The connection between Noether and Dedekind was famously emphasized 
by Noether herself, who was said to have remarked, “Es steht alles schon bei 
Dedekind (It is all already in Dedekind)” (quoted in Corry 2004, 250). While in 
this case she was talking about the decomposition results that she had proved, 
Awodey’s characterization of his structuralist position suggests applying this re-
mark to Noether’s methodological views as well. After all, not only did Noether 
extend Dedekind’s results to a more general setting, she also arguably extended 
his use of structural methods by treating the concept of mathematical structure 
with a greater degree of abstraction (Yap 2017). In fact, this very same move was 
arguably employed to extend Noether’s work to more general settings by her stu-
dent and category theorist Mac Lane (see McLarty, this volume), which makes 
category-​theoretic structuralism a natural philosophical view to consider along-
side Noether’s methodological view. It is, after all, in category theory that many 
of the concepts that Noether worked with so fruitfully, such as morphisms, get 
treated in thoroughly general terms.

There are, however, some criticisms of structuralism that we might want 
to consider as well, which apply to both philosophical and methodological 

	 7	 While I  have argued in this chapter for the importance of morphisms to Noether’s work, 
precursors for such ideas are also arguably in Dedekind (Reck and Ferreirós, this volume).
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structuralisms. In particular, Carter (2008) considers the methodological claim 
that mathematics is the study of structure, arguing that this is inaccurate when 
considered as an overall view of mathematical practice. While she certainly 
agrees that mathematics deals with structures, it is unclear that there is any single 
sense of “structure” that will suffice and that can accurately be captured by a 
structuralist account. This ambiguity about the sense of “structure” can even be 
traced to the Noether school, at least according to some of its members. Mac 
Lane (1996) notes that the word “structure” was used in various informal ways by 
algebraists such as Noether and her students in the 1930s, and given the extent of 
its ambiguity, might not be able to form the basis of a philosophy of mathematics. 
Carter, following Mac Lane’s discussion, gives examples of two distinct uses of 
structure that can be found in mathematical practice.

	 1.	 Structure over sets that is used to compute invariants of this set.
	 2.	 A case where “structure” is extracted in order to change relations between 

objects. (Carter 2008, 123)

In the first use of “structure,” we want to obtain some information about a cer-
tain kind of mathematical object. In the case of Galois theory, we might want 
to determine whether a given polynomial is solvable by radicals. A permutation 
group based on invariance of the roots can be associated with this polynomial, 
which is called its Galois group. If the Galois group is solvable,8 then the polyno-
mial is also called solvable by radicals. So this is a case in which we obtain infor-
mation about an object because of a certain structure that is associated with it, 
which we might say is a structure that the object or set has.

In the second use of “structure,” we can consider cases in which we have to dis-
cover some information about certain structures in order to situate them among 
more general ones. For instance, we might have to determine how to treat some 
structures category-​theoretically, and in order to do so, need to determine which 
category they should be subsumed under. In doing so, however, we in effect move 
objects from one structure to another, which has the following consequences:

The fact that objects or “places” are moved between structures seems to go against 
the dictum that “places have no distinguishing features except those determined 
by the structure in which they have a place” which is taken as implying the claim 
that “places from different structures can not be identical.” Firstly, we have seen 
that the properties of places or objects can be determined by different structures 

	 8	 A solvable group is one that has a normal series whose normal factors are abelian.
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that they are part of. Secondly, the properties of an object in a given structure can 
be used to consider the object as part of another structure. (Carter 2008, 130)

To clarify, some features of mathematical practice seem at odds with some 
central structuralist claims about the identity of objects. If objects technically 
have different properties in different structures, then it is hard to make sense of 
moving objects between structures. So this suggests that there is something more 
to being a particular object than the structure to which it belongs. Carter, how-
ever, does not deny that structures are extremely important in mathematics, or 
even that they are central to mathematical practice, simply that structures cannot 
be all there is. And this does speak to some extent against Noether’s tendency 
to generalize existing results to more abstract domains. After all, the category-​
theoretic way of modeling structure represents somewhat more of a differ-
ence between algebraic integers and abstract rings than might be warranted by 
Noether’s remarks that it was all already in Dedekind.

I will now turn to an alternative characterization of structuralism based on 
abstract mathematics, namely Schiemer’s structuralism based on invariants. The 
invariants that Schiemer considers are more general than isomorphisms; rather, 
they determine equivalence relations on objects that have a certain common 
property. The purpose of introducing them can be related to some of the issues 
that Carter raises with structuralist views, such as determining what counts as 
a structural property of mathematical objects in the first place, given that we 
might sometimes move an object to a different structure. Schiemer’s solution to 
this is to give up on the idea of defining a structural property on its own, in-
stead defining them relative to some invariant. This relates to Carter’s first use of 
structure in mathematical practice, in which we might work with invariants to 
determine a property of an object or a set. But of course, different invariants can 
determine different property structures, where a pair < >S P,  (or simply set P) is a 
property structure of S iff

	 (i)	 there exists an invariant f: S → N and an equivalence relation R ⊆ S × S such 
that f determines R; and

	 (ii)	 P is the partition of S induced by R, i.e., P = S/​R. (Schiemer 2014, 84)

So this is what it means for a set P to be a property structure of another set S rel-
ative to an invariant f on S. This is, for instance, the idea behind the Galois group 
of a polynomial.

For Schiemer, this ultimately has the effect of defining structure in a higher-​
order set-​theoretic fashion, in which structures are identified as classes of equiv-
alence classes determined by some invariant on the objects. Now, whether or not 
this provides a solution to the problems with structuralism that Carter raises 
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remains open. It does, however, provide a characterization of mathematical 
structure alternative to category-​theoretic structuralism, but one that is never-
theless based in abstract mathematics and a formal definition of structure. One 
of the differences, however, is that this characterization of structure based in set 
theory relies on some background interpreted theory such as Zermelo-​Fraenkel 
set theory, as opposed to a category-​theoretic approach that, to borrow a turn of 
phrase from Landry, is structuralist “all the way down.”

Schiemer’s philosophical structuralism is not as obviously connected to 
Noether’s methodological structuralism as its category-​theoretic counterpart, as 
the latter has direct connections to her ongoing mathematical legacy, while her 
work on invariants was relatively early in her career. But it does mesh nicely with 
several aspects of Noether’s view. For example, Noether’s tendency toward taking 
a more general perspective on mathematical structures can be accommodated 
nicely, since these definitions lend themselves to comparisons between property 
structures, and one structure being more fine-​grained than another. This is cer-
tainly one way to think of the relationship between ideals in the algebraic integers 
as Dedekind defined them and ideals on general rings as Noether defined them. 
If we want to talk about the sense in which the results that Noether proved are 
the same as Dedekind’s, despite being in a different setting, we could consider 
them as being analogous results in a coarser-​grained structure. Rings of algebraic 
integers are instances of rings that Noether considered, but in the latter setting, 
they are seen as a more general kind of mathematical object.

5.  Conclusion

Ultimately, what version of philosophical structuralism, if any, to which Noether 
would have subscribed is speculative. While her methodological views are 
consistently described in structural and conceptual terms by her students, she 
did not articulate a considered philosophical position in her published work. 
However, of the various structural views in the literature, two good candidates 
that we can connect to Noether’s work are characterizations of structure based 
on category theory and invariants. Both articulate the concept of structure in 
terms of areas of mathematics that Noether either contributed to (in the case of 
invariant theory) or directly influenced (in the case of category theory). So re-
gardless of the exact field of mathematics that she might have considered to best 
articulate the concept of structure that she wanted to work with, a formal char-
acterization of structure would likely have been appealing. Given her tendency 
to articulate concepts as precisely as possible, a metatheoretical articulation of 
the structure concept in terms of formal mathematics would be natural for her, 
philosophically.
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Noether’s methodological inclinations, which we can see borne out in her 
choices of areas to research, were to generalize given results to more abstract 
settings. This certainly influenced her students, many of whom went on to de-
velop branches of abstract algebra such as category theory. So when we situate 
Noether within the history of structuralism as a view, not only can we see her as 
an excellent example of someone who used structural and axiomatic methods 
very successfully, we can also see her contributions to some of the mathemat-
ical theories underlying contemporary structuralist views, namely to methodo-
logical structuralism. In that case, even if it is somewhat open just what kind of 
structuralist Noether herself would have been, we at least know that she helped 
made it possible for others even to hold certain kinds of structuralist positions.
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 The Functional Role of Structures 

in Bourbaki
Gerhard Heinzmann and Jean Petitot

1.  Introduction

From antiquity to the 19th century and even up to now, the following two theses 
are among the most debated in the philosophy of mathematics:

	 a)	 According to the Aristotelian tradition, mathematical objects such as num-
bers, quantities, and figures are entities belonging to different kinds.

	 b)	 Mathematical objects are extralinguistic entities that exist, independently 
of our representations, in an abstract world. They are conceived by analogy 
with the physical world and designated by singular terms of a mathemat-
ical language.

The Aristotelian thesis and that of ontological “Platonism” were countered by 
nominalism and early tendencies of algebraic formalization; but they became 
even more problematic when mathematicians, such as Niels Abel, thought of re-
lations before their relata or when they, as Hermann Hankel (1867) pointed out, 
posited that mathematics is a pure theory of forms whose purpose is not that of 
treating quantities or combinations of numbers (see Bourbaki 1968, 317). In the 
1930s, Bourbaki finally defended the view that mathematics does not deal with 
traditional mathematical objects at all, but that objectivity is solely based on the 
stipulation of structures and their development in a hierarchy.

In the history of 20th-​century mathematical structuralism, the figure of 
Bourbaki is prominent; sometimes he is even identified with the philosoph-
ical doctrine of structuralism. However, the Bourbaki group consisted of pure 
mathematicians—​among them the greatest of their generation—​most of whom 
had a conflicted relationship to philosophy. This chapter proposes to explore 
this tension, following the current philosophical interest in scientific practice. 
The problem with properly assessing Bourbaki’s importance is that he was at the 
same time the collective author of a monumental and long-​lasting treatise (in a 
golden age of more than 30 years) and a pleiad of individual geniuses (including 
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Structuralism. Edited by: Erich H. Reck and Georg Schiemer, Oxford University Press (2020). © Oxford University Press.
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five Fields medalists:  Schwartz, Serre, Grothendieck, Connes, Yoccoz). The 
former had to faithfully conform to initial editorial choices, while the latter were 
at the cutting edge of innovation and creativity.1 So it makes no sense to think 
that Bourbaki was not aware of mathematical advances, since his members were 
among the main agents in these advances.

Quite often interpreters focus only on Bourbaki’s formal definition of struc-
ture, so as then to dismiss it. Our approach will be quite different. Our thesis is 
that the use of the concept of structure in Bourbaki is not so much logical and, in 
a philosophical sense, foundational as pragmatic and functional—​“functional” 
not in the mathematical sense, but in a sense analogous to the relationship be-
tween structure and function in biology. We will illustrate the functional role 
of structures in Bourbaki’s work, starting with Hilbert’s axiomatics, which was 
developed to perfection by the Bourbaki group, and going up to category theory, 
thus to a higher level of structuralism, a path that Bourbaki initiated without yet 
actually engaging in it.2

2.  Bourbaki, the Éléments, and the Séminaires

Nicolas Bourbaki was the pseudonym of a “collective mathematician,”3 formed 
in 1934–​35 by a group of young French mathematicians who graduated (with 
the exception of Mandelbrojt) from the École Normale Supérieure in Paris, 
who did research abroad, primarily in Germany (but also in Denmark, Italy, 
Hungary, Sweden, Switzerland, and the United States), and who taught mostly in 
Strasbourg, Nancy, and Clermont-​Ferrand.4 This group included Henri Cartan, 

	 1	 Other mythical examples of such groups in French history include, in the middle of the 16th cen-
tury, La Pléiade, which completely transformed the norms of poetic language (Du Bellay, Ronsard, 
Jodelle, Belleau, de Baïf, Peletier du Mans, de Tyard, etc.); and in the second part of the 18th century, 
the Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des métiers (Diderot, d’Alembert, 
de Jaucourt, d’Holbach, Dumarsais, Quesnay, Turgot, etc., related to Montesquieu, Voltaire, Buffon, 
Mably, Condillac, Helvétius, etc.).
	 2	 For a philosophical discussion of the role of Bourbaki’s concept of structure in the interpretation 
of category theory, see Krömer (2007).
	 3	 See Chevalley and Guedj (1985). The name of the French general Bourbaki, defeated in 
the French-​German war of 1870–​71, was part of the anti-​militarist folklore at the École Normale 
Superieure long before the group chose it (Beaulieu 1989, 278ff).
	 4	 For a detailed bibliography and rich archive, see the site http://​archives-​bourbaki.ahp-​
numerique.fr of the Archives Henri-​Poincaré, compiled by Liliane Beaulieu (supplemented by Ch. 
Eckes and G. Ricotier) and the site http://​sites.mathdoc.fr/​archives-​bourbaki/​feuilleter.php of the 
Association des Collaborateurs de Nicolas Bourbaki. An introduction to the corresponding history 
is Maurice Mashaal’s Bourbaki: A Secret Society of Mathematicians (2006). Another interesting his-
torical source is Amir Aczel’s The Artist and the Mathematician: The Story of Nicolas Bourbaki, the 
Genius Mathematician Who Never Existed (2006). The two books were reviewed in 2007 by Michael 
Atiyah in the Notices of the AMS. At a theoretical level, a well-​known reference is the 1992 essay by 
Leo Corry, “Nicolas Bourbaki and the Theory of Mathematical Structure.”
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Claude Chevalley, Jean Delsarte, Jean Dieudonné, Szolem Mandelbrojt, René de 
Possel, and André Weil, to which must be added Paul Dubreil and Jean Leray 
(who both, however, withdrew after some meetings), Jean Coulomb, and Charles 
Ehresmann (1935–​36).5 Their goal was “to define for 25 years the syllabus for the 
certificate in differential and integral calculus by writing, collectively, a treatise 
on analysis. Of course, this treatise will be as modern as possible” (Beaulieu 1989, 
28). This was a revolt against the dominant French mathematics of the 1930s.

The initial group had no money nor any official administrative structure. Each 
draft of a chapter of their famous multi-​form treatise, Éléments de Mathématique 
(the expression “Mathématique” in the singular emphasizes the unity of mathe-
matics), was discussed largely in the group and had to be accepted unanimously 
by those present at the regular Bourbaki meetings.6 Elected by consensus, after 
age 50 a Bourbakist had to leave the group, whose list of members was an (open) 
secret. Among the most prominent later Bourbakists were Hyman Bass, Armand 
Borel, Pierre Cartier, Alain Connes, Michel Demazure, Jacques Dixmier, Samuel 
Eilenberg, Roger Godement, André Gramain, Alexander Grothendieck, Jean-​
Louis Koszul, Serge Lang, Pierre Samuel, Laurent Schwartz, Jean-​Pierre Serre, 
John Tate, Bernard Teissier, Jean-​Louis Verdier, and Jean-​Christophe Yoccoz, all 
also pursuing their own individual work.

The creation in 1962, by Grothendieck, of the group of algebraic geometry at 
the “Institut des Hautes Études Scientifiques,” a “European Princeton Institute of 
Advanced Studies” (Bolondi 2009, 701) located in the Paris suburb Bures-​sur-​
Yvette, was at the same time a continuation and an improvement of the Bourbaki 
perspective in mathematics in France and around the world. In a certain sense, 
the monumental Éléments de Géométrie Algébrique by Grothendieck and 
Dieudonné (1960–​67) can be considered as a systematization of the same type 
as the Éléments de Mathématique: driven by the desire to optimize the frame-
work of demonstration of great theorems and to attack major conjectures, es-
pecially the Weil conjectures. Indeed, its language was no longer that of classes 
of structures in a universe of set theory but that of full-​fledged category theory.7 
But, as communicated by Jean-​Pierre Ferrier, the project was a resurgence of the 
Bourbaki project, equally ambitious and original, greatly renewing mathematical 

	 5	 Beaulieu (1989, 12–​13). Beaulieu’s dissertation is the most extensive description of the origin 
and the first 10 years of activity of the group. It is the sourcebook of all biographically oriented studies 
on Bourbaki (for works on Bourbaki see Beaulieu 2013). See also Weil (1992) for Weil’s memories.
	 6	 The first publication of the Éléments was released in 1939 (Bourbaki 1939). An interesting doc-
ument on Bourbaki’s birth is the first issue of the Journal de Bourbaki handwritten by Jean Delsarte 
on November 15, 1935. Composed with a touch of humor, it refers to the creation of the group at the 
“congress” held at Besse-​en-​Chandesse in July and presents a first division of labor between Cartan, 
Delsarte, Dieudonné, Chevalley, Mandelbrojt, de Possel, and Weil (http://​sites.mathdoc.fr/​archives-​
bourbaki/​PDF/​deljb_​001.pdf).
	 7	 On Grothendieck and the shift to category theory, see McLarty (2008), as well as the contribu-
tion, also by Colin McLarty, on Saunders Mac Lane and category theory in this volume.
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thinking, as Bourbaki did in his time, and overcoming many difficulties raised by 
Bourbaki’s initial choices.

In this essay we do not only report on the Éléments and its content. Bourbaki is a 
collective author, but, again, also a pleiad of unique individual masterminds who 
took up the most difficult mathematical challenges. This is confirmed by its en-
cyclopedic Séminaire, which was unparalleled and continues until today. Started 
in 1948, it reached its 1,118th talk in June 2016. Almost all great mathematical 
results have been presented in it. As creative mathematicians, the members of 
Bourbaki were not only interested in the context of justification but also, and 
even more, in the context of discovery. Their conception of structures must be 
understood in this light. In particular, they were all working on very complex 
conceptual proofs of “big problems,” and for them there existed a complemen-
tarity between general relevant structures and specific hard problems. One could 
say that this complementarity found its material expression in the complemen-
tarity of the Éléments and the Séminaire: the function of the Éléments was to offer 
to working mathematicians an extremely wide toolbox of axiomatized devices 
(structures), to be used as conceptual apparatuses in complex proofs, while the 
function of the Séminaire was to inform, in preview, about mathematical prog-
ress, thus being a preferred place to host creation.

Many controversial aspects of Bourbaki are well known, e.g., its overly for-
malist and algebraic setting or its lack of interest in logic. The first has been 
strongly criticized from the start by some great mathematicians who refused to 
be members of Bourbaki, while belonging to the same generation of the École 
Normale Supérieure as its founders. This is the case, e.g., for René Thom (1970), 
who accused Bourbaki of destroying geometric intuition, or for Roger Apéry, 
a constructivist mathematician inspired by the French constructivist school of 
Poincaré, Borel, Lebesgue, Fréchet, and Denjoy and opposed to Hilbertian for-
malism and axiomatics. The second aspect has been denounced, e.g., by Adrien 
Mathias in his 1992 paper “The Ignorance of Bourbaki,” which analyzes the 
inadequate reflections of Bourbaki on foundational issues in set theory. For 
Matthias, Bourbaki’s Set Theory “appeared to be the work of someone who had 
read Grundzüge der Mathematik by Hilbert and Ackermann,8 and Leçons sur les 
nombres transfinis by Sierpinski, both published in 1928, but nothing since.”9 
A lot of things have also been written about the folklore of Bourbaki, his legend, 
his dictatorial power, his dramatic impact on education with the introduc-
tion of “modern mathematics” in schools (see again Thom 1970). Our purpose 

	 8	 It seems that Mathias means to refer to Grundzüge der theoretischen Logik.
	 9	 Mathias (1992, 5). Sometimes the ignorance seems to be intentional and polemical:  thus 
Dieudonné says explicitly that his neglect of Gödel’s result concerning a consistency proof for formal 
systems is not a consequence of ignorance, but of a “philosophical” position (see Heinzmann 2018).
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here is quite different. We will try to explain the functionality of Bourbaki’s 
structuralism.

3.  Traditional Mathematical Objects versus Structures

Bourbaki inaugurated an axiomatic-​structural point of view that could seem-
ingly work without the need of metamathematics in Hilbert’s sense. Indeed, 
given that metamathematics is “finitist” and contentual, it would be an exception 
to the slogan that mathematics is only about formal structures. The hypothetical-​
deductive foundations of Bourbaki were explicitly designed to be neutral with 
respect to philosophical foundations. However, it can engaged with along the 
lines of the philosophical interest in scientific practices that has been renewed 
recently: foundations as structural systematization.

The “working mathematician”10 Henri Cartan, one of the founders of 
Bourbaki, wrote in 1943: “The mathematician does not need a metaphysical defi-
nition; he must only know the precise rules to which are subject the use he has in 
mind. . . . But who decides upon the rules?”11 This may sound Wittgensteinian, 
but is not so in reality. According to Cartan, mathematical reasoning in a given 
area intuitively obeys certain rules at first; and if difficulties arise, the use is 
adapted, etc. Consequently, a mathematical reality is created through practice. 
What is the criterion for the practice and for the rules that result? In a historical 
notice on set theory, Bourbaki writes:

[It was] recognized that the “nature” of mathematical objects is ultimately of 
secondary importance, and that it matters little, for example, whether a re-
sult is presented as a theorem of a “pure” geometry or as a theorem of algebra 
via analytical [Cartesian] geometry. In other words, the essence of math-
ematics .  .  . appeared as the study of relations between objects which do not 
of themselves intrude on our consciousness, but are known to us by means of 
some of their properties, namely those which serve as the axiom at the basis of 
their theory. (Bourbaki 1968, 316–​317)

Bourbaki considered “the problem of the nature of beings” or of “mathemat-
ical objects” as deriving from a “naive point of view,” “half-​philosophical, half-​
mathematical” (Bourbaki 1948, 40). Indeed, it would be naive to presuppose that 
we can have a well-​defined mathematical object at all, i.e., that it can be identified 

	 10	 An expression used by Bourbaki (1949).
	 11	 Cartan (1943), transl. by Gerhard Heinzmann.
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completely by specifying a property that characterizes it. It is only apparently 
well-​defined according to the traditional theory of definition.12

Bourbaki henceforth abandoned the philosophical problem of object-​
individuation in favor of a premise that seems to have the same meaning 
today: the unity of mathematics (Houzel 2002, 3). The tool to achieve this unity 
was Hilbert’s axiomatic method: it provides clarity and rigor in the register of 
reasoning (see Dieudonné 1939, 232b) by using a systematization of mathe-
matical theories (Bourbaki 1948, 37). It allows one to obtain all kinds of axiom 
systems; not for all of classical mathematics, however, but only those domains 
that correspond to the hierarchy of structures classified as “simple,” “complex,” 
and “mixed.” Indeed, to define a simple structure, we take a set “of elements 
whose nature is not specified,” provide it with certain relationships, and formu-
late the axioms that satisfy them. And we define the structure as algebraic “if the 
relationships are the laws of composition,” as topological “if the relations concern 
the intuitive concepts of neighborhood, limit and continuity,” and as an order 
structure if the relations are of that type.

4.  The Unity of Mathematics:      
Structures and Entangled Problems

Let us focus now on how structures were used by Bourbaki, in a process of 
clarification and unification, to further the discovery of new and unexpected 
results—​as common to several systems of objects of very different origins, as in-
dicative of deep and fruitful analogies between theories far removed from each 
other, and as a powerful heuristic for proofs. As two examples, Cartan’s filters 
and Weil’s uniform structures are among the greatest inventions of Bourbaki. 
The first illuminates the analogy between the convergence of sequences and that 
of functions, while the second illuminates the analogy between a metric and a 
family of pseudometrics. A third example produced directly a new result: the so-​
called Banach-​Alaoglu compactness theorem (for the weak topology) of the dual 
unit ball of a normed space, which is also due, in the form that we know today, to 

	 12	 H. Cartan gives the following example: “According to Lebesgue, the quantity
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is a well-​defined number, when C is a well-​defined real number, for example, Euler’s constant. 
However, this quantity is equal to 0 if C is irrational, 1 if C is rational; and we are still today ig-
norant whether Euler’s constant is rational or irrational. Thus, if C is Euler’s constant, we obtain a 
well-​defined number, but we do not know if it is equal to 0 or to 1” (Cartan 1943, 5; transl. Gerhard 
Heinzmann).
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Bourbaki.13 Everything in it is owed to the clarification by means of weak topolo-
gies, which revived a problem that could not be correctly formulated until then.

This functional aspect of structures, on which Bourbaki continually dwelt, is 
governed by the principle of the unity of mathematics, that is to say, by the very 
strong ability to translate pieces of one mathematical theory into another theory. 
Besides the deductive “vertical” dimension internal to every theory, taking into 
account the relevant structures can reveal a host of “horizontal” connections 
between different theories.14 The resulting “horizontal” navigation between 
different theories involves (at least) two processes. On the one hand, there are 
analogies, intuitive at first, between structures of the same type in different areas, 
i.e., structures whose clarification and systematization often lead to new discov-
eries. On the other hand, there is the encounter of different structures within the 
same “crossroads” area, which allow for the unification of theories. We need both 
to tackle the complex proofs of intricate problems. (We will come back to this 
issue later.)

Let us clarify the importance of the unity of mathematics according Bourbaki 
further. In terms of category theory, many connections between theories cor-
respond to the existence of functors and natural transformations of functors 
between categories (for example, between topological spaces and groups in al-
gebraic topology); but many others are not simply functorial. In fact, conceptu-
ally complex proofs are very uneven, with rough and rugged multi-​theoretical 
routes in a sort of “Himalayan chain” whose peaks seem inaccessible. They 
cannot be understood without the thesis of the unity of mathematics, because 
they are in some sense holistic. This holistic aspect of complex proofs has al-
ways been emphasized by Bourbaki. Thus, in his Panorama des Mathématiques 
pures: le choix bourbachique (1977, xii), Jean Dieudonné classifies theorems into 
six classes:

	 1.	 “Dead-​born problems [les problèmes mort-​nés]”: particular problems for 
which a certain theoretical approach has failed.

	 2.	 “Problems without posterity [les problèmes sans postérité]”:  problems 
whose resolution did not generate any other problems.

	 3.	 “Problems bringing forth a method [les problèmes qui engendrent une 
méthode]”: e.g., analytic number theory or finite group theory.

	 13	 Leon Alaoglu proved his generalization of Banach’s 1932 theorem in 1940, but Jean Dieudonné 
claimed that it was already announced in Bourbaki in 1938. The point is controversial.
	 14	 Cf. Cavaillès’ terminology of the “thematic” and “horizontal” construction of concepts 
(Cavaillès 1947, 27).
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	 4.	 “Problems clustering around a general, fertile, and vibrant theory [les 
problèmes qui s’ordonnent autour d’une théorie générale, féconde et 
vivante]”: e.g., Lie group theory or algebraic topology.

	 5.	 “Declining theories [les théories en voie d’étiolement]”: e.g., the theory of 
invariants.

	 6.	 “Theories on the way to dilution [les théories en voie de délayage]”: problems 
that try to modify the axioms of already known rich theories.

It is the third and fourth classes that deserve special attention in our context, 
since they manifest the enigmatic unity of mathematics. A typical example given 
by Dieudonné of difficult key results involving this unity, by intertwining several 
very heterogeneous theories, is that of modular forms:

The theory of automorphic and modular forms has become an extraordinary 
crossroads where the most varied theories are reacting to each other: analytic 
geometry, algebraic geometry, homological algebra, non-​commutative har-
monic analysis, and number theory. (Dieudonné 1977, 87)

The notion of “crossroads” (carrefour) is crucial: “big problems” are problems 
where many structures of different type interact and became entangled. 
The systematization of structures in the Éléments can be thought of as a 
“disentanglement.”

A spectacular confirmation of Dieudonné’s claim has been the proof by 
Andrew Wiles and Richard Taylor, in 1993–​95, of the Shimura-​Taniyama-​Weil 
conjecture (implying Fermat’s Last Theorem via a theorem of Ribet). This proof 
uses modular forms in a central way, and it is the prototype of a complex proof 
whose deductive parts are widely scattered in the global unity of the mathemat-
ical universe.15 Its holistic status has been emphasized by many specialists. For 
example, Israel Kleiner writes:

Behold the simplicity of the question and the complexity of the answer! The 
problem belongs to number theory—​a question about positive integers. But 
what area does the proof come from? It is unlikely one could give a satisfactory 
answer, for the proof brings together many important areas—​a characteristic of 
recent mathematics. (2000, 33)

	 15	 For a summary of the proof, see Petitot (1993).
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Similarly, Barry Mazur writes:

The conjecture of Shimura-​Taniyama-​Weil is a profoundly unifying 
conjecture—​its very statement hints that we may have to look to diverse 
mathematical fields for insights or tools that might leads to its resolution. 
(1991, 594)

To use the complementarity in physics between observed phenomena and meas-
uring apparatuses as a metaphor, we could put it this way: For the Bourbakists, 
“big problems” and hard conjectures (the distribution of primes, linked to the 
zeroes of the zeta function and the Riemann hypothesis, etc.) were treated as 
key mathematical “given” phenomena that had to be looked at using appropriate 
formal “apparatuses”; and axiomatized structures are precisely such devices. 
Thus mathematics is at the same time holistic and modular.16 Structures are mod-
ular, but key phenomena are holistic, since they have to be “observed” by using 
many completely different “apparatuses.” The “scattered” character of complex 
proofs is due to this holistic/​modular complementarity.

This complementarity illuminates some aspects of the axiomatic method that 
Bourbaki inherited from Hilbert: (i) the fact that axioms can be freely chosen 
and are prescriptive principles, as opposed to being descriptive of objects (in the 
physical metaphor, to treat structures as objects would be a confusion between 
objects and apparatuses); (ii) the fact that many genetically different mathemat-
ical objects can be analyzed using the same structures; (iii) the fact that, in order 
to avoid an irrelevant axiomatic game, relevant “interesting” structures must be 
discovered through a reflexive process from the practice.

5.  René Thom and Bourbaki

It is interesting to return here to the evaluation of the Éléments by René Thom, 
a colleague of the Bourbakists first at the École Normale Supérieure (he was 
a PhD student of Henri Cartan, together with Jean-​Pierre Serre) and, after 
1963, at the Institut des Hautes Études Scientifiques. A  good reference is 
Thom’s 1970 paper, “Les mathématiques modernes: une erreur pédagogique 
et philosophique ?” (translated in 1971 for the American Scientist). Thom criti-
cized the idea that axiomatization can be at the same time a tool for systemati-
zation and for discovery.

	 16	 “Modular” not in the mathematical sense, but in a sense analogous to “modularity” in program-
ming languages or in cognitive science (“modularity of mind”).
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During the last few years many such opinions were being put forward about 
the importance of axiomatization as an instrument both of systematization and 
of discovery. Instrument of systematization for sure; but whether of discovery, 
that is a much more doubtful affair. (Bolondi 2009, 705)

And he based his critique of Bourbaki precisely on this point:

It is characteristic that from the immense effort at systematization by Nicolas 
Bourbaki (which is not a formalization anyway, since Bourbaki uses a non-​
formalized meta-​language) no new theorem of any importance has resulted. 
And if researchers in mathematics make reference to Bourbaki, they find food 
much more often in the exercises—​where the author has repelled the concrete 
material—​than in the deductive body of the text. (Thom 1971, 697–​698)

Thus for Thom the Éléments offers a systematized toolbox of axiomatized 
structures whose real interest for mathematical practice lies outside of it, in “con-
crete problems.” We agree; but we will see later that, in fact, Bourbaki himself was 
perfectly aware of this and thought that the purpose of the Éléments was to help 
in the resolution of concrete “big” problems.

In addition, Thom attributed to Bourbaki, and criticized, the idea that 
structures can be derived from set theory:

The old Bourbakist hope, to see the mathematical structures emerge natu-
rally from the hierarchy of sets, from their subsets and their combination, is 
no doubt a chimera. Reasonably, one can hardly escape the impression that im-
portant mathematical structures (algebraic structures, topological structures) 
appear as data fundamentally imposed by the external world, and that their ir-
rational diversity finds its only justification in their reality. (Thom 1971, 699)

Here again, Bourbaki was in fact aware of this point and held, as we already 
pointed out, that relevant “interesting” structures must be discovered in a re-
flexive way from the practice and from the search for solutions to given “big” 
problems. Hence Thom’s criticism is justified for a restricted formal concep-
tion of structures, but not for a more general approach emphasizing their 
functional role.

From this perspective, we will now comment further on (i)  the restricted 
formal definition of structures in Bourbaki; and (ii) their functional role in a 
more general structuralist context. The latter ranged from Hilbert’s axiomatic 
approach to Grothendieck’s categorical approach, and it involved discovery and 
complex proofs.
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6.  Formal Definition of Structures:      
Set Theory and Category Theory

Initially, the key notion of structure in Bourbaki was supposed to be a noncon-
troversial concept; but the members of the group did not agree on the impor-
tance and priority it should be given. Especially the question of its definition was 
not conceived by everyone in the same manner. The options were to give either 
(1) a vague account of how to define a structure, formulated in the metatheory 
(Bourbaki had done so from the beginning), or (2) an explicit and general defini-
tion, to be referred to whenever a new structure is introduced. Liliane Beaulieu’s 
PhD thesis bears witness to the hesitations of the first members of Bourbaki, in 
the 1930s, with respect to a formal definition of structure.17 The definition was 
finally published 20 years later, 18 but was hardly respected or used in the released 
mathematical corpus, despite the principle to publish only what was unani-
mously accepted by the group.

Indeed, as pointed out by Leo Corry already (1992, 327), Bourbaki made a 
very revealing comment in this context. It can be found in the Fascicule de 
résultats (Summary of Results) of the treatise Théorie des Ensembles,19 3rd edition 
(1958), originally released as the first publication by Bourbaki (1939). In it, an in-
formal definition of “structure” is used—​well before the publication of chapter 4 

	 17	 In the first plenary meeting in Besse, on July 1935, one can read in a resolution: “We warn the 
reader, once and for all, that the operations that will be applied to sets can be axiomatized and jus-
tified, provided that they are only carried out on sets we study in a mathematical theory” (Beaulieu 
1989, 233). There is also a project, probably discussed during the 1936 plenary meeting of Chançay, 
entitled “Projet Laïus Scurrile” (the group used the term “scurrile” mostly for “what has to be done 
without enthusiasm, which leads to nothing, or what has a philosophical content.” Thus, we find in 
the minutes of the Bourbaki meetings or in his writings the expressions “laius scurrile” (Beaulieu 
1989, 228, note 37).) In the project description we can read: “The subject of a mathematical theory is 
a structure organizing a set of elements: the words ‘structure’, ‘set’, ‘elements’ are not likely definable, 
but constitute the basic concepts for all mathematicians. They take on clearer form once we have had 
the opportunity to define structures, as will be done from this chapter one. Thanks to a structure, one 
has the right to say that elements or parts of the set considered in a theory have some relationships 
between them or possess certain properties: the words ‘part’, ‘relationship’, ‘property’ are likely unde-
finable too, and are also basic notions. According to our principles, we should state the axioms that 
satisfy these notions: these axioms are those of set theory, and of any mathematical theory. Given the 
difficulties, until now not overcome, which stand in the way of the formulation of such axioms, we 
will assign temporarily to these words the meaning they have in ordinary language, and we will give 
in what follows general rules governing their use and how to switch from one to another. . . . We say 
that one has defined a structure on a fundamental set if properties of the (or relationships between 
the) elements of this set are given, or if one of those can be deduced by a combination of the above op-
erations, and, eventually, by previously given auxiliary fundamental sets” (Beaulieu 1989, 561; transl. 
Gerhard Heinzmann).
	 18	 See chapter 4 of Théorie des Ensembles (Bourbaki 1957). The Fascicule de résultats of this volume 
had already been published in 1939, i.e., 18 years earlier!
	 19	 The Summaries are in principle attached to every volume of Éléments de Mathématique, and 
their goal is to give a “rough idea” of an entire book either for orientation before reading or for a hur-
ried reader (Bourbaki 1939, vi).
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of Théorie des Ensembles itself (1957). And in section 8 of the Fascicule, devoted 
to scales of sets and structures (échelles d’ensembles et structures), Bourbaki 
comments in a footnote:

The reader may have observed that the indications given here are left rather 
vague; they are not intended to be other than heuristic, and indeed it seems 
scarcely possible to state general and precise definitions for structures out-
side of the framework of formal mathematics (see Chapter IV). (Bourbaki 
1968, 384)20

In the Fascicule de résultats, four pages “summarize,” or better anticipate, the 69 
pages on the notion of structure in the fourth chapter of Théorie des Ensembles; 
and the footnote indicates that Bourbaki put chapter 4, entitled “Structures,” in 
the “framework of formal mathematics,” which is developed in chapter 1. This is 
even clearer in the introduction to chapter 4:

The purpose of this chapter is to describe once and for all a certain number 
of formative constructions and proofs (cf. chapter I, §1, no. 3 and §2, no. 2)21 
which arise very frequently in mathematics. (Bourbaki 1968, 259)

Bourbaki will never resort to such formal “structures” in his other books. 
Indeed, as also noted by Corry, until the publication of chapter 4 in 1957 the 
only references are to the Fascicule de résultats, which gives simply an informal 
definition:

Given for example, three distinct sets E, F, G, we may form other sets from them 
by taking their sets of subsets, or by forming the product of one of them by itself, 
or again by forming the product of two of them taken in a certain order. In this 
way we obtain twelve new sets. If we add these to the three original sets E, F, G, 
we may repeat the same operations on these fifteen sets, omitting those which 
give sets already obtained; and so on. In general, any one of the sets obtained by 
this procedure (according to an explicit scheme) is said to belong to the scale of 
sets on E, F, G as base. (Bourbaki 1968, 383)

	 20	 This footnote is the only change from previous editions with respect to section 8 (“Structures”); 
we therefore quote always the most accessible English edition of 1968.
	 21	 By “formative constructions and proofs,” Bourbaki understands in chapter  1, entitled 
“Description of Formal Mathematics,” the definition of a formula-​calculus (“règles d’assemblages”)—​
“terms are assemblings which represent objects, and relations are assemblings which represent 
assertions which can be made about these objects (20)—​ together with a formal description of 
derivations, defined as sequences of relations.
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The discussion is rounded off in the following way:

Thus being given a certain number of elements of sets in a scale, relations be-
tween . . .22 elements of these sets, and mappings of subsets of these sets into 
others, all comes down in the final analysis to being given a single element of one 
of the sets in the scale.

In general, consider a set M in a scale of sets whose base consists, for the sake 
of example, of three sets E, F, G. Let us give ourselves a certain number of ex-
plicitly stated properties of [an]23 element of M, and let T be the intersection of 
the subsets of M defined by these properties. An element s of T is said to define 
a structure of the species T on E, F, G. The structures of species T are therefore 
characterized by the schema of formation of M from E, F, G, and by the proper-
ties defining T, which are called the axioms of these structures. We give a spe-
cific name to all the structures of the same species. Every proposition which is a 
consequence of the proposition “s ∈ T” (i.e. of the axioms defining T) is said to 
belong to the theory of the structures of species T. (Bourbaki 1968, 383)

Bourbaki assumed not only to have written the previous chapters to meet these 
specifications, which remained an outline of the formal content of chapter 4, 
but was also working on filling them out. In addition, he needed to introduce 
structures with morphisms to talk about derived structures.

Nevertheless, Bourbaki did not wait until this chapter was written, because 
the expectations were clear. In particular, he had a clear idea of the three main 
types of structures, i.e., the “mother structures”: algebraic structures, topolog-
ical structures, and order structures. Thus in the introduction to the volume on 
Algebra it is noted:

In conformity with the general definitions (Théorie des Ensembles, IV, §1, no. 4 
[entitled “Espèces de structures”], being given on a set one or several laws of 
composition or laws of action defines a structure on E; for the structure defined 
in this way we preserve precisely the name algebraic structures and it is the 
study of these which constitutes Algebra.

There are several species (Théorie des Ensembles, IV, §1, no. 4) of algebraic 
structures, characterized, on the one hand, by the laws of composition or laws of 
action which define them and, on the other hand, by the axioms to which these 
laws are subjected. Of course, these actions have not been chosen arbitrarily, 
but are just the properties of most of the laws which occur in applications, such 

	 22	 The available translation is “between generic elements,” but “generic” is not in the original 
French text. We skip it because “generic” has a specific mathematical content that does not apply here.
	 23	 We skip again the word “generic” here.
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as associativity, commutativity, etc. Chapter I is essentially devoted to the expo-
sition of these axioms and the general consequences which follow from them; 
also there is a more detailed study of the two most important species of alge-
braic structure: that of group (in which only one law of composition occurs), 
and that of a ring (with two laws of composition) of which a field structure is a 
special case. (Bourbaki 1974, xxii)

As we have seen, Bourbaki ranked the structures in a hierarchy at the base 
of which are the three “mother structures”: algebraic structures are character-
ized by “laws of composition,” as van der Waerden had already done24; order 
structures by an order relation; and the topological structures, again, by “an 
abstract mathematical formulation of the intuitive concepts of neighborhood, 
limit, and continuity, to which we are led by our idea of space” (Bourbaki 1948, 
227). These basic structures are followed by “multiple structures” involving two 
or more mother structures (e.g., topological algebra), and at the top of the hi-
erarchy are placed the “theories properly particular.” The criteria of Bourbaki’s 
hierarchy of structures for each kind of structures are simplicity, generality, and 
the number of axioms (229).

Actually, it is a contradiction to speak of a hierarchy within a particular struc-
ture. At most Bourbaki can compare the species of one kind of structure using 
the same scale, i.e., the same data for which the axioms set down properties. 
Thus groups are more general than commutative groups, which require an addi-
tional axiom while possessing the same scale. But groups and topological groups 
cannot be compared; the first are not more general than the latter: they are not 
defined on the same data (scales), and Bourbaki had to use what is now called 
the “forgetful” functor to reduce the scale of topological groups to the scale of 
mere groups. However, topological groups can be treated as mixed structures, 
i.e., as topological spaces provided in addition with a group structure whose op-
erations are continuous. It is sufficient to consider the huge project of Lie groups 
here (where one uses the structure of a differentiable manifold in addition). But 
it is not clear whether, for Bourbaki, mixed structures were also full-​fledged sui 
generis structures, which would be the case from a categorical perspective (the 
category of topological groups is a specific category). In any case, the categorical 
formalism necessary to compare species of structure was not yet fully available 
to Bourbaki. He began with structured sets and isomorphisms, so as then to add 
the most general relations between structured sets that amount to morphisms. 
This means in fact placing them in a category, but without using the term. The 
issue of the relationship between species of structures is not really addressed, 

	 24	 From the beginning, for Bourbaki, Modern Algebra by B. L. van der Waerden (1930–​31) was a 
model for the program in analysis, and then for mathematics as a whole (see Beaulieu 1989, 164).



The Functional Role of Structures in Bourbaki  201

which would mean considering formally functors, natural transformations, 
and categories of categories. In other words, in his pre-​categorical framework 
Bourbaki introduced many categorical objects and constructions: morphisms, 
sub-​objects, quotients, Cartesian products, projective and inductive limits, uni-
versal problems, and (implicitly) functorial objects, like the fundamental group 
π1(X, x) of a (pointed and arc-​connected) topological space (X, x ∈ X), but all in a 
universe of set theory and without the formal machinery of later category theory. 
For Bourbakists, categorical notions and operations became relevant and even 
inescapable in the 1950s (we only have to look at Cartan’s seminar from 1948 
onward); but for the Treatise category theory would have been too important 
an editorial transformation and, moreover, it was not really a foundational issue.

Why was the discrepancy between the formal definition of structure in 
chapter 4 of Théorie des Ensembles and the actual practice in applications never 
fixed by Bourbaki? And why was he not more interested in corresponding met-
amathematical questions (such as the question of consistency)? There is both 
a historical-​mathematical and a systematic-​philosophical explanation. The 
historical-​mathematical explanation is that, even before being released, the 
chapter on structures had already been superseded, since it would have needed 
to consider categories.25 Some members of Bourbaki did not agree with it, but 
Bourbaki could also not revise it for a silly material reason:  Everything that 
had been printed so far would have to be thrown away.26 Bourbaki confined 
itself, initially, to print just the Fascicule de résultats on the subject; and this is 
precisely because nothing else was needed for the main books of the Élements. 
Actually, the distance between the rest of the Éléments and its formal definition 
of structures was even greater. It also treated structures accurately defined but 
not in the formal sense of chapter 4. For example, in chapter 9 of his General 
Topology Bourbaki defines a normed space as a vector space “endowed with the 
structure defined by a given norm” (Bourbaki 1966, 170, 1st edition 1958), thus 
as a mixed structure (see the example of topological groups earlier). But, as com-
municated by Jean-​Pierre Ferrier, there is no explicit reference to the formal def-
inition of “structure” here; in fact, it is not explained in chapter 4 (1957) what 
the structure defined by a given norm is and what exactly “morphisms” between 
normed spaces could be.

	 25	 We emphasize: as already noted above, many categorical concepts are used more or less implic-
itly by Bourbaki. Categories were present between the writing of Élément des Mathématiques in 1939 
and its publication in 1957. But the framework of Éléments is set theory and not category theory, 
because otherwise it would have meant a complete rewriting. Algebraic topology has been the main 
source of category-​like reflections for Bourbakists, but, strangely enough, they postponed the writing 
of the volume Algebraic Topology (chapters 1–​4) until 2016!
	 26	 A fuller historical account of this debate can be found in Krömer (2006).
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But there is also a systematic-​philosophical explanation. Namely, in some 
ways Bourbaki remained closer than his rhetoric suggests to the “geometric 
structuralism” of Poincaré than to that of Hilbert. According to both Hilbert and 
Poincaré, geometrical axioms and axiom schemas are not propositions, i.e., true 
or false, and there are no special (“ontologically” specific) objects that geometry 
should have to study. Rather, geometry is just a system of relations that can be ap-
plied to many kinds of objects. For Poincaré, the metric postulates in geometric 
systems are “apparent hypotheses” that are neither true nor false, i.e., they are 
conventions (see Poincaré 1898). For Hilbert, the axioms and axiom schemas 
in geometric systems are expressions that, again, are neither true nor false. But 
according to Hilbert, mathematical formalism requires a “finitist” metamathe-
matics in order to demonstrate the consistency of formal mathematical systems. 
The failure of this program is well known (Gödel) and was known to Bourbaki 
(cf. note 9). In contrast, for Poincaré it is necessary to explain the hypotheses 
with respect to an informal standard that involves the unity of mathematics and 
preexists intuitively in our mind (at a first stage transformation groups, later the 
qualitative structure of topological spaces); and he takes a structuralist posi-
tion without disengaging meaning and knowledge completely from ostension.27 
Poincaré’s concept of structure is thus not the new Hilbertian one derived from 
his axiomatization of geometry, but constitutes a development of the traditional 
idea of geometrical invariances. For Bourbaki too, the mother structures have an 
informal background. And he also incorporates the metamathematical problems 
into mathematics, as it were, by adopting an empirical position and by sharing 
Poincaré’s concern for the unity of mathematics. From a philosophical point of 
view, it is clearly the status of Hilbert’s metamathematics (invalidated by Gödel) 
that makes it distinct from the shared position of Bourbaki and Poincaré.

From a practical point of view one can ask, finally, whether Bourbaki’s “mother 
structures” are “natural” in the sense of common-​sense habits. Here we agree with 
Piaget’s analysis: “No subject, before he has learnt it, has the ‘concepts’ of what a 
group, lattice, topological homeomorphism etc. is: and in most cultural milieus, 
we do not come across such concepts before university or the upper classes of 
secondary school. Thus, it is not in the domain of reflective thought, considered 
from the subject’s view-​point, to ask whether these structures are ‘natural’ ” (Beth 
and Piaget 1966, 167). In other words, to put such structures at the beginning 
of the mathematical edifice is not justified by socio-​psychological practice, al-
though elements of them can be used to describe parts of both mathematical 
practice and socio-​psychological practice. Hence Bourbaki’s mother structures 
are a sort of mix of normative standards and empirically confirmed tools.

	 27	 Compare here the contribution on Poincaré, by Janet Folina, in the present volume.
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7.  The Function of Structures: An Example from Weil

It must be emphasized that, maybe not for Bourbaki as a collective author 
but undoubtedly for Bourbaki as a pleiad of mathematical masterminds, 
structures and axiomatics were deeply linked with analogies and intuitions. 
This is remarkable since these two domains seem completely different, the first 
belonging to the formal world and the second, in this case, to creative imag-
ination. However, the link is not so surprising if one takes into account that 
analogies are fundamental for discovering ways of solving “big problems.” To 
explain this point further, let us consider one of the main examples of such 
problem-​solving, namely the way in which André Weil—​“primus inter pares” 
in Bourbaki—​tackled the Riemann hypothesis. In his celebrated letter written 
in jail to his sister Simone (March 26, 1940), he described his procedure in 
natural language, thus leaving a rare and precious testimony of his way of 
thinking. Considering it will take us from Dedekind and Weber in the 19th to 
Alain Connes in the 21st century.28

7.1  The Initial Analogy by Dedekind-​Weber

At the end of the 19th century, Richard Dedekind29 and Heinrich Weber estab-
lished a deep analogy between the theory of algebraic numbers and Riemann’s 
theory of algebraic functions on algebraic curves over the field C of complex 
numbers (compact Riemann surfaces); see in particular their celebrated 1882 
paper, “Theorie der algebraischen Funktionen einer Veränderlichen.” One of 
their main ideas was to consider integers n as kinds of “polynomial functions” 
over the set P of primes, i.e., as “functions” globally defined and having a value 
and an order at every “point” p of P. The “value” is n modulo p, and the “order” is 
the power of p in the decomposition of n into prime factors. If the value at p is not 
0, the order is 0, and if the value is 0, the order is at least 1. This is evident because, 
if we write n in base p, we get n p a a p a pn

k
k= + + +order

0 1
( ) ( ... ) with coefficients 

ak  between 0 and p –​ 1, a0 ≠ 0 For smooth functions on manifolds in the ordi-
nary sense, the values and the orders at the points are local concepts. To find the 
equivalent of these concepts in the analogy, Dedekind and Weber had to define 
localization in a purely algebraic manner. This is the origin of the modern (cru-
cial) concepts of spectrum and scheme in algebraic geometry.

	 28	 For more details, see Petitot (2017).
	 29	 Dedekind is one of the founders of axiomatic and structural methods in mathematics: cf. Sieg 
and Schlimm (2017), and also the contribution on Dedekind, by José Ferreirós and Erich Reck, to the 
present volume.
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In his letter to Simone, Weil describes this analogy very well:

[Dedekind] discovered that an analogous principle enabled one to establish, by 
purely algebraic means, the principal results, called “elementary,” of the theory 
of algebraic functions of one variable, which were obtained by Riemann using 
transcendental [analytic] means. (Weil, [1940] 2005, 338).

He adds:

At first glance, the analogy seems superficial. . . . [But] Hilbert went further in 
figuring out these matters. (228)

The simplest elements of the analogy can be summarized in table 1.

7.2  Hensel’s p-​adic Numbers

The analogy becomes deeper when we introduce a local/​global dialectic. On C, 
we have analytic functions with Taylor expansions in the neighborhood of any 
point z. To extend this fact to arithmetic, it was necessary to find the equiva-
lent of the Taylor expansion of a “function” in the neighborhood of a “point” p. 
For integers, the situation is very simple. In the same way as a polynomial is its 
own Taylor expansion at every point, an integer is its own “Taylor expansion” 
(its expansion in base p) at every prime p. But there are more functions than 
polynomials, which have different and infinite Taylor series at different points. 
To find an equivalent in the Dedekind-​Weber analogy, one has to consider 
expansions in base p of infinite length, i.e., generalized numbers n = porder(ñ)(a0 
+ a1p + . . . + akp

k + . . .). Of course, such series are divergent (and therefore have 
no rigorous meaning) for the standard Archimedean metric on the integers. 
But they become defined and tractable if one introduces a new, quite strange, 
metric where the norm of pk is 1/​pk and tends toward 0 when k goes to ∞.

This was the great achievement by Hensel with the invention of p-​adic num-
bers. And exactly as R is the completion of Q for the natural Archimedean metric 
(via limits of equivalent Cauchy sequences), the p-​adic numbers constitute a 
field Qp of characteristic 0 that is the completion of Q for a specific ultrametric, 
non-​Archimedean, p-​adic metric. In Bourbaki’s manifesto, “L’Architecture des 
mathématiques” (1948) Dieudonné emphasized (with a rather a posteriori con-
ception of history) Hensel’s unifying analogy:

[In an] astounding way, topology invades a region which had been until then 
the domain par excellence of the discrete, of the discontinuous, viz. the set of 
whole numbers. (Bourbaki 1948, 228)
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Table 1  The analogy between prime numbers and points on a Riemann surface

Primes ⇔ Points

Integers ⇔ Polynomials

Divisibility of integers ⇔ Divisibility of polynomials

Rational numbers      
(quotients of integers)

⇔ Rational functions      
(quotients of polynomials)

Algebraic numbers ⇔ Algebraic functions

7.3  Mixing Algebraic and Topological Structures

Of course, with any of its natural metrics Q is naturally embedded, as a topolog-
ical subfield, in its corresponding completions Qp and R (remember the analogy 
with polynomials that are their own Taylor expansion at every point). With its 
induced topology, it is by construction a dense subfield of all its completions; 
but it must be strongly emphasized that all these topologies on Q are completely 
heterogeneous: as a set endowed with an algebraic structure of a field, Q is eve-
rywhere the same. Yet as a topological space it is completely different for every 
metric, since the relations of neighborhood are completely different. We meet 
here a very good example of mixed structure: a single algebraic system compat-
ible with an infinite number of different metric topologies. And we see how rich 
the “mixing” of structures of different types can be.

7.4  Places and Weil’s “Birational” Approach

From this perspective, Q appears as what is called a global field with an infinite 
number of incommensurable completions, while Qp and R are called local fields. 
In this context, R is often interpreted as Q∞, that is, as the completion of Q for an 
“infinite” prime. This is of course just a manner of speaking. To conceptualize 
this remarkable geometrical intuition of “points” for finite and “infinite” primes 
in arithmetic, the specialists have coined the term “place” and speak of finite and 
infinite places.30

	 30	 The geometrical lexicon of Hensel’s analogy can be rigorously justified by using the concept 
of scheme that we have already evoked: (i) finite primes p are the (closed) points of the spectrum 
Spec(Z) of the ring Z; (ii) the local rings Z(p) of rationals without any power of p in the denominator 
are the fibers of the structural sheaf O of Spec(Z); (iii) the finite prime fields Fp are the residue fields 
of the fibers of O; (iv) integers n are global sections of O; (v) Q is the field of rational functions on 
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The Dedekind-​Weber analogy between arithmetic and geometry goes much 
further. The spectrum Spec(Z) of Z, i.e., the space whose (closed) points are the 
primes p, is an affine space and not a projective space. If one wants to extend to 
arithmetic the analogy with projective (birational) algebraic geometry of com-
pact Riemann surfaces and transfer some of its results (the Riemann-​Roch the-
orem, the Severi-​Castelnuovo inequality, etc.), one has to work with all places at 
the same time. Indeed, in projective geometry the point ∞ is on a par with the 
other points. Weil emphasized this insight strongly from the start. Already in his 
1938 paper, “Zur algebraischen Theorie des algebraischen Funktionen,” he writes 
that he wants to reformulate Dedekind-​Weber in a birationally invariant way. In 
his letter to Simone, he explains the problem as follows:

In order to reestablish the analogy [lost by the singular role of ∞ in Dedekind-​
Weber], it is necessary to introduce, into the theory of algebraic numbers, 
something that corresponds to the point at infinity in the theory of functions. 
(Weil [1940] 2005, 339)

7.5.  The Adelic Perspective

Unifying Archimedean and p-​adic places is the origin of Weil’s “adelic” approach. 
The problem is to consider families of local data indexed by all places together 
and to look at the possibility of gluing them into global entities. A first simple 
idea would be to take the elements of the infinite Cartesian product Π of all the 
completions Qp and R. This would be a good example of a complex structure 
constructed as a product of simpler structures; but this idea turns out not to be 
so interesting. As Qp and R are fields, Π is a ring; and as Qp and R are normed 
fields, Π is a topological ring (it is another example of mixed structures); but its 
topology is rather pathological in the sense that it is not locally compact, where 
one says that a topological space is locally compact when every point has compact 
neighborhoods. We meet here a typical example of a Bourbakian reflection on 
what can be a relevant “good” structure: it is not the most formally general struc-
ture, but the most functionally general structure suitable for a particular purpose.

Spec(Z) (i.e., of global sections of the sheaf of fractions of O); and (vi) Spec(Z) plus the infinite place 
∞ is like the “projectivization” of Spec(Z). In this context, Zp and Qp correspond to local restrictions 
of global sections around the “point” p of Spec(Z), analogous to what are called germs of sections in 
classical differential, analytic, or algebraic geometry. (For the Riemann surface C, they would corre-
spond, respectively, to holomorphic functions on small disks around a point z and on small punc-
tured disks around z.)
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The lack of local compactness can be fixed using the concept of adele, a no-
tion derived from the notion of idele introduced by Claude Chevalley in class 
field theory and coined by Weil (adele = additive idele, and the multiplicative 
group IQ of ideles is recovered as the group GL1(AQ)). The core idea is to use the 
“restricted” product AQ of the Qp and R, where “restricted” means that almost all 
components, except a finite number, of an adele are p-​adic integers. (Restricted 
products were already used by Chevalley for the ideles.) AQ is a topological sub-
ring of Π, which has the fundamental advantage of being locally compact, be-
cause the ring Zp of p-​adic integers is compact in the locally compact field Qp. Of 
course, the global field Q is naturally embedded diagonally in AQ. (One associates 
to any rational r the adele a all of whose components are r; a is actually an adele 
since, for all p not dividing its denominator, r is a p-​adic integer.) Due to the het-
erogeneity of the topologies induced on Q by its different completions, however, 
Q is naturally embedded in AQ as a discrete subfield.

7.6.  Locally Compact Structures

Now, why is being locally compact so important? The pragmatic reason is that 
the additive structure of AQ is an abelian (i.e., commutative) locally compact top-
ological group,31 and such groups are naturally endowed with Haar measures 
(generalizing the Lebesgue measure on R), which allow integration and har-
monic analysis. According to a theorem of Iwasawa,32 this property belongs to 
the characterization of Q as a global field, the arithmetic of Q being correlated 
to the analysis of AQ. As Alain Connes writes, referring to Weil (1967) and Tate 
(1950) in his “Essay on the Riemann Hypothesis” (2015, 5):

It opens the door to a whole world which is that of automorphic forms and 
representations, starting .  .  . with Tate’s thesis [“Fourier Analysis in Number 
Fields and Hecke’s Zeta-​Function,” 1950] and Weil’s book Basic Number Theory.

In chapter 9 of Modern Algebra and the Rise of Mathematical Structures (2004), 
Leo Corry discusses the fact that Weil’s preference for a theory of integration 
à la Lebesgue on locally compact groups restrained the development of prob-
ability theory à la Kolmogorov. Indeed, the latter uses, e.g., for Brownian mo-
tion, measures, and integration theory on non-​locally compact groups. In his 

	 31	 Moreover, AQ has the deep property of being “self-​dual” for Pontryagin duality, i.e., it is isomor-
phic to the group of its characters.
	 32	 The fact that the topological ring AK of adeles of a field K is locally compact, semi-​simple (with 
trivial Jacobson ideal), K being cocompact in it, characterizes global fields.
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autobiography, Laurent Schwartz testimonies that “Bourbaki stepped away from 
probability, rejected it, considered it to be unrigorous” (quoted in Corry 2004, 
119). We see in this example how the selection of “good” relevant structures can 
depend heavily upon the “big problems” aimed at: the Riemann hypothesis is not 
Brownian motion.

7.7.  The Rosetta Stone

His remarkable conceptual deepening of the Dedekind-​Weber analogy enabled 
Weil to find a strategy for proving the Riemann hypothesis (RH) not for arith-
metic, but for an analogous, more geometric world. Indeed, in characteristic 0 
the only global fields are finite extensions K of Q (i.e., algebraic number fields). 
But there exist a lot of other global fields defined in characteristic p. They are the 
fields K of rational functions on algebraic curves over a finite field Fq = Z/​qZ with 
q = pn, p prime. It is therefore natural, on the one hand, to try to transfer to these 
fields questions concerning algebraic number fields: Weil did it for RH. On the 
other hand, algebraic curves over a finite field must have something to do with 
algebraic curves over C, and it is also very natural to try to translate RH to their 
case. It is for this intermediate third world that Weil succeeded in proving RH. 
This was one of his greatest achievements. He overcame what he considered to 
be the main difficulty in the Dedekind-​Weber analogy, namely: that the theory of 
Riemann surfaces is “too rich” and “too far from the theory of numbers,” and that 
“one would be totally blocked if there were not a bridge between the two” (Weil 
[1940] 2005, 340). Hence his celebrated metaphor of the “Rosetta stone”:

My work consists in deciphering a trilingual text; of each of the three columns 
I have only disparate fragments; I have some ideas about each of the three lan-
guages: but I know as well there are great differences in meaning from one 
column to another, for which nothing has prepared me in advance. In the sev-
eral years I have worked at it, I have found little pieces of the dictionary. (Weil 
[1940] 2005, 340)

7.8.  The Riemann Hypothesis: From Hasse to Weil, 
Grothendieck, Deligne, and Connes

Before Weil, Emil Artin and Friedrich Karl Schmidt had already transferred the 
Riemann-​Dirichlet-​Dedekind zeta and L-​functions from the arithmetic side to 
the side of algebraic curves over Fq. In this new context, Helmut Hasse proved 
RH for elliptic curves. Then Weil proved it for all algebraic curves over finite 
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fields using mixed technical tools, such as divisors, the Riemann-​Roch theorem 
for the curves and their squares, intersection theory, the Severi-​Castelnuovo 
inequality coming from the classical geometric side (characteristic 0), and cru-
cially, Frobenius maps coming from characteristic p (see Cartier 1993). It is well 
known that the attempts to generalize to higher dimensions Weil’s proof of RH 
for curves over finite fields led him to his celebrated conjectures; and to find a 
strategy for proving them has been at the origin of the monumental program 
of Grothendieck (schemes, sites, topoi, etale cohomology, etc.), culminating in 
1973 with Deligne’s proof.

But the original Riemann hypothesis remained, and still remains, un-
solved. A few years ago, Alain Connes proposed a new strategy, consisting in 
constructing a new geometric framework for arithmetics in which Weil’s proof in 
the intermediary case of curves over finite fields could be transferred by analogy. 
His fundamental discovery is that a way forward could be to work in a new “new 
world,” namely the strange world of “tropical algebraic geometry in character-
istic 1.” In his 2015 essay he explains that the strategy is

to find a geometric framework for the Riemann zeta function itself, in which 
the Hasse-​Weil formula, the geometric interpretation of the explicit formulas, 
the Frobenius correspondences, the divisors, principal divisors, Riemann-​
Roch problem on the curve and the square of the curve all make sense. (Connes 
2015, 8)

8.  Conclusion: Structures and Mathematical Discovery

From Weil to Grothendieck and Deligne, and from Grothendieck to Connes, we 
see how crucial and permanent the long-​term functional role of structural analo-
gies as a method of discovery is. As Weil strongly stressed from the outset in his 
letter to Simone:

If one follows it in all of its consequences, the theory alone permits us to reestab-
lish the analogy at many points where it once seemed defective: it even permits 
us to discover in the number field simple and elementary facts which however 
were not yet seen. (Weil [1940] 2005, 339)

Thus, a structural clarification of an analogy yields more understanding and 
allows to go further.

Indeed, structures enable us to imagine strategies for solving hard problems. 
It is amusing to see how Weil used a lot of military metaphors—​“find an opening 
for an attack (please excuse the metaphor),” “open a breach which would permit 
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one to enter this fort (please excuse the straining of the metaphor),” “it is neces-
sary to inspect the available artillery and the means of tunneling under the fort 
(please excuse, etc.)”—​when explaining to his sister that finding a proof is actu-
ally a strategy. He added:

It is hard for you to appreciate that modern mathematics has become so ex-
tensive and so complex that it is essential, if mathematics is to stay as a whole 
and not become a pile of little bits of research, to provide a unification, which 
absorbs in some simple and general theories all the common substrata of the 
diverse branches of the science, suppressing what is not so useful and necessary, 
and leaving intact what is truly the specific detail of each big problem. This is 
the good one can achieve with axiomatics (and this is no small achievement). 
This is what Bourbaki is up to. It will not have escaped you (to take up the mil-
itary metaphor again) that there is within all of this great problems of strategy. 
(Weil [1940] 2005, 341)

This illustrates that Bourbaki’s structures concern much more than mere “simple 
and general” abstractions. They have a functional role, a strategic and crea-
tive function, namely “leaving intact what is truly the specific detail of each big 
problem.”

This pragmatic functionality of structures is really the key point for our 
purposes. Bourbaki was a group of creative mathematicians, not of philosophers. 
The true philosophical meaning of their structuralist approach is rooted deeply 
in their practice and must be extracted from there. To evaluate it, it is not suffi-
cient to criticize their more or less clever or educated philosophical claims. The 
fundamental relation between, on the one hand, their holistic and “organic” 
conception of the unity of mathematics and, on the other hand, their thesis 
that some analogies and crossroads can be creative and lead to essential discov-
eries is a leitmotiv for Bourbaki since the 1948 manifesto, “L’Architecture des 
mathématiques.” The continued insistence on the “immensity” of mathematics 
and on its “organic” unity; the claim that “to integrate the whole of mathematics 
into a coherent whole” (222) is not a philosophical question, as it was for Plato, 
Descartes, Leibniz, or “logistics”; the constant criticism of the reduction of 
mathematics to a tower of Babel juxtaposing separated “corners”—​these are not 
vanities of philosophically ignorant mathematicians. They have a very precise 
technical function: to construct complex proofs navigating in this holistic, con-
ceptually coherent world.

Hence:  “The ‘structures’ are tools for the mathematician”; “each struc-
ture carries with it its own language”; and to discover a structure in a concrete 
problem “illuminates with a new light the mathematical landscape” (Bourbaki 
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1948, 227) (compare again the example of the locally compact adelic ring). Leo 
Corry has formulated this key point well:

In the L’Architecture des mathématiques manifesto, Dieudonné also echoed 
Hilbert’s belief in the unity of mathematics, based both on its unified meth-
odology and in the discovery of striking analogies between apparently far-​
removed mathematical disciplines. (Corry 2004, 304)

And indeed, Dieudonné claimed:

Where the superficial observer sees only two, or several, quite distinct theories, 
lending one another “unexpected support” through the intervention of math-
ematical genius, the axiomatic method teaches us to look for the deep-​lying 
reasons for such a discovery. (Bourbaki 1948, 230)

Structures are guides for intuition and allow to overcome “the natural difficulty 
of the mind to admit, in dealing with a concrete problem, that a form of intui-
tion, which is not suggested directly by the given elements, . . . can turn out to be 
equally fruitful” (Bourbaki 1948, 230). Thus for Bourbaki “more than ever does 
intuition dominate in the genesis of discovery” (228). And intuition is guided by 
structures.

After his 1948 manifesto, Bourbaki deepened this vision considerably. The 
structural systematization made by the Éléments allowed clarification of many 
difficulties, opened up good prospects, and led to fruitful angles of attack, which 
helped to solve difficult and entangled problems. In the combination of, on the 
one hand, systematizing and clarifying formal operations in the context of jus-
tification and, on the other hand, implementing proof strategies in the context 
of discovery rests, in our opinion, Bourbaki’s main contribution. Thus the phil-
osophical scope of Bourbaki’s concept of structure goes far beyond its formal 
presentation in Théorie des Ensembles. Its coherence has to be found not in 
foundational issues, but in the extraordinary corpus of technical results the 
Bourbakists produced and inspired. To understand Bourbaki’s “philosophy,” 
one has to take seriously, and discuss philosophically, the statements, reflections, 
and testimonials concerning how they thought about the operational practice 
involving structures for the creative imagination in pure mathematics. Very few 
philosophers have addressed these issues.33

	 33	 A  remarkable exception was Albert Lautman; cf. Heinzmann (2019) and Petitot (1987). 
Compare also Zalamea (2012) and Chevalley (1987).
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Saunders Mac Lane: From Principia 

Mathematica through Göttingen to the 
Working Theory of Structures

Colin Mclarty

1.  Mac Lane Overall

Saunders Mac Lane (1909–​2005) attended David Hilbert’s weekly lectures on 
philosophy in Göttingen in 1931. He utterly believed Hilbert’s declaration that 
mathematics will know no limits: Wir müssen wissen; wir werden wissen—​We 
must know, we will know.1 Mac Lane had a room in Hermann Weyl’s house and 
worked with Weyl revising Weyl’s book Philosophy of Mathematics and Natural 
Science (1927). At the same time he absorbed a structural method from Emmy 
Noether. Mac Lane always linked mathematics with philosophy, but he was dis-
appointed in his own Göttingen doctoral dissertation (1934) trying to streamline 
the logic of Principia Mathematica into a practical working method for mathe-
matics. He had wanted to do that since he was undergraduate at Yale.2 Now he 
saw it could go nowhere. He lost interest in philosophic arguments for or against 
philosophic ideas about mathematics.

Mac Lane learned a new standard for philosophy of mathematics from 
Hilbert and Weyl: Which ideas advance mathematics? Which help us solve long-​
standing problems? Which help us create productive new concepts, and prove 
new theorems? In other words: which ideas work? The Göttingers taught him 
that a philosophy of form, or structure, is key to the productivity of modern 
mathematics.

He urged this direction for logic research in a talk to the American 
Mathematical Society in 1933 published in the Monist (Mac Lane 1935). He 
continued promoting logic and writing reviews for the Journal of Symbolic 
Logic. He always tried to move logic research closer to other mathematics. The 

	 1	 Mac Lane (1995a, 1995b).
	 2	 Philosophy instructor F. S. C. Northrop, a Whitehead student like Quine, turned Mac Lane to-
ward Principia Mathematica. See Mac Lane (1996b, 6) and Mac Lane (1997a, 151).

Colin McLarty, Saunders Mac Lane In: The Prehistory of Mathematical Structuralism. Edited by: Erich H. Reck and Georg 
Schiemer, Oxford University Press (2020). © Oxford University Press.
DOI:10.1093/oso/9780190641221.003.0009
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last single-​author book he completed in his lifetime (1986) aimed to recruit 
philosophers to looking at mathematics this way: Which ideas work?

Look at his relation with Quine. He and Quine were both decisively influenced 
as undergraduates by Principia Mathematica, at elite liberal arts schools, he at 
Yale and Quine at Oberlin. Both did doctoral dissertations based on that and 
spent years studying in Europe. Both were founding members of the Association 
for Symbolic Logic. They often spoke as faculty colleagues at Harvard from 1938 
to 1947 but in decisively different departments. Mac Lane felt “the impressive 
weight of PM had continued to distort Quine’s views on the philosophy of math-
ematics” (1997a, 152); and he rejected Quine’s “undue concern with logic, as 
such” (Mac Lane 1986, 443).

He published on several topics in his early career including logic but focused 
on technical problems in algebra aimed at number theory. His solution to one of 
these was a strange family of groups. Samuel Eilenberg knew these same groups 
solve a problem in topology. When Eilenberg (who, by the way, liked philos-
ophy a great deal less than Mac Lane did) learned of Mac Lane’s result, the two 
of them agreed this could not be a coincidence. They set out to find the connec-
tion. They spent the next 15 years calculating a slew of specific relations between 
topology and group theory and building these relations into the new subject of 
group cohomology.3 The work stood out immediately, and during that time Mac 
Lane became president of the Mathematical Association of America and chair of 
Mathematics at the University of Chicago.

Eilenberg and Mac Lane also believed the following:

In a metamathematical sense our theory provides general concepts applicable 
to all branches of mathematics, and so contributes to the current trend towards 
uniform treatment of different mathematical disciplines. (Eilenberg and Mac 
Lane 1945, 236)

The concepts were category, functor, and natural isomorphism. They expected 
this to be the only paper ever needed on these ideas (Mac Lane 1996a, 3).

Within a few years these concepts were standard in topology, abstract algebra, 
and functional analysis such as (Grothendieck 1952). By 1960 they were central 
to cutting-​edge algebraic geometry. In differential geometry, they were the right 
tool for Adams (1962) to show exactly how many different vector fields there 
can be on spheres of any finite dimension. Soon categories, functors, and natural 
transformations (including natural isomorphisms, but not only isomorphisms) 

	 3	 Mac Lane (1988) is a gentle introduction to group cohomology and Washington (1997) is a more 
current precis. An earlier innovator on this was another Noether student, Heinz Hopf, but Mac Lane 
could not contact him during the war years.
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became textbook material. They became the standard mathematical framework 
for structural mathematics.

Structuralists in philosophy of mathematics talk more often about Bourbaki’s 
theory of structures. Indeed Bourbaki (1949, 1950) promoted their view as a 
philosophy, while Eilenberg and Mac Lane did not.4 But Bourbaki’s theory of 
structures (1958, chap. 7), which they created as a conscious alternative to cat-
egories and functors, never worked for them or anyone else. Several members 
of Bourbaki became major innovators in category theory. This, together with 
Daniel Kan (1958) defining adjoint functors, secured category theory as a theory 
in its own right. Systems biologist Rosen was the first person to use the term “cat-
egory theory” in print (1958, 340).

Mac Lane (1948) had pioneered the idea that categorical tools are also useful 
in defining some very simple structures. Yet he was surprised in 1963 to meet 
Eilenberg’s graduate student William Lawvere, who was describing such basic 
things as the natural numbers and function sets categorically. Lawvere had even 
axiomatized set theory in categorical form. Mac Lane found this absurd and 
said you need sets to define categories in the first place—​until he read Lawvere’s 
paper. As a member of the National Academy of Science, Mac Lane sent it to the 
Proceedings, where it became Lawvere (1964). Lawvere’s ideas on many aspects 
of category theory launched a new phase in Mac Lane’s career and brought him 
back to looking more at philosophy and logic than he had since the 1930s. Mac 
Lane’s last doctoral student was philosopher Steve Awodey in 1997.

2.  Structuralist Philosophy of Mathematicians, 1933

Philosophy for mathematicians in 1930s Göttingen meant phenomenology. And 
this was not only in Göttingen. When Carnap (1932, 222) lists four ways to de-
scribe word meanings, the first is his own, which he claims is correct, the next 
two use what he calls the language of logic and epistemology, and he calls the 
fourth one “philosophy (phenomenology).” Mac Lane will have known Carnap’s 
paper, as he thought of going to study logic with Carnap in Vienna (Mac Lane 
1979, 64). In fact Eilenberg and Mac Lane later took the word “functor” from 
Carnap’s logic (Mac Lane 1971, 30). All of these people meant roughly Husserl’s 
phenomenology. Husserl was widely respected by mathematicians since he had 
studied mathematics with Weierstrass and Kronecker and had written a doctoral 
dissertation in mathematics.

	 4	 Mac Lane gave a hint of his philosophy by titling his classic textbook Categories for the Working 
Mathematicians (1971) in response to “Foundations of Mathematics for the Working Mathematician” 
(Bourbaki 1949).
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Hilbert brought Husserl onto the Göttingen faculty against resistance from 
other philosophers there (Peckhaus 1990, 56f). When Husserl left Göttingen for 
Freiburg, another Hilbert protégé and phenomenologist, Moritz Geiger, took his 
place. Mac Lane studied Geiger (1930) as part of his degree requirements.5

Geiger admired Husserl’s phenomenological method while rejecting Husserl’s 
idealism (Spiegelberg 1994, 200). The method aims to understand many attitudes 
toward being, without taking one or another of them as correct. For Geiger, the 
naturalistic attitude recognizes physical objects and considers anything else 
merely psychical/​subjective. The immediate attitude, more widely used in daily 
life, recognizes psychical objects like feelings, and social objects like poems, 
and more including mathematical objects. Mathematics for Geiger belongs to 
the immediate attitude since its objects are neither physical nor subjective. They 
exist as forms (Gebilde), which may or may not be forms of physical objects. Years 
later Mac Lane’s Mathematics: Form and Function (1986) would say, in the title 
among other places, mathematics studies forms, which may be applied in phys-
ical sciences but need not.

Geiger applied his philosophy in a Systematic Axiomatics for Euclidean 
Geometry (1924), aiming to go beyond Hilbert’s axioms by drawing out their real 
connections as ideas. Compare Mac Lane (1986) sketching several proofs for a 
given theorem, then singling one out as “the reason” for it.6

Weyl explains the role of forms by quoting an influential textbook by Hermann 
Hankel on complex numbers and quaternions:

[This universal arithmetic] is a pure intellectual mathematics, freed from all 
intuition, a pure theory of forms [Formenlehre] dealing with neither quanta nor 
their images the numbers, but intellectual objects which may correspond to ac-
tual objects or their relations but need not.

Weyl approves Husserl saying: “Without this viewpoint . . . one cannot speak of 
understanding the mathematical method.”7

Hankel says this to help students learn. Weyl approves it because it helps 
mathematicians discover and prove theorems—​where Weyl’s favorite example 
is Hilbert. Of course Husserl’s paradigms were his teachers Kronecker and 
Weierstrass. This is what works in modern mathematics.

Philosophers today might feel this account privileges abstract mathematics 
from Göttingen over more computational Berlin mathematics. But in fact both 
Husserl and Hankel were Berlin mathematicians trained by Kronecker and 

	 5	 Much more on Geiger, Weyl, and Mac Lane is in McLarty (2007a).
	 6	 For example pp. 145, 189, 427, 455.
	 7	 Hankel (1867, 10) and Husserl (1922, 250) quoted by Weyl (1927, 23).
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Weierstrass. Hankel’s book is all about calculating with complex numbers and 
quaternions. And Weyl famously supported concrete calculational mathematics 
over abstract axioms. Conversely, the archetypal Göttingen algebraist Emmy 
Noether saw her algebra as advancing calculation. In the middle of her work on 
abstract ideal theory she supervised a doctoral dissertation devising algorithms 
to apply her theory in the case of polynomial rings (Hermann 1926). It is still 
cited for that today (Cox et al. 2007). All of these mathematicians believed cor-
rect focus on form facilitates computation. They only disagreed over how ab-
stract a correct focus would be!

Mac Lane heard all this from Weyl himself. I do not know whether Mac Lane 
noticed Hans Hahn’s admiring yet barbed review of Weyl’s book, or Hahn’s 
conclusion:

Most of this eloquent exposition concerns that which, according to 
Wittgenstein’s teaching, cannot be said at all, or to express it in a less radical 
way: what can only be said in a beautiful style and not in dry formulas. (Hahn 
1928, 54)

I do know Mac Lane had no inkling that he would soon create a mathematical 
theory of form and preservation of form, specifically of homomorphisms and 
isomorphisms, that is expressible in quite dry formulas and would go on to or-
ganize huge amounts of mathematical research and writing.

3.  Method, Methodology, and Who is a Philosopher

All the Second Philosopher’s impulses are methodological, just the 
thing to generate good science. . . . She doesn’t speak the language of 
science “like a native”; she is a native. (Maddy 2007, 98, 308)

Maddy’s character the Second Philosopher is a native science speaker. Yet she 
is also a philosopher because she articulates scientific methods and brings her 
methodological impulse to “traditional metaphysical questions about what 
there is” and how we know it (Maddy 2007, 410). In just these ways the Second 
Philosopher matches Hilbert, Weyl, and Mac Lane. But Mac Lane’s philos-
ophy was also shaped by Emmy Noether, a mathematician who herself was no 
philosopher.

Her best-​known comment on her own method was to say no one including 
her talks about it:
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My methods are working and conceptual methods, and so they penetrate eve-
rywhere anonymously. (Letter to Helmut Hasse, November 12, 1931, quoted in 
Lemmermeyer and Roquette 2006, 8 and 131)

She showed a method. We may say she gives a methodophany rather than meth-
odology, by analogy to theophany/​theology.

4.  Noether on Structures

4.1.  On Not Understanding Noether

I heard from Noether about the use of factor sets, but did not then 
understand them. Much later I did.

—​Mac Lane (1998b, 870)

There are two different ways to not understand factor sets: You might not see 
how to use them. Or you might feel there must be more than you yet see. Mac 
Lane certainly did understand them in that first sense. He used them well in the 
paper (Mac Lane and Schilling 1941) that got him into the collaboration with 
Eilenberg. What he means in this quotation is that he felt he had not seen deeply 
enough what they really are. He achieved that understanding, to his satisfaction, 
years later by reformulating factor sets in categorical terms with Eilenberg (Mac 
Lane 1988, 33).

To put the matter in correct historical order we must say Eilenberg and Mac 
Lane (1942a) spoke of natural isomorphisms. Their term functor first saw print a 
few months later, in a paper further explaining natural isomorphisms (1942b). 
Their first printed use of category is in (1945), giving the general definition of 
functors. For more relating Mac Lane to Noether see Koreuber (2015); Krömer 
(2007); Mac Lane (1981, 1997b); McLarty (2006, 2007a).

4.2.  From Equations to Structures

Noether brought stunningly swift insights to a perspective going back to Gauss 
and Dedekind, and even to Galois: it is often productive to replace solutions to 
equations by maps between structures. Clearly motivated algebra replaces long, 
incomprehensible calculations. It makes theorems of arithmetic easier to find 
and prove in the first place and makes the proofs easier for students to learn.
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For a simple illustration consider these two groups: The group of integers 
modulo 12, written ℤ/​(12), is often popularized as “clock face arithmetic.” 
On a 12-​hour clock, five hours past nine o’clock is two o’clock, as 2 is the re-
mainder of 14 by 12. The members of ℤ/​(12) are the integers from 0 to 11 
(with 12 taken as equal to 0), and 5 + 9 = 2 in ℤ/​(12). The group of integers 
modulo 3, written ℤ/​(3) consists of {0,1,2} with addition defined by taking 
remainders on division by 3:

	 1 0 1 1 1 2 1 2 0 2 2 1+ = + = + = + = . 	

Two facts about mappings between ℤ/​(3) and ℤ/​(12) both express the fact that 3 
divides 12:

Theorem 1. There is an injective group homomorphism i : ℤ/​(3)→ ℤ/​(12). Here 
injective means i x i y( ) ( )=  implies x y= .

Proof. Group homomorphisms preserve 0 and +, so define i  by

	 i( 0) = 0   i(1) = 4    i(2) = i(1) + i(1) = 8    in ℤ/(12).

Since 1 + 2 = 0 in ℤ/​(3) we must check that i(1) + i(2) = 0 in ℤ/​(12). Indeed:

	 i(1) + i(2) = 4 + 8 = 0    in ℤ/(12).

Theorem 2. There is an onto group homomorphism h: ℤ/​(12) → ℤ/​(3). Here onto 
means every y in ℤ/​(3) is h(x) for some x ∈ ℤ/​(12).

Proof. Define h: ℤ/​(12) → ℤ/​(3) by h(0 ) = h h h( ) ( ) ( )3 6 9= =  = 0. Preserving + 
means we must then say h(3x + 1)  =  1 in ℤ/​(3) for every x ∈ ℤ/​(12). And       
h(3x + 2) = 2. In words, this works because counting up by 3s leads to 0 modulo 
12, since 12 is divisible by 3.

Then 3 · 4 = 12 becomes a group isomorphism ℤ/​(3) × ℤ/​(4) ≈ ℤ/​(12). Of course 
the practical payoff is when isomorphisms of richer groups reveal deeper arith-
metic (Dedekind 1996).

Noether radically sharpened, articulated, and generalized Dedekind’s insight in 
her homomorphism and isomorphism theorems, using what she called her “set the-
oretic” conception (McLarty 2006, esp. 217–​220). This was not the long-​familiar     
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 idea that groups are sets of elements. To the contrary, she would focus as little as 
possible on the elements 0, , ,x y z . . .  and operations x y+  or x y−  of a group G. 
She would focus as directly as possible on homomorphisms between G and other 
groups, and especially isomorphisms. One of her best students wrote:

Noether’s principle: base all of algebra so far as possible on consideration of 
isomorphisms. (Krull 1935, 4)

Mac Lane bought Krull’s book and left marginal notes that seem to date from 
many different years.

Mac Lane saw Noether at the peak of her career. She had moved beyond 
her early 1920s work on axioms in commutative algebra to more intricate 
applications in group representation theory. Much of Mac Lane’s work in the 
1930s was close to themes in her plenary address at the International Congress of 
Mathematicians in Zurich (Noether 1932).

4.3.  Making the Theorems Yet More Structural

Mac Lane (1948) used categories to make Noether’s homomorphism and iso-
morphism theorems even more structural by removing elements from the 
very definitions of injective and onto homomorphisms.8 When the following 
definitions are applied to groups they are equivalent to saying 0 is a one-​element 
group while g : G → H is one-​to-​one and h: H → G is onto. And they are more di-
rectly useful in proving theorems than the element-​based definitions are:

	 (1)	 A zero group is any group 0 such that every group G has exactly one homo-
morphism G → 0 and exactly one homomorphism  0 → G.

	 (2)	 A  zero homomorphism 0 : H K→  is any homomorphism that factors 
through a zero group.

	 (3)	 Homomorphism g G H: →  is monic if, whenever a composite gf  is zero 
then already f  is zero.

	 8	 Bypassing elements in the definitions and theorems was especially handy in work with the new 
idea of sheaves. Elements of sheaves are much more complicated than group elements while the 
patterns of homomorphisms between sheaves are very similar to those between groups.

0

0

H K
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	 (4)	 Homomorphism h H G: →  is epic if, whenever a composite fh is zero 
then already f  is zero.

Notice the definition of epics is just that of monics with the arrows reversed. 
So monics are called dual to epics. Turning the arrows around in the definition 
of zero group just gives the same definition, so zero groups are self-​dual. These 
ideas were much expanded over time, notably by Grothendieck in his theories of 
abelian categories and derived categories, and new aspects of that are still being 
developed today (Gelfand and Manin 2003).

5.  Natural Isomorphisms

The phrase “second integral simplicial homology group of the torus” tells a to-
pologist how to construct a unique group (up to isomorphism) but is no explicit 
description of the result. Explicitly, that group is (up to isomorphism) just the 
integers ℤ with addition. Often a mathematician has a construction like that and 
wants an explicit description.

Often it helps to find another construction of the same thing. But that one will 
rarely give the exact same thing. More often its result is naturally isomorphic to 
the first. “Natural isomorphism” was a common expression in mid-​20th-​century 
algebra and topology. Eilenberg and Mac Lane leaned hard on the idea and so 
had to say exactly what they meant by it. In principle they only had to be precise 
about their specific uses but in fact they came to see they had captured very much 
of the whole preexisting informal idea. They frequently put “natural” in quote 
marks to emphasize that they give “a clear mathematical meaning” to a colloquial 
idea (Eilenberg and Mac Lane 1942b, 538).

F F
f f == 0

g

0 0

G G

If then

H    

H G

0 0
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To simplify, Eilenberg and Mac Lane were in this situation:  they had 
constructions C C, ′  that each apply to an arbitrary topological space S to yield 
groups C S( )  and ′C S( ) . These results were not exactly the same but were always 
isomorphic, C S C S( ) ( )≈ ′ . And much more than that was true.

First, the constructions did not apply only to spaces, but also applied to maps. 
Each map f S T: →  of topological spaces induced a specific group homomor-
phism from C S( )  to C T( ) , call this C f C S C T( ) : ( ) ( )→ . They dubbed such 
constructions functors from the category of topological spaces and maps, to the 
category of groups and group homomorphisms. Full definitions of category and 
functor are too easily available in print and online for us to linger on them here.

Second, there not only existed isomorphisms C S C S( ) ( )≈ ′ . Each space S had a 
specifiable isomorphism i S C SS : ( ) ( )~C → ′  compatible with all the maps. For any 
map f S T: ,→  isomorphism iS followed by homomorphism ′C f( ) is the same 
as homomorphism C f( ) followed by isomorphism iT .

Again, full details are widely published and available online.
These concepts did not solve Eilenberg and Mac Lane’s problems by them-

selves. Years of massive calculations remained. Each single one of these 
calculations had to summarize how some infinite family of interrelated groups 
and group homomorphisms all contribute to solving one problem about one 
topological space. Each such family would be organized into one infinite dia-
gram of arrows between points—​where each point represents one group and 
each arrow one group homomorphism. Then natural transformations between 
entire diagrams would yield the actual answer to the problem.

The new concepts organized the calculations. They showed how to shortcut 
some and bypass many others, and so they made the project feasible. These 
concepts have been working ever more widely across mathematics ever since.

6.  Basic Constructions and Foundations

Because categories were invented for otherwise infeasible calculations on 
infinite diagrams, simple ideas like the Cartesian product A B×  of two 
groups were not addressed in 1945. Simple ideas did not need category 
theory. But then Mac Lane (1948) saw how A B×  and the injective and onto 

S C(S) Cʹ(S)

C(T) Cʹ(T)T

f C( f ) Cʹ( f )
iS
~

~
iT    
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homomorphisms as described earlier could profitably be put in categorical 
terms. He began to see categories and functors as a way to organize advanced 
mathematics as a whole.

6.1.  Bourbaki

The Bourbaki group in France had set out before the war to do just that, or-
ganize the whole of university mathematics. To this end they sketched a theory of 
structures in (Bourbaki 1939) and around 1950 they turned to creating it in full. 
The group considered what they could get from category theory for several years 
but finally produced their own theory of structured sets and structure preserving 
functions (Bourbaki 1958, chap. 7).

Neither they nor anyone ever used that theory. Corry (1992) documents 
at length that Bourbaki never used it in their series Elements of Mathematics, 
let alone for research, and how they argued over this. Several leading members 
of Bourbaki took up categories in their own work. Member Alexander 
Grothendieck created roughly half the topics of today’s category theory: abelian 
categories, derived categories, and topos theory.9

Bourbaki’s theory was extremely complicated and few people have ever read 
it. But the real problem was that the theory is “decidedly narrow in the shoulders” 
(Grothendieck 1987, 62–​78). Even if mathematics is founded on set theory, 
so every object is by definition a set, the maps between structures need not be 
structure-​preserving functions. Already in 1950 important examples of maps 
that are not simply functions included partial functions, equivalence classes of 
partial functions, functions that go “the wrong way,” combinations of these, and 
other constructs that are not even like functions.10

The theory would need impossibly many extensions to capture the maps used 
today. And further extensions would soon be needed. There is no limit to what 
might serve as mappings. Category theory does not try to say what maps can be. 
The category axioms merely say that maps must include identity maps, and must 
compose associatively.

Mac Lane admired Bourbaki’s project but found their theory of structures “a 
cumbersome piece of pedantry” (Mac Lane 1996c, 181).

	 9	 McLarty (2016) illustrates the mathematics. For history and conceptual discussion see McLarty 
(2007b).
	 10	 McLarty (2007a, 80–​81) gives historically relevant examples.
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6.2.   Lawvere

Mac Lane met Lawvere as a graduate student with a program to unify all math-
ematics from the simplest to the most advanced in categorical terms. Mac Lane, 
like Eilenberg, thought it was absurd to axiomatize sets as a category. Then he 
read how Lawvere did it. He came to find this and many other of Lawvere’s 
innovations extremely valuable.11

Mac Lane admired Lawvere’s set theory precisely because it was not a novel 
conception of sets. Rather Lawvere gave expression, better than earlier set theo-
ries had done, to what mathematicians already know and use about sets. Leinster 
(2014) is a recent explanation of this.

As the paradigm case, earlier set-​theoretic treatments of the natural num-
bers were clever, but merely technical. They did not focus on what we really 
want to know and use about arithmetic. This is exactly what Benacerraf (1965) 
complained about in the paper that launched current structuralism in philos-
ophy of mathematics. Lawvere’s definition of natural numbers, to the contrary, 
was almost verbatim Theorem 126 of Dedekind (1888) on inductive definition 
of functions from the natural numbers, though Lawvere did not know that at 
the time.

Definition 1. A natural number object is a set ℕ, a function s : ℕ → ℕ, and an el-
ement 0 ∈ ℕ, such that for any set S, and function f S S: → , and element x S∈  
there is a unique function u : ℕ → S with u(0 ) = x and us fu= .

So u is a sequence in S with u(0 ) = x and u s f x( ) ( )0 =  and u ss f f x( ) ( ( ))0 =  and 
so on. Every mathematician knows and uses this way of defining sequences in a 
set S. Few ever hear of the von Neumann or Zermelo natural numbers in ZFC.

Dedekind (1888) knew this fact was the key to his Theorem 132, which in 
modern terms proves Dedekind’s definition of simply infinite systems is isomor-
phism invariant. Lawvere proves his natural number objects are isomorphism 
invariant the same way Dedekind did: all natural number objects are isomorphic 

	 11	 Examples we will not discuss include functorial algebraic theories, Cartesian closedness, and 
comma categories. Some of these appear in Mac Lane (1971), and see McLarty (1990).
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and anything isomorphic to a natural number object is one. Mac Lane liked 
the way this set theory gets directly to the mathematical point of the various 
constructions. See his enthusiastic exposition in (1986, chap. 11).

Mac Lane always valued logical foundations, not as starting points or ra-
tional justifications for mathematics, but as “proposals for the organization of 
mathematics” (Mac Lane 1986, 406). After 1964 he consistently urged Lawvere’s 
“Elementary Theory of the Category of Sets” (ETCS) for this role (Lawvere 1964, 
1965).12

His outlook led him to assimilate ETCS to Lawvere’s other foundational axiom 
system, published in “Category of Categories as a Foundation for Mathematics” 
(CCAF) (1966). There is a great difference, as all the objects in ETCS are sets. 
They form a category, axiomatized entirely in categorical terms. But they are sets. 
Categories within ETCS (like everything in ETCS) are defined in terms of sets, 
and ETCS posits no category of sets as an entity any more than the universe of all 
sets is an entity in ZFC. On the other hand CCAF axiomatizes categories directly, 
not defining them via sets, and does posit a category of sets as an entity—​though 
no actual category of all categories.13

From Mac Lane’s point of view, though, they are alike since each provides

an effective foundation by category theory. . . . The categorical foundation takes 
functors and their composition as the basic notions and it works very effec-
tively. (Mac Lane 2000, 527)

6.3.  Set-​Theoretic Foundations of Category Theory

Eilenberg and Mac Lane (1945) already cared enough about logical foundations 
to note that the category of all groups or the category of all sets are illegitimate 
objects in set theory. However:

The difficulties and antinomies here involved are exactly those of ordinary intu-
itive Mengenlehre [set theory]; no essentially new paradoxes are apparently in-
volved. Any rigorous foundation capable of supporting the ordinary theory of 
classes would equally well support our theory. Hence we have chosen to adopt the 
intuitive standpoint, leaving the reader free to insert whatever type of logical foun-
dation (or absence thereof) he may prefer. (Eilenberg and Mac Lane 1945, 246)

	 12	 See Mac Lane (1986, chap. 11; 1998a, Appendix; 1992; 2000) and Mac Lane and Moerdijk (1992, 
VI.10).
	 13	 See Lawvere (1963, 1966) and McLarty (1991).
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They sketch ways to talk around the problem, and formal approaches via type 
theory and Gödel-​Bernays set theory.

As the mathematics developed, though, the issue mattered more. 
Grothendieck adopted a systematic approach to these logical issues in using 
universes in algebraic geometry. These are sets so large they roughly speaking 
look like the set of all sets. Standard set theories, whether ZFC or ETCS, do not 
prove universes exist.

Mac Lane both did research on this and supported other research. See the pa-
pers by him and by Georg Kreisel and Solomon Feferman in (Mac Lane 1969). 
His preferred technical fix was an axiom positing one universe (Mac Lane 1998a, 
21–​22).

7.  Sameness of Form

7.1.  What Is an Isomorphism?

Philosophers should know that before about 1950  “There was great confu-
sion:  the very meaning of the word ‘isomorphism’ varied from one theory to 
another” (Weil 1991, 120). The word isomorphism often used to mean any homo-
morphism, and there was no general term for structurally identical things. It was 
hardly obvious that one notion of “sameness of structure” could work for all the 
different kinds of structures.

Today model theory gives a uniform notion of sameness of structure for 
models of any given first-​order theory, and indeed it is called isomorphism of 
models. Few mathematicians learn this definition because it is nowhere near ge-
neral enough to cover most of the structures used in practice. Bourbaki (1958) 
had a much more general notion that was still not general enough.

The current general definition of isomorphism turns out to be as simple as the 
idea of a morphism that does nothing plus the idea of two morphisms undoing 
each other. It came from Eilenberg and Mac Lane. And it is easy to picture in 
diagrams.

First, in any category, each object A has an identity morphism 1A A A: →  de-
fined by this property: composing it with any other morphism to or from A just 
leaves that other morphism.
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Think 1A does nothing.
Then, a morphism f : A B→  is an isomorphism if some morphism g B A: →  

has composite gf  equal to 1A A A: →  and composite fg  equal to 1B B B: → .

Think f and g undo each other.
Of course the definition of one or another specific kind of morphism may 

be somewhat complicated—​for example, smooth maps as morphisms between 
manifolds in differential geometry are somewhat complicated. But that is not the 
business of category theory. Category theory applies to whatever morphisms you 
choose to supply, so long as they satisfy the few Eilenberg–​Mac Lane axioms. 
Defining isomorphism as a general term did, in fact, become the business of cat-
egory theory. The resulting simple abstract definition unifies all the many spe-
cific traditional versions that came before. For one thing, it agrees with the model 
theorists’ notion of isomorphism, when elementary embeddings of models are 
taken as the morphisms. But notice this definition is relative to a category. And 
this is important in practice. Consider three claims, all well known in 1870 as 
they are today:

	 (1)	 Every elliptic curve is a torus.14

	 (2)	 Every torus is isomorphic to every other.
	 (3)	 Elliptic curves are not all isomorphic to each other.

The appearance of contradiction comes from confusing isomorphisms in two 
different categories. Correct statements are more explicit:

	 (2′)	Every torus is topologically isomorphic to every other (i.e., isomorphic in 
the category of topological spaces).

	 (3′)	Elliptic curves are not all analytically isomorphic to each other (i.e., iso-
morphic in the category of complex manifolds).

   

	 14	 Elliptic curves are not ellipses. They are surfaces. They are called “curves” because they are alge-
braically one-​dimensional over the complex numbers (McKean and Moll 1999).



230  Colin McLarty

Karl Weierstrass (1863) worked this example out in his beautiful classification of 
analytically different elliptic curves. His classification rests on the fact that all these 
curves are topologically equivalent, as clarified by Bernhard Riemann (1851).

Riemann and Weierstrass got these facts straight in an ad hoc way without 
category theory. But ad hoc approaches became ever more burdensome as they 
proliferated. The explosion of structural mathematics produced category theory 
as the easy, uniform way to keep all such facts straight.

The bare categorical notions of identity morphism and composition of 
morphisms turned out to give an account of “sameness of form” that works all 
across mathematics. The philosophic relevance is highlighted by our next topic.

7.2.  Nonidentity Automorphisms

Kouri (2015) takes a position in the philosophic structuralist debate over 
automorphisms. An automorphism of a structure S is any isomorphism of S to 
itself. Many structures S in mathematics have nonidentity automorphisms. In 
other words they have isomorphisms S →∼  S to themselves different from the 
identity 1S: S →∼  S. Do these somehow challenge structuralism?

As a central example, I believe all structuralist philosophers up to now have 
agreed complex conjugation is an automorphism of the complex numbers 
C. Write complex numbers as a bi+  where a b,  are real numbers and the com-
plex unit i  is defined by i2 = −1. Conjugation takes any a bi+  to a bi− . In other 
words it leaves every real number a b,  fixed, and turns i  into −i . Of course also      

−( )i 2 = −1. An automorphism should leave all structural properties unchanged, 
and yet conjugation takes i  to −i  and vice versa. Does this show that, even 
though i i≠ −  the two are structurally identical so that structuralists cannot tell 
which one is which? Should structuralists (or anyone else) be able to tell which 
one is which?15

Mathematicians face questions close to these. They are not philosophical 
quibbles. For this very reason, though, mathematicians have rigorous answers 

	 15	 Kouri (2015) emphasizes as I  do that “automorphism of the complex numbers” is ambig-
uous. She contrasts what she calls “the complex field” and “the complex algebra,” which she argues 
should be considered different structures because they admit different automorphisms. I  believe 
mathematicians more often discuss this contrast as one structure C occurring in two categories: the 
category of fields and the smaller category of real algebras. But this contrast is rarely mentioned in 
any terms, so it is hard to document the usage. (Complex conjugation is an automorphism in both of 
these contexts.) On the other hand the contrast between C as real algebra and C as complex manifold 
comes up often, and the standard explicit usage says one field C occurs in two categories. Results on 
C proved in one category are applied in the other. McKean and Moll (1999) work these contexts to-
gether like a symphony, leading to results in number theory.
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that work in daily practice. These answers are systematically unlike the ones 
discussed by structuralist philosophers up to now. The very claim that com-
plex conjugation is an automorphism of ℂ is an oversimplification. In practice 
complex conjugation is an automorphism of the complex numbers, and is not, 
depending on context.

Algebra textbooks say conjugation is an automorphism of ℂ. Complex anal-
ysis texts deny it. Conversely, analysis texts say for each complex number z0 there 
is an automorphism of ℂ taking each z ∈ ℂ to z + z0. Algebra books deny that.

The algebraists and analysts do not disagree. They are often the same people. 
Algebraic and analytic facts on ℂ are both used in both algebra and anal-
ysis. Rather, algebra looks at ℂ in the category of real algebras and algebra 
homomorphisms. Complex conjugation is a morphism in that category, and is its 
own inverse. Adding a constant z0 is not an algebra homomorphism unless z0 = 0. 
Analysts look at C in the category of complex manifolds and holomorphic maps. 
Complex conjugation is not a morphism in that category but adding any fixed      
z0 ∈ ℂ is, with subtracting z0 as its inverse.

The definition of holomorphic maps makes i  and −i  geometrically distinct 
because i  lies on the imaginary axis counterclockwise around 0 from 1 on the real 
axis, while −i  is clockwise around 0 from 1. This is a standard picture, as, e.g., in 
Mazur (2003, 190).16 Complex conjugation flips the plane over, turning clock-
wise into counterclockwise, so it is not holomorphic. It is not a morphism in the 
category of complex manifolds at all, and a fortiori not an automorphism.

On the other hand, i  and −i  have all the same real-​algebraic relations, since 
complex conjugation is an automorphism in the category of real algebras. That 
category suits the algebraists’ purposes, and algebraists never have any reason to 
tell which is i  and which is −i  per se. But when more than one pair of conjugates 
is in question there are algebraic reasons, and means, for linking the choices be-
tween pairs. These more advanced problems are as algebraically intricate as they 
are productive for concrete number theory.17

To sum up, mathematicians track the difference between i  and −i  using the 
usual tools of structural mathematics: categories, functors, and the associated 
apparatus. For substantial geometric and number-​theoretic reasons they place 

	 16	 Take a + bi as a point <a, b> in the real coordinate plane. The standard convention we all met in 
high school places <0, 1> on the vertical axis counterclockwise around the origin from <1, 0> on the 
horizontal. Formally, analysts specify an inclusion of complex manifolds into the category of oriented 
real manifolds, using the fact that holomorphic maps preserve orientation. This is textbook material 
as in. e.g.. Miranda (1995, 5–​6).
	 17	 E.g., define ω, ω̄ as the roots of X2 + X + 1 so ω, ω̄ are algebraically indistinguishable, just as 
i i, −  are. Yet ω + i and ω − i differ, as one provably has absolute value > 2.8, the other absolute value      
< 1.2. It is just not provable which is which. Given a choice of ω, the usual convention chooses i to 
make the absolute value of ω − i smaller than that of ω + i. See Lang (2005, 465ff.) for the algebraic 
theory of absolute values.
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ℂ into several categories, some of which admit conjugation as an automorphism 
while some do not. And mathematicians in fact make different distinctions be-
tween i  and −i  in these different contexts. Mac Lane derived his ontology of 
structures from that kind of mathematics.

8.  Structural Ontology

On the philosophical side, the structuralist ontology is often presented as a      
response to the “multiple reductions” problem raised in Benacerraf (1965).      
On the hermeneutic side, the structuralist ontology is said to be faithful to the 
discourse and practice of mathematics (Gasser 2015, 1).

Mac Lane was on a third side, the mathematical side. He was not faithful to 
the discourse or practice of mathematics. He changed both. To be clear: category 
theory has in fact been a central part of changes to both over the past 75 years 
now. And he did not respond to any form of the multiple reduction problem.18 He 
first responded to technical questions in number theory and topology and later 
to the unanticipated reach of those same methods across the rest of mathematics.

Gasser argues (1) philosophical structuralist accounts so far fail to explain 
why only structural properties are essential in mathematics, while (2) mathe-
matical objects do have some nonstructural properties, as, for example, 4 is the 
number of Galilean moons of Jupiter:

A more subtle distinction between essential and nonessential properties of 
mathematical objects is necessary to spell out the structuralist view: it won’t do 
to claim mathematical objects only have structural properties, or that these are 
the only properties they could coherently be said to possess. (2016, 6)

These issues are beside the point of Mac Lane’s structural ontology. Like Maddy’s 
Second Philosopher, Mac Lane does not start with philosophic terms and try to 
apply them to mathematics. He starts with mathematics and tries to answer tra-
ditional philosophic questions. His mature philosophy drew on his whole career, 
so summarizing it will draw on everything already presented.

Gasser very aptly says philosophers put the key claim of structuralism this 
way: “Mathematicians only care about things ‘up to isomorphism’ ” (2015, 5). 
Mac Lane could say more or less these same words. But philosophers take their 

	 18	 That is, unless you count it as a response when Mac Lane (1986, 407) endorsed Weyl’s aphorism 
that set theory “contains far too much sand.” That is, set theory loads mathematics with unnecessary 
bulk, though he felt ETCS does this less than ZFC.
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notion of isomorphism from model theory, or possibly Bourbaki, neither of 
which is widely used in mathematics. Eilenberg and Mac Lane (1942a) began 
with the working notions from group theory and topology, and over several 
years pared those down to the categorical definition in section 9.7, which is 
now the explicit standard in most of mathematics. Unlike common philosophic 
notions of isomorphism, the mathematical one does not let you take a structure 
(say, the complex numbers) and talk about isomorphisms to or from it, without 
specifying a category.

Further, Mac Lane knew far too many mathematicians to dream of encapsu-
lating what they “care about.” Different people care about very different things. 
Mac Lane’s ontology aims at the specifics of mathematical research and teaching. 
During World War II, and after it, he was often charged to write government 
reports on what is and what should be the direction of mathematics, both for 
funding purposes and in pedagogy (Steingart 2013). While his reports inevitably 
reflect his and other people’s motives, they focus on specific achievements in math-
ematics and mathematical projects, not on felt motivations. So does his ontology.

Through his career he saw mathematics turn ever more to explicitly struc-
tural methods and eventually to category theory. He saw how over time more and 
more mathematics research and publication and teaching were organized around 
homomorphisms and isomorphisms. Through the 1950s the notions of homo-
morphism in widespread use got more and more general, far outside Bourbaki’s 
structure theory. By the 1980s the research and textbook norm for organizing this 
was—​certainly not advanced category theory—​but the plain language of cate-
gories and functors. While research and textbooks rarely get down to the level 
of logical foundations, Mac Lane had known since the 1960s that rigorous log-
ical foundations can be given in categorical terms and these terms bring logical 
foundations closer than ever before to what mathematicians normally do. The 
“trend towards uniform treatment of different mathematical disciplines” went 
deeper than he or Eilenberg had dreamed in (Eilenberg and Mac Lane 1945, 236).

Mac Lane got his ontology from the specific mathematics of his time. By the 
1980s that meant the objects of mathematics are structures in the sense that all 
their properties are isomorphism invariant, and isomorphism means categorical 
isomorphism.19 The ontology of current mathematics is categories, functors, and 
the objects and arrows of categories.

	 19	 Categorical foundations easily treat ZF sets as mathematical objects in this way, although ZF 
sets have many properties not invariant under bijections, i.e., under isomorphism in the category of 
sets. The suitable context was already worked out by ZF set theorists representing set membership in 
terms of well-​founded, extensional ordered sets. ZF set theorists use these orders precisely to relate 
set membership to other order structures isomorphic to these in the category of ordered sets (Kunen 
1983, 108–​109 and passim). Categorical set theorists interpret ZF sets by these well-​founded exten-
sional orders, whose properties are isomorphism invariant in the category of ordered sets (Mac Lane 
and Moerdijk 1992, 331ff.).
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Without asking what is essential to mathematical objects, Mac Lane observes 
the properties used in current mathematics are isomorphism invariant. That 
prominently includes applied mathematics like counting moons of Jupiter. Being 
the number of Galilean moons of Jupiter may well be nonstructural in some phil-
osophic sense. But the statement “4 is the number of Galilean moons of Jupiter” 
is plainly invariant under isomorphisms of the natural numbers. If the 4 in one 
version of the natural numbers works in counting those moons, then the 4 in any 
isomorphic version works as well. As noted in section 9.6.2 this is precisely the 
point of Benacerraf (1965).

Philosophic training in Göttingen prepared Mac Lane to hold that, since 
mathematicians consistently work with structures in this sense, these structures 
are the ontology of mathematics. That same philosophic training taught him:

A thorough description or analysis of the form and function of Mathematics 
should provide insights not only into the Philosophy of Mathematics but also 
some guidance in the effective pursuit of Mathematical research. (Mac Lane 
1986, 449)
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Elements in the Work of Charles 

Sanders Peirce
Jessica Carter

1.   Introduction

This chapter presents aspects of the work of Charles Sanders Peirce, illustrating 
how he adhered to a number of the pre-​structuralist themes characterized in the 
introduction to this volume. I shall present aspects of his contributions to math-
ematics as well as his philosophy of mathematics in order to show that relations 
occupied an essential role. When writing about results in mathematics he often 
states that they are based on his “logic of relatives,” and he refers to the reasoning 
of mathematics as “diagrammatic reasoning.” Besides pointing to structural 
themes in Peirce’s work, much of this exposition will be devoted to explaining 
what is meant by these two phrases.

In a recent article Christopher Hookway (2010) places Peirce as an ante 
rem structuralist.1 In support of this claim Hookway refers to some of Peirce’s 
writings on numbers (also to be treated here). In addition he spends some time 
analyzing what Peirce means by the phrase “the form of a relation.” These con-
siderations involve an in-​depth knowledge of Peirce’s categories and their met-
aphysical implications. In contrast I  will focus on methodological aspects, in 
particular Peirce’s writings on reasoning in mathematics, stressing that mathe-
matics consists of the activity of drawing necessary inferences. This leads to a po-
sition that resembles methodological structuralism as it is characterized in Reck 
and Price (2000). Furthermore I find that Peirce’s position is similar in spirit to 
the contemporary categorical structuralist views, in particular, as formulated by 
Steve Awodey (2004). Still I resist characterizing Peirce as a structuralist since 
I do not find that this label captures the richness of his views as presented here. 

	 1	 But see Pietarinen (2010) arguing that Peirce’s continuum cannot be a structure.
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To mention one point, besides claiming that mathematics is the science of neces-
sary reasoning, Peirce has something to say about how this necessity is achieved.

The chapter consists of two main parts. The first documents Peirce’s exten-
sive knowledge of, and contribution to, the mathematics of his time. Areas in-
clude arithmetic, set theory, algebra, geometry (including non-​Euclidean and 
topology)—​and logic. Examples, together with indications of what drove his en-
gagement with them, will be given from his work in geometry, arithmetic, set 
theory, and algebra. In relation to the pre-​structuralist themes it can be men-
tioned that he presented different axiomatizations of the natural numbers. 
Furthermore his insistence on the inappropriateness of the characterization of 
mathematics as “the science of quantity” will be addressed. Finally we shall see 
that he draws a clear distinction between pure and applied mathematics—​both 
in arithmetic and in geometry. I further note that Peirce’s use of formal methods 
and his view of mathematics as an autonomous body places him as an early mod-
ernist according to the characterization given by Jeremy Gray (2008).

The second part is concerned with Peirce’s philosophy of mathematics. It 
addresses Peirce’s description of mathematical reasoning as diagrammatic rea-
soning. A diagram to Peirce is an iconic sign that represents rational relations. 
In order to explain what is contained in “diagrammatic reasoning” the chapter 
therefore includes a few relevant parts of Peirce’s semiotics. In addition one ex-
ample of a proof will be given in order to explain how mathematical, that is, nec-
essary, reasoning proceeds by constructing and observing diagrams.

2.  Mathematics and the Logic of Relations

A few biographic details are relevant.2 Charles Sanders Peirce was born in 
Cambridge, Massachusetts, in 1839, as the son of Benjamin Peirce, a dis-
tinguished professor of mathematics at Harvard and a leading social figure. 
Benjamin Peirce taught his children mathematics and Charles certainly was very 
talented—​as he was talented in so many fields. (Peirce had one sister and three 
brothers, of whom the oldest, James Peirce, became professor in mathematics 
at Harvard.) C. S. Peirce studied chemistry at Harvard and (in 1859), obtained 
a job at the US Coast and Geodetic Survey, and later, in 1879, was appointed a 
lecturer in logic at the Department of Mathematics at Johns Hopkins University. 
In 1884 his contract with Johns Hopkins was not renewed, and in 1891, due to 
disagreements, he was also forced to resign from his post at the US Coast and 
Geodetic Survey.

	 2	 This biographic information is based mainly on the introduction of Peirce (1976, vol. 1) and 
Gray (2008). I also recommend Brent (1998).
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Peirce is often referred to as having a somewhat asocial behavior, something 
he admits and blames on his upbringing by his father focusing mainly on his 
formal training: “In this as in other respects I think he underrated the impor-
tance of the powers of dealing with individual men to those of dealing with ideas 
and with objects governed by exactly comprehensible ideas, with the result that 
I am today so destitute of tact and discretion that I cannot trust myself to transact 
the simplest matter of business that is not tied down to rigid forms” (NE IV, v).3 
Another peculiarity to mention is his habit of adopting his own terminology, 
e.g., calling relations “relatives” and writing “semeiotic” for “semiotics.”

Two further things regarding Peirce’s early years are worth mentioning here. 
First is Kant’s influence on his thinking. Much of Peirce’s thought is developed 
in reaction to the ideas of Kant; it is certainly the case that many of the ideas 
dealt with in this chapter are presented by Peirce with reference to Kant. Peirce 
writes (commenting on a text from 1867 introducing his categories) about his 
early influence by Kant, stating that he by 1860 “had been my revered master for 
three or four years” (CP 1.563). Second is Peirce’s passion for logic. According to 
Peirce this passion was aroused by reading Whateley’s Logic: “It must have been 
in the year 1851, when I must have been 12 years old, that I remember picking 
up Whateley’s Logic in my elder brother’s room and asking him what logic was. 
I see myself, after he told me, stretched on his carpet and poring over the book for 
the greater part of a week for I read it through. . . . From that day to this logic has 
been my passion although my training was chiefly in mathematics, physics and 
chemistry” (NE IV, vi).

There are two distinct periods in Peirce’s contributions to logic (see Dipert 
2004). The first is algebraic, using algebraic tools in order to formulate a cal-
culus of the logic of relations with inspiration from (among others) Boole and 
de Morgan. A seminal paper in this period is his “Description of a Notation for 
the Logic of Relatives, Resulting from an Amplification of the Conceptions of 
Boole’s Calculus of Logic” published in 1870 (reprinted in CP 3.45–​148). The 
second and later period is characterized as “diagrammatic.” In this period Peirce 
develops his existential graphs (see Roberts 1973 or Shin 2002).

An important part of Peirce’s characterization of mathematics is his statement 
that mathematics is the science of necessary reasoning concerning hypothetical 
states of things. He attributes this claim to his father, writing: “It was Benjamin 
Peirce, whose son I boast myself, that in 1870 first defined mathematics as ‘the 

	 3	 Citations of Peirce follow traditional standards. (NE I, 3) refers to the collections New Elements 
edited by Carolyn Eisele (Peirce 1976) volume I, page 3. Similarly (CP 4.229) refers to the Collected 
Papers of Peirce edited by Hartshorne and Weiss (1931–​1967) volume 4, paragraph 229. (EP 2, 
7) refers to Essential Peirce, volume 2, page 7. I sometimes include a reference to the year the paper 
was written/​published. This is available from R. Robin’s catalog; see http://​www.iupui.edu/​~peirce/​
robin/​robin_​fm/​toc_​frm.htm.
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science which draws necessary conclusions.’ This was a hard saying at the time; 
but today, students of the philosophy of mathematics generally acknowledge its 
substantial correctness” (CP 4.229). The reference to 1870 is to Linear Associative 
Algebra, which opens with the statement C. S. Peirce quotes (B. Peirce [1870] 
1881, 97). Peirce states at various places that the necessity of mathematical 
conclusions is obtainable precisely due to the hypothetical nature of mathemat-
ical statements, characterizing mathematics as the science “which frames and 
studies the consequences of hypotheses without concerning itself about whether 
there is anything in nature analogous to its hypotheses or not” (NE IV, 228). We 
shall return to these claims about mathematics throughout the chapter.4

2.1.   Geometry

A good place to learn about the extent of his knowledge of geometry is his (un-
published) book New Elements of Geometry Based on Benjamin Peirce’s Works 
and Teaching, which fills most of the second volume of the New Elements of 
Mathematics (Peirce 1976). As the title indicates, the book is an extension of his 
father’s Elementary Treatise on Geometry (published in 1837), but it contains 
much more—​apparently so much more that the publisher in the end refused to 
publish the book. When Peirce was forced to retire from his position in the US 
Coast and Geodetic Survey in 1891 he turned to textbook writing as a possible 
source of income. Ginn, the publisher of the American Book Company, made 
enquiries regarding an update of his father’s book in 1894 (NE II, xiv). The in-
troduction of NE II makes clear that Peirce worked for long on (versions of) 
the book while corresponding with the publisher, who did not see the need for 
publishing all the topics and sections Peirce wanted to include.5 From the intro-
duction it is possible to gain insight into Peirce’s motivation for extending it as 
he wished to do. Given the developments of geometry during the 19th century, 
he found a substantial revision necessary. He lists a number of ways that geom-
etry had “metamorphosed” since 1835: Given the acceptance of non-​Euclidean 
geometries, Peirce claims, “geometry has two parts; the one deals with the facts 
about real space, the investigation of which is a physical, or perhaps metaphys-
ical, problem, at any rate, outside of the purview of the mathematician, who 

	 4	 Although Peirce claims that mathematics consists of the drawing of necessary conclusions, in 
some places he considers including the process of forming the hypotheses from which to reason as 
part of mathematics. See, for example, CP 4.238, where he praises the ingenuity of Riemann for de-
veloping the idea of a Riemann surface.
	 5	 See the correspondence between publisher, C. S. Peirce, and his brother, James (Jem) Peirce, pro-
fessor of mathematics at Harvard (NE II, xiv–​xxvii), also providing information about the different 
versions of the book.
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accepts the generally admitted propositions about space, without question, as 
his hypotheses, that is, as the ideal truth whose consequences are deduced in the 
second, or mathematical part, of geometry” (NE II, 4). I return to this claim later. 
It is evident that Peirce was well informed about the various versions of non-​
Euclidean geometry formulated by Bolyai and Lobachewsky and even worked 
on both elliptic and hyperbolic geometry himself, claiming that space was hyper-
bolic (NE III, 710). To mention another thing, Peirce reviewed Halsted’s6 transla-
tion of Lobachevsky’s geometry in The Nation (54, February 11, 1892), calling it 
an excellent translation. The next topic Peirce mentions among the areas that had 
not previously been included in his father’s book is the new branch of geometry 
of Listing, named topology, which “deals with only a portion of the hypotheses 
accepted in other parts of geometry; and for that reason, as well as because its rel-
ative simplicity, it should be studied before the others.”7 The subsequent topic is 
what is today denoted as projective geometry. He then mentions “metrical geom-
etry,” which, he writes, was revolutionized after 1837 based on the contributions 
of Gauss’s students Lobachewsky, Riemann, and Bolyai (building on the works of 
Lambert and Saccheri).8 Finally, Peirce mentions the work of Cantor and others 
who “have succeeded in analyzing the conceptions of infinity and continuity, so 
as to render our reasonings concerning them far more exact than they had previ-
ously been” (NE II, 5).

Throughout his writings one finds explicit statements separating pure ge-
ometry, which traces the consequences of hypotheses, from “applied ge-
ometry,” which makes enquiries about the properties of real space and so is a 
branch of physics.9 At other places the distinction is implicit, as in the paper 
“Synthetical Propositions À Priori” (NE IV, 82–​85). The aim of this paper is to 
show—​opposing Kant—​that mathematical propositions are not synthetic. He 
remarks that it is possible that the propositions of geometry could be regarded 
as statements concerning physical space, but consistent with his general claims 

	 6	 Georg Bruce Halsted was a student of Sylvester’s from John Hopkins University and became 
professor at the University of Texas in 1884. According to Eisele “Halsted was spearheading in his 
publications on the new geometry the effort to bring to mathematicians in America the awareness of 
the revolution in mathematical thought” (NE II, ix).
	 7	 Peirce also made contributions to topology (see Havenel 2010 for an account of this). 
Furthermore, Havenel notes that topology is “par excellence the mathematical doctrine that is in-
compatible with the widespread idea that mathematics is the science of nothing else than quantities, 
geometrical quantities, and numerical quantities, for the topological properties do not involve meas-
urement” (Havenel 2010, 286).
	 8	 He makes references to Cayley (in 1854) and Klein (in 1873). In 1854 Cayley published a paper 
on finite groups, showing which multiplication tables are possible for a given number of elements 
of the group. Later, as Peirce indicates, Klein used the concept of a group and definitions of a metric 
(due to Cayley) to propose that the different geometries could be defined in terms of the invariance of 
properties of figures under a group of transformations, what is known as the Erlangen program.
	 9	 For explicit statements about the distinction between pure and applied geometry see NE IV, 359 
and NE III, 703–​709.
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of mathematics, he concludes that to the mathematician they are simply held 
to be hypotheses: “nothing but ignorance of the logic of relatives has made an-
other option possible” (NE IV, 82). He implicitly refers to the introduction of 
Riemann’s Über die Hypothesen, welche der Geometrie zu Grunde liegen ([1854] 
1892), calling it “Riemann’s greatest memoir.” According to Peirce, Riemann 
writes that geometrical propositions are matters of fact, and as such not neces-
sary, but only empirically certain; they are hypotheses. Referring to the last part 
of this statement, Peirce comments: “This I substantially agree with. Considered 
as pure mathematics, they define an ideal space, with which the real space ap-
proximately agrees” (84–​85).10

2.2.  Foundations of Arithmetic

When Peirce writes about arithmetic, he distinguishes between different versions. 
The first is arithmetic as used in counting and calculations, which he denotes 
“vulgar” arithmetic (see NE I, xxxv and CP 1.291) or practical arithmetic. The 
other is pure arithmetic, concerning the abstract dealings with the properties 
of (the operations on) numbers. What is in particular worth mentioning in this 
context is that he bases both on axioms, and that proofs use what he denotes the 
“logic of relatives.” (Note that the use of “axioms” here is my terminology. Peirce 
refers to them as “primary propositions” or “definitions.” In general he is wary of 
using the label “axiom,” which at the time referred to propositions held to be in-
dubitably true.)11 Note that one may find statements claiming that even practical 
arithmetic is based on (ideal) hypotheses: “2 and 3 is 5 is true of an idea only, and 
of real things so far as that idea is applicable to them. It is nothing but a form, and 
asserts no relation between outward experiences” (NE IV, xv).

Peirce’s axiomatizations of (practical) arithmetic intend to prove that arith-
metical propositions are logical consequences of a “few primary propositions,” 
that is, countering Kant’s view that arithmetical propositions are synthetic. 
In “The Logic of Quantity” from 1893 (CP 4.85–​93) Peirce addresses Kant’s 

	 10	 See the article by J. Ferreirós (2006) for an interpretation of how Riemann understood “hypo-
thesis” (and foundations). According to Ferreirós, Riemann used the word “hypothesis” instead of 
“axiom” precisely to emphasize that they are not evident.
	 11	 “The science which, next after logic, may be expected to throw the most light upon philosophy 
is mathematics. It is a historical fact, I believe, that it was the mathematicians Thales, Pythagoras, 
and Plato who created metaphysics, and that metaphysics has always been the ape of mathematics. 
Seeing how the propositions of geometry flowed demonstratively from a few postulates, men got the 
notion that the same must be true in philosophy. But of late mathematicians have fully agreed that 
the axioms of geometry (as they are wrongly called) are not by any means evidently true. Euclid, be it 
observed, never pretended they were evident; he does not reckon them among his κοιναὶ ἒννοιαι or 
things everybody knows, but among the ὰἴτηματα, postulates, or things the author must beg you to 
admit, because he is unable to prove them” (CP 1.130).
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characterization of analytic judgments, finding that Kant’s thought “is seriously 
inaccurate” (even calling it “Monstrous”). The distinction between analytic and 
synthetic judgments depends on whether a predicate is involved in the subject, 
or “whether a given thing is consistent with a hypothesis.” Peirce accuses Kant 
of, due to insufficient knowledge of logic, confusing a question of logic with psy-
chology when he writes that being involved in the conception of the subject is the 
same as being thought in it (CP 4.86). According to Peirce the question is easily re-
solved if one is familiar with the logic of relatives. Its solution does not depend on 
“a simple mental stare or strain of mental vision. It is by manipulating on paper, 
or in the fancy, formulae or other diagrams—​experimenting on them, experien-
cing the thing” (CP 4.86). That is, whether a judgment is analytic or not can be de-
termined by the use of logic and is an objective fact, not something depending on 
our thoughts. Note here also Peirce’s formulation “experimenting on a diagram” 
and “experiencing the thing,” which are central to his characterization of math-
ematical and diagrammatic reasoning, as I shall explain in the second part of 
the chapter. Concerning the status of arithmetic, he continues: “the whole of the 
theory of numbers belongs to logic; or rather it would do so, were it not, as pure 
mathematics, prelogical, that is, even more abstract than logic” (CP 4.90). Peirce 
holds that the different sciences can be ordered according to the generality of the 
objects they concern. In this philosophical system Peirce places mathematics at 
the top level, being the science that draws necessary conclusions, and logic as 
part of philosophy just below. Logic, according to Peirce, studies the drawing of 
necessary conclusions done in mathematics in order to formulate “laws of the 
stable establishment of beliefs” (CP 3.429). One may therefore note that Peirce, 
in contrast to, for example, G. Frege, who also took an interest in the foundations 
of arithmetic, did not claim that arithmetic is reducible to logic.12 Another in-
teresting point is Peirce’s remark that there is no one unique way to found arith-
metic on the logic of relations: There “are even more ways in which arithmetic 
may be conceived to connect itself with and spring out of logic” (CP 4.93). To 
document this claim Peirce refers to some of the texts presented in what follows.

Another motivation for providing axioms for arithmetic is to counter the em-
piricism of J. S. Mill, referred to in the introduction to the first paper presented in 

	 12	 It should be noted, though, that Peirce in his 1881 paper introducing the numbers writes things 
that could be construed as approaching a logicist position. He first writes that the aim of the paper is 
to show that the truths of arithmetic are consequences of a few primary propositions. He states about 
these propositions (calling them definitions), “the question of their logical origin . . . would require 
a separate discussion” (CP 3.252). For a more precise formulation of the interrelation between logic 
and mathematics in terms of how the different subjects, i.e., mathematics, philosophy, logic, etc., 
relate in Peirce’s system see Stjernfelt (2007, 11–​12). Peirce writes, for example, the following about 
the relations between the subjects (“sciences”) in his system: “The general rule is that the broader sci-
ence [e.g., mathematics] furnishes the narrower with principles by which to interpret its observations 
while the narrower science furnishes the broader science with instances and suggestions” (NE 
IV, 227).
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section 10.2.2.1, a position quite influential at the time. (Peirce implicitly refers 
to Mill as “a renowned English logician.”) In what follows three examples of 
characterizations of arithmetic are given, two of pure arithmetic and one of the 
“counting numbers.”

2.2.1. � Basing Pure Arithmetic on the Logic of Relations
The first example comes from Peirce’s article “On the Logic of Number,” 
published in the American Journal of Mathematics 4 (1881).13 (The paper is 
reproduced in CP 3.252–​288.) The system presented here has been called the 
first successful axiom system for the natural numbers (see Mannoury 1909 and 
Shields 1997, 43).14 In the introduction Peirce writes that the aim of the paper 
is “to show that [the elementary propositions concerning number] are strictly 
syllogistic consequences from a few primary propositions” (CP 3.252). Peirce 
remarks that the inferences drawn are not exactly like syllogistic consequences 
but that they are of the same nature.

The numbers, or as Peirce refers to them, “a system of quantities,” is intro-
duced as a collection together with a particular relation defined on it. The natural 
numbers are defined as a totally ordered (discrete) set with a minimum element, 
fulfilling the axiom of induction. In Peirce’s terminology they are a semi-​infinite, 
discrete and simple system of quantity. In contemporary terms a simple system of 
quantity is a totally ordered set (i.e., the relation defined on the set is transitive, 
reflexive, and anti-​symmetric and fulfills trichotomy). Furthermore, “discrete” 
and “semi-​infinite” mean the set has a minimum element (called a semi-​limited 
system of quantity) and fulfills the axiom of induction. In what follows we 
shall see how Peirce defines these notions. His use of notation (or perhaps lack 
thereof) may be a bit confusing to a modern reader. He uses the expression “one 
thing is said to be r of another,” meaning that one thing is related to another. In 
contemporary technical terms we would instead write that ArB or ( , )A B r∈  for 
A being “one thing” and B “another.” Peirce also uses the formulation that “the 
latter be r ’d by the former.” Listing properties that hold for the relation “less than 

	 13	 Peirce sketches a characterization of the natural numbers even earlier than 1881 in the paper 
“Upon the Logic of Mathematics,” dated 1867 and published in the Proceedings of the American 
Academy of Arts and Science, vol. 7 (CP 3.20-​3.44). It is based on his modifications of “the logical cal-
culus of Boole.” He defines, e.g., “logical identity” and “addition,” corresponding at first to operations 
on classes. That is, addition corresponds to taking the union of two classes. Identity between two 
classes states they consist of the same elements. Toward the end of the article Peirce notes that if one 
considers a kind of abstraction on classes—​“numerical rank”—​identity will play the role of equality 
and by considering the operation disjoint union one obtains the rules of arithmetic, for example, that 
a b b a+ = + .
	 14	 Shields presents Peirce’s axioms formulated in a modern way and compares his axiomatization 
to Dedekind’s and Peano’s. One thing Shields points out as worthy of attention is that Peirce chose a 
transitive relation as the basic relation when defining the numbers instead of the successor relation. 
Peirce later formulates systems based on an equivalent of the successor relation.
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or equal to” and using “r” and “q” to stand for this relation, he states the funda-
mental properties of a system of quantities as follows: “In a system in which r  is 
transitive, let the q’s of anything include that thing itself, and also every r  of it 
which is not r ’d by it. Then q q may be called a fundamental relative of quantity” 
(CP 3.253). That is, Peirce defines a system of quantity to be a collection Q on 
which there is defined a relation, q, which fulfills that q is transitive and reflexive, 
and for any A in the collection, AqB holds for all B s for which BqA is not the case. 
(If one thinks of the relation ≤  on the numbers, the last property states that for 
any two numbers A and B, if not B A≤  then A B≤ .) Peirce continues to list the 
properties of q, stating that “it is transitive; second, that everything in the system 
is q of itself, and, third, that nothing is both q of and q’d by anything except itself.” 
The last is anti-​symmetry. A relation fulfilling these three properties defined on 
a set is usually called a partial order on that set. He defines a simple system (of 
quantity) to be one in which it is the case that for any two elements, A and B
, it is the case that either ArB or BrA(i.e., trichotomy).15 Simple systems can be 
discrete, which means “every quantity greater than another is next greater than 
some quantity (that is greater than without being greater than something greater 
than)” (CP 3.256). For simple and discrete systems of quantity he introduces 
semi-​limited systems, i.e., systems that have a limit, often an absolute minimum 
element (which he calls “one”). Finally Peirce considers this class of quantities 
(that is, a simple, discrete system with a minimum element), noticing that “an 
infinite system may be defined as one in which from the fact that a certain prop-
osition, if true of any number, is true of the next greater, it may inferred that 
that proposition if true of any number is true of every greater” (3.258). That is, 
Peirce notes that what is today called the induction axiom characterizes the nat-
ural numbers.16 Elsewhere Peirce denotes this principle by Fermatian inference.

In the next paragraph Peirce continues to study “ordinary number,” which 
can be defined as a semi-​infinite (that is semi-​limited and infinite), discrete, and 
simple system of quantity, defining addition and multiplication (using the notion 
of predecessor), and he shows how one may then prove a number of fundamental 
propositions of arithmetic by induction, e.g., associativity, commutativity of ad-
dition, and the distributive law.17 I present one of Peirce’s proofs that addition is 

	 15	 In modern terminology a set on which there is defined a partial order fulfilling trichotomy is 
denoted a totally ordered set.
	 16	 Note the unfortunate choice of terminology calling a system of quantities for which the induc-
tion axiom holds an “infinite” system. The reason behind this might be that Peirce contrasts infinite 
systems with finite systems at the end of the paper.
	 17	 In a later paper from 1901–​1904 (NE IV, 2–​3) Peirce has introduced more notations, for ex-
ample “G” denoting the successor function, but essentially maintains the same characterization of 
numbers. In this paper he shows that the associative law holds for numbers, where numbers are de-
fined as an ordered system on which induction holds. Two numbers are defined to be equal in terms 
of the relation “greater than,” where A = B means that A is at least as great as B and B is as least as great 
as A. Furthermore he notes that “as least as great as” is transitive and reflexive and if N M≥ , then 
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commutative; that is, usingx x and y x to denote natural numbers, x y y x+ = +
(see CP 3.267). Addition is defined by the following two rules (here adding “s” to 
denote successor): 1+ =y s y( ) and x y s x y+ = +′( ), where ′x  denotes the pred-
ecessor of x. The proposition is proved using induction twice, and it employs the 
associative rule, x y z x y z+ + = + +( ) ( ) , that Peirce proves first. In the first step 
it is shown that the statement holds for y = 1,  namely that x x+ = +1 1 .  I omit 
the details from this part. For the general proposition, one may now note that 
x y y x+ = +  has been proven for y = 1. In order to conclude the statement by 
induction, it thus remains to show that if the statement holds for y n= , then 
it holds for y n= +1 . We suppose that x n n x+ = +  and consider x n+ +( )1 .  
Calculating on—​or manipulating—​this expression, we obtain the following 
(which Peirce would refer to as a diagram):

	 x n+ +( ) =1 	

	 x n+( ) + =1 	

	 1+( ) + =x n 	

	 1+ +( ) =x n 	

	 1+ +( ) =n x 	

	 1+( ) +n x. 	

Here we have used associativity of addition, the result that x x+ = +1 1 , , and 
the induction hypothesis. The diagram displays that if x n n x+ = + , , then 
x n n x+ + = + +( ) ( )1 1  holds. Combining this with the fact that x x+ = +1 1  and 
using the principle of induction, the result follows.

Note that the (natural) numbers are defined as a relational system, that is, as a 
collection on which is defined a certain order relation. Peirce formulates prop-
erties of relations, e.g., transitive and “quantitative” relations, in his language of 

GN GM≥ .  Finally he formulates the axiom of induction: “whatever is true of zero and which if true 
of any number N, is also true of GN the ordinal number next greater than N, is true of all numbers” 
(NE IV 2). The addition of numbers is defined as follows: (i) 0 + 0 = 0, (ii) GM + N = G(M + N), (iii) M 
+ GN = G(M + N). By successive use of these definitions and induction, he is able to prove the stated 
proposition.
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the logic of relatives in many of his papers. To mention a couple of examples, he 
expresses formally a one-​one relation in “On the Logic of Number” (1881) and 
properties of transitive relations in “The Logic of Quantity” (1893).

In a collection of papers called Recreations in Reasoning dated around 1897 
Peirce defines the numbers by something very close to the Dedekind-​Peano ax-
ioms. More precisely he adopts notation for what plays the role of a successor 
and states basic properties of this relation. These properties together with what 
Peirce derives as a consequence of them constitute what is now known as the 
Dedekind-​Peano axioms. Another thing to mention about this system is that 
Peirce derives the principle of induction from this system, and thus calls it the 
Fundamental Theorem of Pure Arithmetic (CP 4.165). Peirce continues to define 
the relation “greater than” on this system and deduces some properties so that 
this system is comparable to the first-​mentioned example of defining the natural 
numbers via an order relation.

2.2.2. � Practical Arithmetic or Demonstration That Arithmetical 
Propositions Are Analytic

The fundamental theorem in practical arithmetic, serving as the foundation for 
counting, is denoted “The Fundamental Theorem of Arithmetic.”18  It states that 
“if the count of a lot of things stops by the exhaustion of those things, every count 
of them will stop at the same number” (NE IV, 82). Peirce contrasts this to the 
Fundamental Theorem for Pure Arithmetic. In the text “Synthetical Propositions 
à Priori” (NE IV, 82–​85) he demonstrates that “5 + 7 = 12” follows from the fun-
damental proposition of arithmetic. Therefore “5 + 7 = 12” is not “synthetical” 
(but corollarial, since it follows directly from the definitions). From the funda-
mental proposition Peirce deduces the principle of associativity (A + B) + C = A 
+ (B + C) and then that the equality 5 + 7 = 12 follows. The article continues to 
prove the fundamental proposition using the language of the “logic of relatives” 
(demonstrating, according to Peirce, that it is not synthetic). The main steps are 
listed here. First a finite collection is defined. A collection, A, is finite, if when-
ever there is (here using modern notation) a one-​to-​one function λ : ,A A→   
then it is necessarily onto.19 (That is, there is no one-​to-​one correspondence 

	 18	 Peirce explicitly writes that the proposition 5 + 7 = 12 is analytic (NE IV, 84). He here explains 
that the proposition is analytic since it follows by necessity from the definitions. In contrast are 
propositions that he calls “theorematic,” to which we return in the second part of the chapter. See 
Levy (1997) for a discussion concerning the relation between the synthetic and analytic distinction 
and corollarial vs. theorematic proofs. See also Otte (1997) on the analytic-​synthetic distinction in 
Peirce’s philosophy.
	 19	 In Peirce’s terminology it is expressed as “Suppose a lot of things, say the As, is such that  
whatever class of ordered pairs λ may signify, the following conclusion shall hold. Namely, if every 
A is a λ of an A, and if no A is λ’d by more than one A, then every A is λ’d by an A. If that necessarily 
follows, I term the collection of As a finite class” (NE IV, 83).
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between A and a proper subset of A.) In the next step it is shown that if a collection 
is counted, it is finite. To count a collection, according to Peirce, means to estab-
lish a one-​to-​one correspondence with the objects in the collection (taken in some 
order) and an initial segment of the natural number sequence. Finally, in the last 
step, it is demonstrated that if one assumes that a count of a sequence results in two 
different numbers, and the relation “next followed in the counting by” is employed, 
then there will be no least number in the sequence. This is a contradiction.20

2.3.  Foundations: Set Theory

It is clear that underlying Peirce’s conception of the various systems of numbers 
is a form of naive set theory. The same holds for his work in logic. Following 
Boole, Peirce’s algebraic logic deals with classes. As an example one may point to 
his early paper “On an Improvement of Boole’s Calculus of Logic” (1867), where 
Peirce uses letters to refer to classes of things or occurrences. It is then possible 
to define operations corresponding to addition and multiplication (and their 
inverses) on these classes (addition corresponding to, at first, union, and later 
to disjoint union). Such classes then form the basis for formulating the laws of 
arithmetic, as noted in note 13.

In later papers Peirce develops what can be denoted as versions of transfinite 
set theory along the lines of Cantor (and Dedekind)21—​although he disagrees 
with Cantor on certain points. He often mentions the theory of multitudes, 
which is how he refers to cardinal numbers, and is well aware of Cantor’s work on 
set theory, but developed some ideas independently. In particular Peirce claims 
credit for two results. One is the proof of the theorem that “there is no largest 
multitude,” which in contemporary terms is that the cardinality of a set is strictly 
less than the cardinality of its power set. I return to this result later. The second 
is the definition of a finite collection as a collection for which the syllogism of 
transposed quantity holds.22 In connection with his work on logic Peirce realized 
that the validity of inference rules depends on the size of the collection they are 
applied to (see “On the Logic of Number” from 1881 or the letter to Cantor in NE 

	 20	 In the paper “On the Logic of number” (1881), referred to in section 10.2.2.1, a similar, although 
more complicated, proof is made.
	 21	 Peirce notes that his approach is closer to Cantor’s since they both start with cardinal numbers, 
whereas Dedekind is concerned with ordinals.
	 22	 In his later years Peirce expresses his frustration (e.g., in CP 4.331) that he has not received 
more credit for his original ideas. For one thing, he accuses Dedekind of not giving him credit for his 
definition of a finite collection. Peirce writes in 1905 that he sent his 1881 paper, where he defines a 
finite collection, to Dedekind. There is no evidence, however, that Peirce’s definition served as inspi-
ration for Dedekind since he formulated his definition of an infinite set as early as 1872 (see Ferreirós 
2007, 109).
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III(2), 772). The syllogism of transposed quantity is the following—​using one of 
Peirce’s own examples:

Every Texan kills a Texan.
Nobody is killed but by one person.

Every Texan is killed by a Texan.

This syllogism is only valid when applied to finite collections (of Texans), so a 
finite collection may be defined as a collection for which this syllogism is valid. 
If one translates the premises and conclusion to expressions using functions, it 
states the same as the definition given earlier. The first premise is that there is a 
function, k : Texans Texans→ , the second that this is one-​to-​one. The conclu-
sion is that the function is onto.

A further thing to note is that Peirce, like others at the time, struggled to find 
a proper definition of a collection.23 Such a characterization could serve as a hy-
pothesis from which the properties of sets would follow, similar to what he had 
accomplished for the numbers. One definition offered is the following: “We may 
say that a collection is an object distinguished from everything which is not a 
collection by the circumstance that its existence, if it did exist, would consist in 
the existence of certain other individual objects, called its members, in the ex-
istence of these, and not in that of any others; and which is distinguished from 
every other collection by some individual being member of the one and not a 
member of the other; and furthermore every fact concerning a collection will 
consist in a fact concerning whatever members it may have” (NE IV, 9).

The paper “Multitude and Number,” dated 1897, presents in some detail 
Peirce’s contribution to the theory of multitudes (see CP 4.170–​226). These notes 
start out by defining a relation “being a constituent unit of ” that can be regarded 
as a membership relation. Via this relation he defines a collection, as “anything 
which is u’d by whatever has a certain quality or general description and by 
nothing else” (CP 4.171). Having defined collections, he defines the notion of 
multitude to “denote that character of a collection by virtue of which it is greater 
than some . . . others, provided the collection is discrete” (CP 4.175). A collection 
is discrete if its constitutive units are or may be distinct as opposed to a contin-
uous collection. Equality of collections is defined in terms of one-​to-​one rela-
tions: That the “collection of M’s and the collection of N’s are equal is to say: There 
is a one-​to-​one relation, c, such that every M is c to an N; and there is a one-​to-​one 

	 23	 See Dipert (1997) for a discussion of Peirce’s philosophical conception of sets. Noting the diffi-
culty of providing a characterization of a set, Dipert furthermore presents Peirce’s subtle criticism of 
Dedekind’s definition of an infinite collection. For this criticism see (CP 3.564).
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relation, d, such that every N is d to an M” (CP 4.177). Before dealing with the dif-
ferent types of multitudes, Peirce addresses a question of which kinds of relations  
are meaningful on collections, mentioning in particular what we would denote 
as trichotomy. Peirce’s classification of multitudes can be compared to Cantor’s 
treatment of cardinal numbers (Peirce also refers to his papers, e.g., in CP 4.196). 
But Peirce disagrees with his names, calling them enumerable (finite), denumer-
able (countable), primipostnumeral (first uncountable), secundopostnumeral, 
etc. When dealing with the countable collections he shows standard propos-
itions, e.g., that the product of two denumerable multitudes is a denumerable 
multitude. Furthermore he uses Cantor’s notation for cardinal numbers, i.e., 
the alef, ℵ. Whenever moving on to the next multitude, Peirce writes that the 
problem is to determine the smallest multitude exceeding the previous (CP 
4.200). For example, the section on the “primipostnumeral” begins: “Let us now 
enquire, what is the smallest multitude which exceeds the denumerable multi-
tude?” Interestingly he finds that a way to obtain a primipostnumeral collection 
is by taking the collection of subsets of a denumerable set, and so he implicitly 
accepts the Continuum Hypothesis. He shows that this has the same multitude 
as, e.g., the collection of quantities between zero and one. He also argues that the 
size of this is 2ℵ  and that in general larger multitudes can be obtained by taking 
further powers.

Taking the collection of subsets as a larger collection corresponds to Peirce’s 
theorem, namely that there is no largest multitude. Peirce seems to be particu-
larly fond of this theorem as he presents many different proofs of it. The proofs 
are often used to illustrate various points: In the “Prolegomena for an Apology 
to Pragmaticism” the proof serves as an example of “diagrammatic reasoning.” 
In other places it is given as an example of “theorematic” reasoning, something 
Peirce contrasts with “corollarial” reasoning. I return to these notions in the last 
part of the chapter.

In addition to studying multitudes, Peirce engages himself with a characteri-
zation of the continuum that he in the paper just treated argues cannot be a mul-
titude. The reason is the stated property, that there is no greatest multitude. For 
one thing Peirce finds that it is possible “in the world of non-​contradictory ideas” 
to consider the aggregate of all postnumeral multitudes and that this aggregate 
cannot be a multitude. It must instead be a continuous collection. There are both 
mathematical and philosophical angles to Peirce’s thoughts on the continuum. 
Here I will make a few remarks pertaining to the mathematical ones.24 First, one 

	 24	 Scholars have explained how “continuity” is fundamental to Peirce’s mature philosophy; see 
Hookway (1985), Stjernfelt (2007) and Zalamea (2010). Moore (2015) evaluates Peirce’s description 
from a mathematical point of view. Dauben (1982) presents in some detail Peirce’s conception of the 
continuum from the point of view of set theory.
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may mention that Peirce’s conception of the continuum has little to do with the 
project of rigorization of analysis, which led, e.g., Weierstrass and Dedekind to 
formulate their versions of the mathematical continuum, although he is aware of 
these developments. He is critical of the replacement of infinitesimals with the 
“cumbrous” method of limits pointing to the odd formulations mathematicians 
made, such as defining a limit “as a point that can ‘never’ be reached,” stating that 
“This is a violation not merely of formal rhetoric but of formal grammar” (CP 
4.118). Furthermore he objects to the characterization of the continuous line as 
composed of points and mentions topology and projective geometry as areas 
where continuous quantity in this sense does not enter at all (see CP 4.218–​225, 
3.526).

Peirce’s and Cantor’s motivations for engaging in set theory are thus quite dif-
ferent, and both had motives and sources of inspiration besides the mathemat-
ical. It is usually said that Cantor’s initial inspiration came from analysis, where 
he worked on the conditions for unique representation of functions by trigono-
metric series. Peirce, on the other hand, was first influenced by his work in logic 
and later his interest in mathematics in general. He also had a philosophical mo-
tive, and doubly so, since mathematics (and logic) served as a foundation for his 
philosophical system.

2.4.  Algebra

In this section I address another theme from what can be denoted Peirce’s use 
of the axiomatic method. More importantly, the examples from Peirce’s writings 
on algebra illustrate his emphasis on the inadequateness of the claim that math-
ematics is the “science of quantity.” He writes things like “To this day, one will 
find metaphysicians repeating the phrase that mathematics is the science of 
quantity,—​a phrase which is a reminiscence of a long past age when the three 
words ‘mathematics,’ ‘science,’ and ‘quantity’ bore entirely different meanings 
from those now remembered. No mathematicians competent to discuss the 
fundamentals of their subject any longer suppose it to be limited to quantity. 
They know very well that it is not so” (NE IV, 228–​229). Furthermore, I will note 
his characterization of algebra as a system of symbols functioning as a calculus, 
i.e., a language to reason in. Part of Peirce’s knowledge of algebra stemmed 
from his father, Benjamin Peirce, including his monograph Linear Associative 
Algebra, first published in 1870, the same year as Peirce’s remarkable paper 
on the logic of relatives (that is, his “Description of a Notation for the Logic 
of Relatives, Resulting from an Amplification of the Conceptions of Boole’s 
Calculus of Logic,” CP 3.45–​149). Peirce remarks that he and his father discussed 
the contents of both with each other, writing: “There was no collaboration, but 



256  Jessica Carter

there were frequent conversations on the allied subjects, especially about the 
algebra” (NE III, 526). Inspiration for this work clearly comes from the British 
algebraists and the emerging way of designing algebras by detaching symbols 
of their traditional meaning (denoting numbers), and simply focusing on the 
rules of combinations. This work had a boost from Hamilton’s introduction of 
the quaternions, where it turned out that multiplication is not commutative. 
In a sense B. Peirce’s Linear Associative Algebra can be seen as a generalization 
of the work of Hamilton, dealing in general with systems—​or algebras—​of 
expressions formed as linear combinations of a given number of elements. In 
C. S. Peirce’s writings there are numerous examples from linear associative al-
gebra, but the examples to be considered here concern the imaginary numbers 
and permutation groups.

In a section of the paper “The Logic of Quantity” Peirce discusses the imagi-
nary number i . This (long) paper starts out with the criticism of Kant’s claim that 
mathematical propositions are synthetic, as referred to in section 10.2.2.25 Peirce 
starts by praising Cauchy for giving the first “correct logic of imaginaries,” but 
regrets that the rule-​of-​thumbists “do not understand it to this day” (CP 4.132). 
They object that there cannot be a quantity that is neither positive nor negative 
and that the square of a quantity is always positive. Despite this Peirce explains 
how it is possible to introduce a quantity whose square is negative. The mathe-
matician “would reason indirectly: that is the mathematician’s recipe for every-
thing” (CP 4.132). The algebraist simply states that he needs a quantity whose 
square root is −1, noting: “there is no such thing in the universe: clearly then, 
I must import it from abroad” (CP 4.132). Peirce’s explanation displays his use of 
the axiomatic method. He lists the fundamental properties of numbers26 (quan-
tities), stating that “If there is one of those laws which requires a quantity to be ei-
ther positive or negative, find out which it is and delete it. If you have a system of 
laws which is self-​consistent, it will not be less so when one is wiped out.” Peirce 
deduces that the property “(16) x > 0  or x < 0  or x = 0” is required in order to 
prove that the square of all (nonzero) numbers is positive. The conclusion is that 
if this property is deleted, one may introduce the hypothesis that there is a quan-
tity, i , defined as the square root of −1. The symbols so introduced have no other 
meaning than given by the hypotheses,27 i.e., the meaning of i  is that i2 1 0+ =

	 25	 “The Logic of Quantity” is dated 1893. It was supposed to be included in Peirce’s book The Grand 
Logic. It is a long paper starting out with criticisms of the positions of Kant and Mill on mathematics. 
The ensuing sections deal with the logic of quantity, that is, expressing properties of quantitative 
relations in his language of relations and deriving their consequences. Toward the end are sections 
treating the imaginary quantities, quaternions, and a section of measurement and infinitesimals.
	 26	 The listed properties of quantities include, for example, the commutative and associative prop-
erties of addition and multiplication and properties of the relation “less than.”
	 27	 In CP 4.314 a similar statement is made, i.e., that symbols have no meaning other than that we 
give them. The example in this case concerns developing an algebra of three elements.
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: “the meaning of a sign is the sign it has to be translated into” (CP 4.132). In this 
way the system of symbols of algebra becomes a calculus; “that is to say, it is a 
language to reason in” (CP 4.133). He continues: “To say that algebra means any-
thing else than just its own forms is to mistake an application of algebra with the 
meaning of it” (CP 4.133).

In order to define a complex number, reference to numbers (and so quantities) 
is required. But a complex number goes beyond quantities since relations must 
be introduced that do not fulfill the properties of relations defining quantities, 
e.g., transitivity and the like: “[It] is readily seen that what is called an imaginary 
quantity or a complex quantity is not purely quantity” (NE IV, 229). To show 
that there are examples from mathematics that have nothing to do with quantity 
whatsoever, Peirce presents the notion of a group: “By a ‘group,’ mathematicians 
mean the system of all the relations that result from compounding certain rela-
tions which are fully defined in respect to how they are compounded” (NE IV, 
229). As an example of a group where these relations have nothing to do with 
quantity he presents what is essentially a group of permutations, where elements 
are permutations on the four letters A, B, C, and D. The group is presented as 
containing relations that, composed by themselves four times, give the identity. 
That is, if l  represents such a relation, it fulfills that l4 = Id. One such relation is 
D A C B A C B D: : : :+ + + , meaning that that D maps to A A,  to C, C to B, and 
finally B to D. Today this could be written in cyclic notation as ( )DACB . He notes 
there are more such relations, 24 in total, that they have converses (i.e., inverses), 
and refers to the product of such relations—​which he notes has a logical meaning 
having nothing to do with quantity (similarly to the use of “+” above in the pre-
sentation of the permutation). The totality of these 24 relations thus forms a 
group. Furthermore he talks about smaller sub-​collections of the 24 elements 
that will also form a group (NE IV, 227–​234, 1905–​6).

2.5.  Conclusions: Peirce, Pre-​structuralist Themes,  
and Relations

Summing up on Peirce’s adherence to a number of pre-​structuralist views, I have 
noted Peirce’s distinctions between physical geometry and mathematical geom-
etry on the one hand and practical and pure arithmetic on the other. Regarding 
the first distinction, he remarks that the hypotheses in pure geometry are studied 
irrespective of whether they apply to the real world or not. I showed that it is 
possible to find similar comments referring even to practical arithmetic. In the 
writings on algebra I also noted that Peirce several times explicitly rejects the 
characterization of mathematics as the science of quantity, producing examples 
that have nothing to do with quantity.
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Furthermore I  have shown that Peirce uses formal methods in arithmetic 
to determine which hypotheses are sufficient in order to derive the properties 
in question. One aim was to argue that the statements of arithmetic are logical 
consequences of certain definitions, or hypotheses. His use of the “axiomatic 
method” in arithmetic can be likened to the process described by Hilbert ([1918] 
1996) where, given a collection of propositions, a certain collection of axioms 
can be identified so that the given propositions can be derived from them—​what 
Hilbert calls “deepening of foundations.” This seems to fit well with Peirce’s pro-
cedure. His method thus has two interrelated aims. Focusing on reasoning and 
inference rules, the point is on the one hand to formulate “a few primary prop-
ositions” of the numbers so that properties of them follow by necessity. On the 
other hand, focusing on the propositions, the aim is to determine the postulates 
sufficient for deriving the propositions of arithmetic. Peirce’s discussions of the 
meaning of “postulates” and “hypotheses” reflect these concerns: “For what is 
a postulate? It is the formulation of a material fact which we are not entitled to 
assume as a premiss, but the truth of which is requisite to the validity of an in-
ference” (CP 6.41). A further similarity to Hilbert’s method is Peirce’s claim that 
there are multiple ways of organizing the propositions of arithmetic (cf. CP 4.93). 
One could take as basic the propositions defining the numbers via the successor 
function or the definition of numbers as a certain ordered collection.

In the case of the imaginary quantity, I indicated how Peirce traces out the 
consequences of a body of fundamental properties of the numbers, in order to 
determine which of these contradicts a desired property (i.e., that the square of 
a quantity is negative). In this case, he mentions the property of a collection of 
axioms of “being internally consistent.” It does not seem, however, that he is con-
cerned with further metamathematical considerations such as consistency in ge-
neral, independence, and completeness. He appears to be quite confident in the 
mathematical method, writing in numerous places “in mathematics there are no 
mistakes and no (deep) disagreement” (CP 3.426).

Peirce’s use of formal methods as well as his distinction between pure and ap-
plied versions of mathematics places him as an early modernist, characterized 
by J. Gray (2008) as “an autonomous body of ideas, having little or no outward 
reference, placing considerable emphasis on formal aspects of the work and 
maintaining a complicated—​indeed anxious—​rather than a naïve relationship 
with the day-​to-​day world, which is the de facto view of a coherent group of 
people, such as a professional or discipline based group that has a high sense of 
what it tries to achieve” (1).

After the many of examples of the mathematics of Peirce we may better un-
derstand what is meant when stating that a result or theory is based on the logic 
of relations. The first thing to note is that Peirce finds that relations of various 
sorts play a key role in the definition of mathematical objects. Having seen the 
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examples presented here, we must concur. We have seen that, for example, an 
order relation is used to define the numbers and a bijective correspondence is 
used to define multitudes as well as “a count.” The properties of these can be 
formulated in his language of the logic of relations. Second, to Peirce the main 
activity of mathematics is reasoning, that is, the practice of drawing necessary 
conclusions. Logic, according to Peirce, includes the study of (the methods of) 
such inferences. Peirce notes that he together with other logicians like de Morgan 
(NE IV, 1) early realized that the previous versions of logic came up short when 
trying to capture the structure of the statements of mathematics.28 To formu-
late definitions as well as statements in mathematics thus requires reference to 
relations, so reasoning in mathematics must take into account how one draws 
inferences from statements involving relations.

3.  Philosophy: Diagrammatic Reasoning

I now turn to focus on how Peirce proposes the necessity of reasoning is achieved, 
namely through diagrammatic reasoning. The description given here draws 
mainly on Peirce’s 1906 paper “Prolegomena for an Apology to Pragmatism” 
(PAP), published in The Monist (reprinted in CP 4.530–​582), and a draft of this 
(NE IV, 313–​330).29 But others of Peirce’s writings will also be referred to. My 
presentation focuses on how diagrammatic reasoning applies to mathematics. 
It thus complements the contributions of Stjernfelt (2007) on diagrammatic rea-
soning in general and Shin’s (2002) account of his existential graphs. I also refer 
to Marietti (2010) for a more detailed account than I am able to give here.

There are two key points to bear in mind when addressing “diagrammatic rea-
soning.” The first is that Peirce thinks of a diagram as a certain type of sign. An im-
portant property of this sign, the diagram, is that it is observable. Peirce explains 
that the necessity of the conclusion of a proposition is established because it can 
be perceived in the diagram. The second key point is that his definition of a “dia-
gram” applies to objects that one would not normally count as diagrams. I men-
tion three possible sources of inspiration for Peirce’s view of reasoning as linked 
to observing diagrams: First, Peirce’s work on logic contributed to this view. I will 
return to this point at the end of this section. Second, the reasoning based on 

	 28	 In Peirce’s early papers on logic (see, e.g., volume 3 of CP) there are sections on the Aristotelian 
syllogisms. But these are not used when he turns to his algebra of logic. One may also find comments 
as to the shortcomings of the syllogisms; see CP 4.426 in relation to Euclid’s Elements.
	 29	 The last part of PAP consists of a presentation of the existential graphs. The paper also includes 
an explanation of which types of signs these graphs are. The iconic existential graphs were suppos-
edly meant to pave the way for a proof of his pragmaticism: “For by means of this, I shall be able al-
most immediately to deduce some important truths of logic, little understood hitherto, and closely 
connected with the truth of pragmaticism” (CP 4.534). See also EP 2, xxvvii–​xxix and Shin (2002).



260  Jessica Carter

diagrams in Euclid’s Elements—​a source Peirce is familiar with and often cites 
from—​proceeds in a way that is compatible with the description of diagram-
matic reasoning. Third, Peirce explicitly mentions Kant in connection with the 
characterization of mathematical reasoning. According to Kant reasoning in 
mathematics proceeds by constructions, or the drawing of diagrams, formed in 
intuition. Peirce remarks that this view is partially correct, since it focuses on 
the method of mathematics rather than stating what mathematics is about, and 
he agrees that mathematics deals with constructions—​but not in intuition (CP 
3.556, 1898). Peirce claims the necessity of mathematical reasoning is due to the 
procedure of constructing “a diagram, or visual array of characters or lines. Such 
a construction is formed according to a precept furnished by the hypothesis. 
Being formed, the construction is submitted to the scrutiny of observation, and 
new relations are discovered among its parts, not stated in the precept by which 
it was formed, and are found, by a little mental experimentation, to be such that 
they will always be present in such a construction” (CP 3.560). That is, although 
he agrees with Kant that reasoning is done by constructions, as I have noted, 
he disagrees with Kant that this construction invokes intuition and depends on 
“thought”—​although a diagram might be considered in one’s imagination. As 
noted, it is essential for Peirce that the relations discovered are observed.30

When Peirce refers to a “diagram” he does not only understand it in its 
common sense, that is, as a figure mainly composed of points, lines, and circles, 
since he also describes it as a “visual array of characters or lines.” To Peirce “di-
agram” refers to a sign that represents (intelligible) relations: “a Diagram is an 
Icon of a set of rationally related objects  .  .  . the Diagram not only represents 
the related correlates, but also, and much more definitely represents the relations 
between them” (NE IV, 316–​317, 1906). Mentioning an “icon,” he refers to his 
semiotics. The next section therefore extracts a few points from his theory of 
signs. This introduction will be followed by an example of a proof together with 
a further elaboration of how to understand his characterization of necessary rea-
soning as diagrammatic reasoning.

3.1.  Signs: Tokens and Types; Icons, Indices, and Symbols

Early on Peirce attached importance to signs, conceiving of them as the vehicles of 
thought. His theory of signs is interrelated with his categories (at first developed 
as a response to Kant’s 12 categories, see, for example, CP 1.545–​567 from 1867). 
According to Peirce there are only three types of categories. The categories consist 

	 30	 That relations are seen to hold because they are observed brings mathematics on a par with nat-
ural science. See Marietti (2010) for an elaboration of this point.
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of feeling, reaction, and law—​or as he also called them, possibility, existence, and 
habit.31 One way Peirce arrives at these categories is in terms of his logic of relations. 
Any given relation applies to a fixed number of relata, and so a relation may be mo-
nadic, dyadic, or triadic, and so on. Peirce claimed that he could prove that higher-​
order relations are reducible to relations taking only one, two, or three relata.32 The 
monadic relations (predicates) correspond to the first category (feeling or quality), 
dyadic to the second (reaction or existence), and irreducible triadic relations to the 
third (law or habit). Later Peirce referred to the categories more abstractly in his 
phaneroscopy as firstness, secondness, and thirdness.

A sign, according to Peirce, is an irreducible triadic relation (corresponding to 
the three categories): it relates the sign, the object that is represented by the sign, 
and the interpretant of the sign. The last is important, in that Peirce holds that a 
sign is not a sign unless it is interpreted as such: “a sign (stretching that word to 
its widest limits), as anything which, being determined by an object, determines an 
interpretation to determination, through it, by the same object)” (PAP CP 4.531). 
In Peirce’s early classification of signs, each of these three, that is, the sign, the re-
lation between the sign and object, and the interpretant, is considered in terms of 
the previously mentioned three categories: possibility, existence, and law.33 I only 
mention two of these here. Peirce’s first division concerns the nature of the sign 
itself. This division includes the well-​known notions of a token and a type: “A 
common mode of estimating the amount of matter in a MS. or printed book is to 
count the number of words. There will ordinarily be about twenty the’s on a page, 
and of course they count as twenty words. In another sense of the word ‘word,’ 
however, there is but one word ‘the’ in the English language; and it is impossible 
that this word should lie visibly on a page or be heard in any voice, for the reason 
that it is not a Single thing or Single event. It does not exist; it only determines 
things that do exist. Such a definitely significant Form, I propose to term a Type. 
A Single event which happens once and whose identity is limited to that one hap-
pening or a Single object or thing which is in some single place at any one instant 

	 31	 The paper “What Is a Sign” (Peirce 1894, EP 2, 4–​10) explains the three categories in terms of 
possible ways experience can be had: The first, most immediate, is feeling, e.g., thinking about the 
color red. Second is reaction, as when we are startled by a loud noise and try to figure out its origin. 
The second category thus requires “two things acting on each other” (EP 2, 5). Third is thought, or 
reasoning, formulating a law based on our immediate experiences and actions. This is described as 
“going through a process by which a phenomenon is found to be governed by a general rule” (EP 2, 5). 
Note also that the third category mediates between the other two. See also Hoopes (1991).
	 32	 See Misak (2004, 21), Burch (1997), and the paper “Detached Ideas Continued and the Dispute 
between Nominalists and Realists” (NE IV, 338–​339).
	 33	 Around 1903 (see Syllabus 1903, published in EP 2, 289–​299) Peirce presents his classification 
of signs into 10 different classes. Later, after introducing a more elaborate theory of interpretants 
and a distinction between the immediate and the dynamic object, he is able to produce 66 classes of 
signs. Peirce refers to both of these additions in PAP. In addition to PAP, see Hoopes (1991) and Short 
(2007) for an elaboration of the development of Peirce’s semeiotics. Bellucci and Pietarinen (n.d.) 
give an account in relation to logic and Carter (2014) in relation to use in mathematics.
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of time, such event or thing being significant only as occurring just when and 
where it does, such as this or that word on a single line of a single page of a single 
copy of a book, I will venture to call a Token” (CP 4.537). The sign corresponding 
to the first category is named a quality or a tone. A diagram is to be taken as a 
type, but a type can only be shown through a replica of it, that is, a token.

The second division is his division of signs into icons, indices, and symbols. They 
appear as answers to the question: In what capacity does the sign represent the ob-
ject? The sign may represent because of similarities (likeness) between the object 
and the sign, in which case the sign is an icon: “Anything whatever, be it quality, 
existent individual, or law, is an icon of anything, insofar as it is like that thing and 
used as a sign of it” (EP 2, 291). Simple examples of icons used in mathematics are 
geometric objects, such as drawn triangles and circles. Icons do not only represent 
by visual resemblance; an important, and a characterizing, property of the icon 
is that it reveals new facts about the object that it represents. As such they are es-
sential to mathematics: “The reasoning of mathematicians will be found to turn 
chiefly upon the use of likenesses, which are the very hinges of the gates of their 
science. The utility of likenesses to mathematicians consists in their suggesting, in 
a very precise way, new aspects of supposed states of things” (Peirce 1894, 6). As 
will be shown below, icons may represent relations. Note also that most icons used 
in mathematics involve conventional (symbolic) elements.34 If I wish to prove 
something about an odd number, I could represent it iconically as “ 2 1⋅ +k ,” for 
some number k, using the symbols “⋅” and “+”. Subsequently I will represent the 
statement that “a number divides another number” by the icon “ p k a⋅ = .”

The index represents its object because of some existent (causal) relation be-
tween the two. Peirce mentions as an example a weathercock, which, as a result 
of the wind blowing, tells us about the direction of the wind, so that the weather-
cock becomes an index of the direction of the wind. The type of index just men-
tioned represents due to some causal relation between the sign and the object. 
A pure index represents because of some purposeful association of it with what it 
represents, as one does in mathematics. Peirce mentions the geometers assigning 
of letters to geometric figures, naming places on such figures, so that one may 
reason about these places, points, lines, etc., via these letters.35 This is obviously 
done in mathematics in general, as will be noted in the examples to follow.

	 34	 Peirce (CP 3.363) refers to the shading in Venn diagrams as a symbolic, or conventional ele-
ment. See Carter (2018) for further examples of iconic representations in mathematics.
	 35	 In a paper published in 1885 Peirce characterizes an index as follows: “the sign [index] signifies 
its object solely by virtue of being really connected with it. Of this nature are all natural signs and 
physical symptoms. I call such a sign an index. . . . The index asserts nothing; it only says ‘There!’ It 
takes hold of our eyes, as it were, and forcibly directs them to a particular object, and there it stops. 
Demonstrative and relative pronouns are nearly pure indices, because they denote things without 
describing them; so are the letters on a geometric diagram, and the subscript numbers which in al-
gebra distinguish one value from another without saying what those values are” (CP 3.361).
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Finally, the sign could represent by virtue of a law, or a habit, stating that the 
particular sign refers to a certain kind of object. These are symbols. Examples of 
symbols are words; in mathematics we use symbols like “+,” “π,” etc.

3.2.  Diagrammatic Reasoning

I now return to Peirce’s description of the process of reasoning in mathematics. 
Reasoning consists of three steps: “following the precepts,” (1) one constructs a 
diagram representing the conditions of a proposition and (2) one “experiments” 
on it until (3) one is able to read off the conclusion from the resulting diagram. 
This description seems to fit well (part of) the proof procedure in Euclid’s 
Elements. Take, for example, proposition I.32, where it is proved that the sum 
of angles in a triangle is equal to two right angles. In order to prove this, a tri-
angle ABC is drawn. In the next step, “experimenting on it,” one extends the base 
line, say AB, and, from the starting point of this extended line, B, one draws a 
line parallel to AC. Reasoning in this diagram, one comes to see that the con-
clusion holds. What is remarkable is that Peirce finds that the above character-
ization also holds for mathematics in general, where the notion of “diagram” 
extends according to the preceding usage: “for even in algebra, the great purpose 
which the symbolism subserves is to bring a skeleton representation of the re-
lations concerned in the problem before the mind’s eye in a schematic shape, 
which can be studied much as a geometric figure is studied” (CP 3.556). (See also 
NE IV, 158.) The example of diagrammatic reasoning given by Peirce in PAP is 
the proof of the above-​mentioned theorem that there is no largest multitude.36 
I present instead a (simpler) algebraic proof, proving that “if an integer divides 
two other integers, then this integer divides any linear combination of the two.”37 
Introducing indices, a b,  and p standing for the numbers and the symbol “|” to 
denote “divides,”38 the proposition can be expressed as

For p a,  and b being integers, if p a|  and p b|  then p sa tb| +  for any integers  
s and t.

	 36	 Peirce has a number of different formulations of this theorem in PAP, for example, “the single 
members of no collection or plural, are as many as are the collections it includes, each reckoned as an 
single object” (CP 4.532).
	 37	 Note that this example is not taken from Peirce. It is introduced by the author in order to explain 
“diagrammatic reasoning.”
	 38	 𝑛|𝑚 means that there exists a number 𝑘 such that 𝑘𝑛 = 𝑚. Using this notation it is for example the 
case that 2|8, −2|8, and 3|−39.
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In order to prove this theorem we follow the three steps given previously. First 
we have to “form a diagram according to a precept of the hypothesis.” That is, 
considering the antecedent of the proposition and translating the definition(s) 
used, we write down, in this particular case, the relations stated to hold between 
the numbers p a,  and p b,  respectively (cf. “calculating with a system of alge-
braic symbols”). The diagram thus obtained is that there exist numbers k and l  
such that

kp a= and  lp b= .

In the second step this diagram is experimented on; the signs are manipulated by 
using relevant (and valid) algebraic formulas:

If kp a=  and lp b=  then skp sa=  and  tlp tb= .

Combining (adding) the last two we see that

	 sa tb skp tlp sk tl p+ = + = +( ) .	

Noting that sk tl+  must be an integer since s, k, t, and l are all integers, one is able 
to observe that p divides the linear combination of a and b. It is thus possible to 
read off the conclusion of the proposition in the final line—​corresponding to the 
third step.

Combining the preceding and leaving out the explanatory text so that it is in 
fact a “visual array of characters” makes it easier to appreciate why Peirce insists 
on calling it a diagram. p a|  and p b|  is represented as

kp a=  and lp b.=
kp a=  and lp b=  implies that skp sa=  and tlp tb= .
sa tb skp tlp sk tl p+ = + = +( ) .

Observation of the last line tells us that p divides the linear combination, which 
is the conclusion.

A further, and most important, point is that by going through this diagram39 
one should be able to see that the conclusion follows by necessity from the 
stated condition. Relations referred to thus subsist on two different levels, as 
indicated by the following explanation: “a Diagram is an Icon of a set of ration-
ally related objects . . . the Diagram not only represents the related correlates, 

	 39	 In fact Peirce urges the reader to construct a diagram herself while following the instructions of 
the proof.
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but also, and much more definitely represents the relations between them” (NE 
IV, 316–​317, 1906, my emphasis). In the first stage of constructing the diagram 
relations referred to are relations that hold between numbers, the main relation 
used being the relation of “a number dividing another.” At the second level are 
what can be denoted logical relations. Recall that a major interest for Peirce 
when studying mathematics was to extract the principles of drawing necessary 
conclusions. The stated purpose of the “Prolegomena” is precisely to argue that 
all necessary reasoning is diagrammatic reasoning, assuming that mathemat-
ical reasoning is necessary reasoning. What is achieved by the process of dia-
grammatic reasoning is that one comes to see the necessary relation that holds 
between the hypothesis and the conclusion of the proposition, that is, what 
I here refer to as a logical relation. In support of this view, in a passage telling 
us how to do proofs in mathematics (again referring to this as an activity) by 
constructing a diagram, making alterations to it, and comparing these two 
diagrams, Peirce writes that finally “the book . . . will make it quite plain and 
evident to you that the relation always will hold exactly” (NE IV, 200). This last 
use of “relation” refers to the logical relation in question.40 Recall also the proof 
given in section 2.2 that addition is commutative. I remarked that the signs 
produced constituted a diagram. The purpose of that diagram was to allow us 
to see (or deduce) that if x n n x+ = +  then x n n x+ + = + +( ) ( )1 1  follows by 
necessity.

In the different versions of PAP, Peirce analyses which type of sign is involved 
in diagrammatic reasoning in order to address a number of issues, such as how 
the necessity of reasoning, and generality of the conclusions, are obtainable.41 In 
these papers Peirce mentions his extended theory of interpretants.42 According 
to Peirce the drawn diagram is a sort of hybrid sign. He stresses that a diagram is 
an icon, but of a special kind. A diagram shows that a consequence follows “and 
more marvellous yet, that it would follow under all varieties of circumstances 
accompanying the premisses” (NE IV, 318). Peirce explains that this is achieved 
since diagrams are schemas. Being drawn and so capable of being perceived, 
they are tokens. But they are at the same time representations of symbolic 
statements (actually the interpretant of a symbol) and so general: the diagrams 

	 40	 As further support of this claim, the paragraphs CP 4.227–​240 link Peirce’s characterization of 
mathematics as the science that draws necessary conclusions with a description of diagrammatic 
reasoning.
	 41	 See Stjernefelt (2007, chap. 4) for a more elaborate explanation of these issues.
	 42	 The extension made by Peirce includes different interpretants, in PAP named the immediate, 
dynamic, and final interpretant. The immediate interpretant is how it “is revealed in the right under-
standing”—​the meaning of the sign; the dynamic interpretant is the actual effect the sign has on some 
interpretant. The final interpretant is “the manner in which the Sign tends to represent itself to be 
related to its Object” (CP 4.536). Another addition is that all of these can partake in either firstness, 
“emotional,” secondness, “energetic,” or thirdness, “logical” or “thought” (CP 4.536).
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are representations of (symbolic) statements like “The sum of the angles of a tri-
angle is equal to two right angles” or “If a number divides two numbers, then it 
will divide any linear combination of those two numbers.” In Peirce’s words: “the 
Iconic Diagram and its Initial Symbolic Interpretant taken together constitute 
what we shall not too much wrench Kant’s term in calling it a Schema, which is 
on the one side an object capable of being observed while on the other side it is 
General” (NE IV, 318).

Referring to “experimenting on a diagram” brings us to Peirce’s distinction 
between corollarial and theorematic reasoning. In corollarial reasoning, the 
consequences of the hypotheses can be read off directly from the constructed di-
agram. Furthermore the proof only makes use of the definitions of the concepts 
presented in the proposition, whereas this is not the case for theorematic rea-
soning. Corollarial reasoning “consists merely in carefully taking account of the 
definitions of the terms occurring in the thesis to be proved. It is plain enough 
that this theorematic proof we have considered differs from a corollarial proof 
from a methodeutic point of view, in as much as it requires the invention of an 
idea not at all forced upon us by the terms of the thesis” (NE IV, 8). The theore-
matic proof referred to is a proof of his theorem that the cardinality of a collec-
tion is less than the cardinality of its power set. Another example of a theorematic 
proof is the proof of Euclid I.32, since additional lines have to be drawn.43 The 
deductions of the properties of numbers are corollarial proofs (as well as the ex-
ample mentioned in note 18).

I finally note that Peirce also worked with diagrams (closer to the ordinary 
meaning of diagram) in relation to logic. In several places Peirce notes the sche-
matic shape of the presentation of arguments (as in the syllogism of the transposed 
quantity). As early as 1885 Peirce refers to syllogisms as “diagrams,” stating that 
their purpose is to make it possible to observe the relations among the parts (CP 
3.363). The reason this has not been noticed before, Peirce assumes, is that the 
constructions of logic are so simple that they are overlooked: “Why do the logicians 
like to state a syllogism by writing the major premiss on one line and the minor 
below it, with letters substituted for the subject and predicates . . . he has such a 
diagram or a construction in his mind’s eye” (CP 3.560, 1898). Later, in Peirce’s so-​
called diagrammatic period in logic,44 the representations of logical propositions 
and inferences were diagrams, that is, figures composed of lines. See Figure 1 for an 
example of such a diagram (that is also an example of an existential graph).45

	 43	 Various interpretations have been proposed regarding the distinction between theorematic and 
corollarial reasoning; see Hintikka (1980) for a logical interpretation and Levy (1997) for a specific 
interpretation concerning the theorem that there is no largest multitude.
	 44	 See Dipert (2004).
	 45	 In this period Peirce studied the well-​known diagrams of Euler and Venn making it possible 
to visualize the validity of arguments and used these as inspiration for developing his own systems 
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In conclusion note the following. When writing down proofs in mathematics 
something like a diagram is formed. They are not exactly like the diagrams used 
in the Elements, but (relations between) concepts are represented in a sche-
matic form that allows us to do things to them so that new relations become 
visible. Furthermore when Peirce managed to formulate his systems of logic, 
as in Figure 1, the representations are composed of letters and lines. In PAP 
Peirce comments that if all steps of a proof were to be spelled out, they would 
be reproducible by his graphs (NE IV, 319). The conclusion is that reasoning in 
mathematics involves (representations of) relations and that in the existential 
graphs these are displayed using diagrams so mathematical reasoning (which is 
necessary reasoning) is diagrammatic reasoning.

4.  Structuralist Elements

In the introduction I proposed that Peirce could be interpreted as a methodo-
logical structuralist. Reck and Price (2000) characterize such a position by two 
principles. The first states that mathematicians “study the structural features of ” 

of logic, his existential graphs (see, e.g., CP 3.456–​498, CP 4.347–​371, and Bellucci and Pietarinen, 
n.d.). Besides Euler and Venn diagrams, other visual tools used in mathematics, chemistry, and their 
combination served as inspiration for these systems. In the mid-​19th century “diagrammatic” nota-
tion was being developed and used both in chemistry and in graph theory. It was even proposed by 
Sylvester (a colleague of Peirce at Johns Hopkins) and Clifford to combine work in chemistry and the 
algebra of graphs around 1877 (see Biggs et al. 1976). Peirce was aware of the developments in both 
areas as well as the proposed link.

Man

Animal

Figure 1  This diagram represents the statement “Any man would be an animal” or 
that nothing is both a man and not an animal. A box around p means “not p.” A line 
joining p and q means p is related to q, in the sense that “some p is q.”
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the entities assumed in their everyday practices, such as the various number sys-
tems, algebraic structures, various spaces, etc. Second, “it is (or should be) of 
no real concern in mathematics what the intrinsic nature of these entities is, be-
yond their structural features” (Reck and Price 2000, 45). Besides the emphasis 
on structure and structural features, this description resonates well with Peirce’s 
emphasis that a mathematician only cares about deriving the consequences of 
her hypotheses. I have furthermore shown that the hypotheses, or definitions, 
formed by Peirce often characterize objects (e.g., the number systems) as rela-
tional systems. But I have also stressed, in particularly referring to the numbers, 
that Peirce found that there are different ways to define them, that is, there are 
multiple ways to logically organize the theory of numbers.

I have noted that Peirce did not seem to be interested in the foundations 
of mathematics, being convinced of the rigorousness of the reasoning of 
mathematicians and placing mathematics at the top of his philosophical system. 
These three elements, i.e., an “anti-​foundationalist” view of mathematics,46 the 
methodological structuralism, and the (relativism of) logical structure can also 
be found in the contemporary categorical structuralist view of Steve Awodey 
(2004). One component of Awodey’s position is to “avoid the whole business of 
‘foundations’ ” (Awodey 2004, 55). Categorical structuralism rejects the idea of 
having a foundational system consisting of enough objects of some type, e.g.. 
sets, from which all mathematical objects may be built, and a collection of “laws, 
inference rules, and axioms to warrant all of the usual inferences and arguments 
made in mathematics about these things” (Awodey 2004, 56). In contrast 
structuralists advocate the “idea of specifying, for a given theorem or theory only 
the required or relevant degree of information or structure . . . for the purpose at 
hand, without assuming some ultimate knowledge, specification, or determina-
tion of the ‘objects’ involved. The laws, rules, and axioms involved in a particular 
piece of reasoning, or a field of mathematics, may vary from one to the next, or 
even from one mathematician or epoch to another” (Awodey 2004, 56). Awodey 
illustrates this top-​town, or schematic, approach by the following example. Say 
one wishes to prove that if x2 1= −  then x x5 = .. The result follows in a field and 
a consequence is that i5 1= − . A proof can also be found based on the axioms of 
a ring. Assuming even less, it can be proved in a semi-​ring with identity that 
x x x2 1+ + =  implies x x5 = . From a foundational (bottom up) point of view, 
one has to presuppose that the construction of the complex numbers as well as 
rings and semi-​rings have been made in order to state these propositions. From 
a structuralist perspective the propositions are schematic statements about any 
structure (ring or semi-​ring) fulfilling the appropriate conditions. There are also 
differences between Awodey’s categorical structuralism and Peirce’s position. 

	 46	 I borrow this term from Pietarinen (2010).
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To mention one, the basic entity of categorical structuralism is the morphism, 
whereas Peirce still refers to relations and their relata. Another is Peirce’s study of 
mathematics in order to extract, for logic, its method of drawing valid inferences. 
It thus appears that he believes in the objectivity and reality of such inference 
rules. He would presumably not, as does Awodey, accept the arbitrariness of 
inference rules.

5.  Conclusion

In this chapter I  have documented Peirce’s impressive knowledge of and 
contributions to the mathematics of his time. Examples of his contributions to 
geometry, set theory, and the foundations of arithmetic and his discussions on 
algebra have been given. These examples also served to illustrate a number of 
pre-​structuralist themes, such as Peirce’s distinction between pure and applied 
mathematics, e.g., his claim that applied geometry does not belong to mathe-
matics. In addition I mentioned his objection to the characterization of mathe-
matics as the science of quantity.

In a number of papers Peirce characterizes mathematics as the science that 
draws necessary conclusions from stated hypotheses. In the case of arithmetic 
we saw that he was able to deduce the properties of numbers from a system of 
axioms or, as he referred to them, “a few primary propositions.” A key element of 
Peirce’s position was to acknowledge the role of relations in mathematics both as 
used in the definition of mathematical objects (such as the numbers) and when 
formulating mathematical statements in general. We saw, e.g., that he defines the 
natural numbers as a relational system, and I noted that he formulates the prop-
erties of relations in his language of the logic of relatives. I have also presented 
Peirce’s notion of “diagrammatic reasoning,” that is, his explanation of how 
the necessity of reasoning is achieved by constructing, experimenting on, and 
observing diagrams. In this connection I proposed that these diagrams allow us 
to see the necessary relation, that is, a logical relation, holding between the ante-
cedent and conclusion of a proposition.

In the final section I  identified two structuralist positions that have some 
common elements with Peirce’s views as presented here. Peirce defined a system 
of quantity as a relational system, that is, as collections on which is defined a spe-
cific order relation. His motive was to show that the properties of numbers follow 
by necessity from this characterization. That is, in structural terms, one may 
say that they are structural properties. In this way Peirce may be construed as a 
methodological structuralist. Furthermore I find that his anti-​foundationalism, 
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the claim that there are multiple ways to organize a mathematical theory and his 
insistence that mathematics concerns hypotheses, led to a view that is similar in 
spirit to categorical structuralism.
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 Poincaré and the Prehistory 

of Mathematical Structuralism
Janet Folina

1.   Introduction and Historical Background

“Structuralism” denotes a family of views united by a common conception of the 
subject matter of mathematics. According to this approach, mathematics is not 
“about” mathematical objects, such as the number 2; nor is it even about specific 
mathematical systems, such as the Dedekind-​Peano natural numbers. Rather, 
mathematics is about something more abstract: mathematical structure.

As a fully-​fledged philosophy of mathematics, structuralism is young. Its birth 
is associated with Benacerraf ’s famous “What Numbers Could Not Be,” and its 
current form has been shaped by subsequent work by Hellman, Resnik, Shapiro, 
and others.1 Well before any of this recent philosophical work, however, a more 
general structuralist conception emerged from mathematical practice, that is, 
from mathematicians reflecting on their methodology and subject matter. We 
can call these earlier views “methodological” structuralism (Reck and Price 
2000). Some questions about methodological structuralism include the fol-
lowing. How far into past mathematics does it go? How does philosophical struc-
turalism arise from it? Is there really a sharp distinction between methodological 
and philosophical structuralism?

For this chapter I take for granted that one can distinguish methodological 
structuralism from further philosophical views about mathematical structures. 
The former is a simpler, working view about the general subject matter and 
methodology of mathematics, independent of any specific metaphysical and/​or 
epistemological views about structures. For example, it is a commonplace that 
the development of non-​Euclidean systems made geometry more abstract: the 
subject matter ascended to a more general perspective, to accommodate multiple 
geometric systems. Basic methodological structuralism solves any concern about 
this change by viewing geometry as the study of (possible) geometric structure 

	 1	 See Benacerraf (1965), Hellman (1989), Resnik (1997), and Shapiro (1997) for a start.
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rather than as the attempt to provide a (true) theory of space. Another example 
concerns the way symbolical algebra developed out of initiatives for teaching cal-
culus in Britain in the 19th century. Detaching the calculus symbols from any 
particular interpretation is a move toward abstraction that, again, fits well with a 
structuralist view of the subject matter. In both of these cases, however, neither 
the shifting subject matter nor its mathematical treatment depended on or de-
rived from philosophical structuralism, such as specific views about the meta-
physical nature of structures.

That said, it seems clear that methodological structuralism has been in the 
air for quite some time. Indeed, some of the success of key historical mathemat-
ical figures can be correlated with this new way of thinking about their subject 
matter. For example, Hankel writes in 1867 that mathematics is

purely intellectual, a pure theory of forms, which has for its object not the com-
bination of quantities or their images, the numbers, but things of thought to 
which there could correspond effective objects or relations, even though such a 
correspondence is not necessary. (Kline 1972, 1031)

Earlier, Gauss articulates a similar view:

One quantity in itself cannot be the object of a mathematical investigation; 
mathematics considers quantities only in their relation to one another. . . . Now, 
mathematics really teaches general truths concerning the relations of quanti-
ties. (Gauss 1829, paragraphs 2, 3)

And even earlier, in the mid-​18th century, both D’Alembert and Maclaurin ex-
press similar ideas in defending the calculus.2 Both emphasize the method of cal-
culus to justify its subject matter rather than vice versa (as, for example, Berkeley 
[1734] appears to have demanded). And the method highlights relations—​
supported by the clear conception of, and evidence for, those relations—​over 
the existence and nature of specific types of objects. The term “methodological” 
structuralism is thus apt.

One might object that emphasizing mathematical relations is not structur-
alism, since relations are too specific. For example, though the “greater than” 
relation between numbers is different from the “older than” relation between 

	 2	 For example, Maclaurin writes: “The mathematical sciences treat of the relations of quantities 
to each other, and of .  .  . every thing of this nature that is susceptible of a regular determination. 
We enquire into the relations of things, rather than their inward essences, in these sciences. . . . It is 
not necessary that the objects of the speculative parts should be actually described, or exist without 
the mind; but it is essential, that their relations should be clearly conceived, and evidently deduced” 
(1742, Ewald, 116; 51 in original).
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possible physical objects, such differences are beside the point for a structuralist. 
Structuralism abstracts not only from the referents of singular terms (objects) 
but also from the meanings of relational terms and properties. So an emphasis on 
mathematical relations does not add up to structuralism.

However, both emphasizing relations over objects, and focusing on method 
over content, reference, and meaning, are important steps toward a more robust 
structuralism. The idea that a theory can be grounded in what it does rather than 
what it is about is significant, for it naturally leads to the view that mathematics 
need not have any particular (object level) subject matter. Finally, some (also 
beyond Hankel)3 explicitly connect the relational nature of mathematics to the 
view that it is about “form” rather than content.4

I cannot argue for these general claims, nor am I attempting to answer a his-
torical question with any precision. Whether a cause or a response, methodo-
logical structuralism emerges from a close connection to mathematical practice; 
and it goes back at least to early defenses of the calculus. So it was clearly in the 
air before Poincaré.5

Like many others, Poincaré expresses this basic structuralist view:

Mathematicians study not objects, but relations between objects; the replace-
ment of these objects by others is therefore indifferent to them, provided the 
relations do not change. The matter is for them unimportant, the form alone 
interests them. ([1902] 1952, chap. 2, 44)

His point concerns the subject matter of mathematics—​that which 
mathematicians “study.” The emphasis on form as well as relations justifies classi-
fying him as at least a basic methodological structuralist.

As we’ll see, however, Poincaré professes further philosophical views about 
the nature of mathematical structures. These are clearest in his remarks about 
groups and the group concept. I will argue that his conception of mathematical 
intuition can be understood similarly. That is, Poincaré’s views about the na-
ture and knowledge of mathematical structure are philosophically significant, 
extending beyond methodological structuralism.

	 3	 Compare, e.g., the article on Grassmann by Paola Cantù in the present volume.
	 4	 For example, Gauss’s emphasis on relations between quantities might seem to cast him as a 
mere pre-​structuralist. But Gauss also writes in defense of complex numbers: “The mathematician 
abstracts totally from the nature of the objects and the content of their relations; he is concerned 
solely with the counting and comparison of the relations among themselves” (1831, paragraph 22). 
Gauss thus emphasizes abstraction generally—​from relations as well as objects. Mathematics is about 
neither individual objects nor particular relations; it makes comparisons between relations, yielding 
insights into relation-​forms. The view is thus genuinely structuralist. For more on Gauss, see the 
chapter by Ferreirós and Reck in the present volume.
	 5	 Others whose work seems in the structuralist spirit around this time include Serret (1819–​1885), 
De Morgan (1806–​1871), and Galois (1811–​1832).
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I will proceed as follows. In section 1, I focus on Poincaré after briefly sketching 
some basics on structuralism in the philosophical literature. I aim to show that 
Poincaré endorses structuralist ideas, arguing further that in some ways his view 
best aligns with a “strong” version of structuralism, the “structure first” view. In 
section 2 I address the question of how extensive this strong view is and whether 
it is consistent with some of Poincaré’s other philosophical commitments. Thus, 
before concluding, I consider his semi-​Kantian views about mathematical intu-
ition, his structural realist views in natural science, and whether they can all be 
consistently combined with the strong, “structure first” view about some aspects 
of mathematics.

2.  Structuralism: A Basic Taxonomy and  
Poincaré’s Place in It

2.1.  Some Basic Types

Structuralism is the view that mathematics is about abstract structures rather 
than specific mathematical objects or even specific systems of objects. For ex-
ample, consider the natural number 3 as defined by Zermelo. Contrast this with 
the set of Zermelo natural numbers, and also with the natural number struc-
ture. The latter can be thought of as the form of all systems of natural numbers, 
regardless of how the particular systems and objects are defined or construed. 
The natural number structure is what the Zermelo numbers, the von Neumann 
numbers, and the Frege numbers have in common. Structuralism is the view that 
mathematics is about this sort of thing.

As noted, this view about the subject matter of mathematics does not en-
tail any specific metaphysical views about the nature of that subject matter, nor 
about how we know mathematical structures. Thus, the basic structuralism/​
nonstructuralism distinction is different from realism/​anti-​realism disputes 
about the (independent) existence of mathematical objects. A structuralist may 
or may not think mathematical objects exist independently of mathematicians; 
she also may or may not think structures so exist. One can also be a realist, or 
Platonist, about structures, believing that they exist independent of the minds/​
constructions of human mathematicians. Alternatively one can be a Platonist 
about mathematical objects and systems, but not abstract structures. One can 
of course also be anti-​realist about all abstract objects. So basic structuralism is 
simply a view about the subject matter of mathematics, remaining neutral about 
the nature of structures.6

	 6	 Independent or dependent, and if the latter, dependent on what.
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Philosophical structuralism, on the other hand, aims to articulate and de-
fend some of these further properties. It is important to note, however, that the 
differences between structuralist philosophies are generally not explained in 
terms of the familiar issue of the dependence or independence of mathemat-
ical objects/​reality on mathematicians (and their constructions, proofs, etc.). 
Instead, these further views are typically characterized in terms of the relation-
ship between mathematical structures on the one hand and the mathematical 
objects/​systems that instantiate them on the other. That is, people don’t play any 
immediate role in a typical basic structuralist taxonomy.

For example, Shapiro explains three main structuralist views as follows:

Any of the usual array of philosophical views on universals can be adapted to 
structures. One can be a Platonic ante rem realist, holding that each structure 
exists and has its properties independent of any systems that have that struc-
ture. On this view, structures exist objectively, and are ontologically prior to 
any systems that have them (or at least ontologically independent of such sys-
tems). Or one can be an Aristotelian in re realist, holding that structures exist, 
but insisting that they are ontologically posterior to the systems that instantiate 
them. Destroy all the natural number systems and, alas, you have destroyed the 
natural number structure itself. A third option is to deny that structures exist at 
all. Talk of structures is just a convenient shorthand for talk of systems that have 
a certain similarity. (Shapiro, n.d., Part 1)

Like ordinary Platonism, Platonic ante rem structuralism espouses a kind of re-
alism about structures in that the structures are independent of both objects and 
systems of objects for their existence. So ante rem structuralism, one might say, 
simply adds another kind of universal to the old Platonic universe: mathematical 
structure.

A common analogy to explain this view involves the distinction between 
places or offices and the objects that can occupy those places. For example, refer-
ence to the US president might be to a particular person, as in “The president is 
tired.” But it may also refer to the position independent of who occupies it, as in 
“The president heads the executive branch of the government.”

With this distinction in mind, ante rem structuralists generally view mathe-
matical assertions as more like the latter than the former—​as assertions about 
offices rather than occupants of those offices. Furthermore, the truth-​value of 
such assertions is held to be indifferent to whether or not the places in the struc-
ture have occupants. So, for example, arithmetic studies the natural number 
structure, which exists independently of any individual natural numbers as well 
as any particular systems (definitions) of the numbers. For the Platonic ante rem 
structuralist, abstract structures are what concern mathematicians.
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Although Shapiro considers in re structuralism another (though weaker) 
form of realism about structures, it also bears some similarity to ordinary con-
structivism in the philosophy of mathematics. Constructivists think math-
ematical objects exist, but only dependently—​on the constructions carried 
out by mathematicians. Similarly, on the in re view, structures exist, but only 
dependently—​on the existence of systems of mathematical objects instantiating 
those structures. (So systems rather than human constructions.) Whereas the 
ante rem view asserts the ontological priority and independence of structures 
from objects and systems, the in re view asserts the ontological posteriority of 
structures and their dependence on mathematical objects/​systems. For example, 
the in re view is that “2 + 3 = 5” is a truth about the natural number structure be-
cause it is true of any occupants of the “offices” 2, 3, and 5.

The third main option, eliminativism (e.g., fictionalism and modal structur-
alism), is a form of anti-​realism, or nominalism, about structures. On this view, 
structures don’t actually exist. Whether or not mathematical objects or systems 
exist independently of mathematicians, talk of mathematical structure is simply 
a convenient way to speak.

The point for us is that these possible views about structure are differen-
tiated with respect to underlying mathematical objects/​systems, rather than 
mathematicians and their activities. Issues of dependence or independence 
thus do not correspond to the ordinary Platonism-​constructivism debates in 
the philosophy of mathematics. Even the eliminativist option is expressed as an 
anti-​realism or constructivism about structure only; it appears that one could 
be fictionalist about structure and realist about particular mathematical sys-
tems or objects. With this in mind I will argue that in this taxonomy, Poincaré’s 
views about mathematical structure most closely match Shapiro’s ante rem cat-
egory. With the ante rem structuralist, Poincaré advocates the priority and in-
dependence of some structures to their systems—​despite the fact that he is a 
constructivist, not a Platonist, about mathematics. This “structure first” view 
is why I consider him as holding a position one might call “constructivist ante 
rem structuralism.” (I will return to the apparent incongruity of this position, in 
section 2.)7

	 7	 Because of this interpretation, my argument will involve pointing out that the taxonomy 
referenced here is incomplete. (This is not a criticism; Shapiro did not claim to provide a complete 
taxonomy.) As noted, since the issues of priority and independence are articulated relative to other 
mathematical objects, they don’t engage in the ordinary discourse regarding realism versus construc-
tivism. In particular, the priority of structures over systems seems detachable from metaphysical re-
alism; that is, one need not be a Platonist to endorse the ante rem relationship between structures and 
systems.
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2.2.  Poincaré as a Structuralist

An important mathematician during a significant time (1854–​1912), Poincaré 
reflected on the increasing abstraction of mathematics and its impact on both the 
subject matter and our knowledge of it. Structure is a central concept guiding his 
understanding of these changes. The two main purposes of this section are (i) to 
clarify the nature of his structuralist views, and (ii) to show that they were not 
casual, or tangential to the rest of his philosophy. His views about structure are 
entwined with several themes in his philosophy of mathematics. We will begin 
with some general structuralist sympathies, which emerge from his reflections 
on mathematical understanding. We will then work toward more specific, and 
stronger, philosophical views about the nature of mathematical structures, 
which appear in his thoughts about geometry and group theory. Like Shapiro, 
Poincaré contrasts two main philosophical views about the group structure in 
terms of whether or not it should be considered as prior to, and independent 
of, its relevant mathematical systems. Also with Shapiro, and somewhat surpris-
ingly, Poincaré explicitly endorses the priority view about the group structure.

2.2.1. � Remarks on Mathematical Understanding
Poincaré famously comments on mathematical understanding and insight, refer-
ring to phenomena such as “seeing the whole” and the view “from afar.” Some of 
these are vague, negative remarks against the role of logic in mathematics (some-
times against logicism more specifically), while others seem more positive, as 
genuine attempts to articulate the nature of mathematical understanding. That 
logical reasoning alone does not constitute understanding seems obvious. The 
hard task is to say what more is needed.

Starting with the negative, Poincaré complains that “the logician cuts up, so to 
speak, each demonstration into a very great number of elementary operations.” 
But as we all know, following individual inference steps does not amount to un-
derstanding even a straightforward proof: “we shall not yet possess the entire re-
ality; that I know not what, which makes the unity of the demonstration” (1900, 
V, 1017). His point is that understanding a proof is something over and above 
understanding the individual inferences. Obviously, making individual proof-​
inferences will not suffice for creating new mathematics; here Poincaré asserts 
that the same holds even for understanding an existing proof.8

	 8	 This view may call to mind Wittgenstein’s remarks about proofs needing to be surveyable (see 
Wittgenstein 1989). However, Poincaré does not propose surveyability as a requirement for proofs; 
he connects it only to understanding proofs. (Of course, interpreting Wittgenstein on this and similar 
issues is not simple.)
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He provides a famous analogy to make this point about the holistic nature of 
mathematical understanding: “A naturalist who never had studied the elephant 
except in the microscope, would he think he knew the animal adequately?” 
([1908] 1982, Book 2, chap. 2, sec. 6, 436). In addition to making a part-​whole 
contrast, Poincaré is alluding to a “big picture” or the “forest for the trees” idea. 
Analyzing elephant cells does not provide understanding of the animal as a 
whole, an understanding that can be gained only by observing the living an-
imal. Similarly, it is not that Poincaré saw no value in attending to local logical 
inferences; rather, his point is that this type of focus does not suffice for—​or con-
stitute the whole of—​understanding a proof, or a mathematical fact. “This view 
of the aggregate is necessary for the inventor; it is equally necessary for who-
ever wishes really to comprehend the inventor. Can logic give it to us? No” (1900, 
V, 1018).

What can give a view of the whole, if not logic? That is much harder to articu-
late. In these and similar passages Poincaré sets up a contrast between rigor and 
understanding in mathematics. “Rigor” here means focusing on the “parts”—​the 
formal, symbolic definitions, explicit deductive inferences, etc. “Understanding,” 
in contrast, is presented as something that involves the “whole,” something that 
transcends rigor concerning the parts. This includes grasping the unity of a proof 
(1900, V), the historical origins of precise definitions (1900, IV; [1908] 1982, 
Book 2, chap. 2), the point of a mathematical question (1900, IV), and the ability 
to invent (1900, V). The claim is that to understand and create new mathematics, 
one needs this perspective of the whole.

At times Poincaré mentions intuition in this context. “We need a faculty which 
makes us see the end from afar, and intuition is this faculty” (1900, V, 1018). The 
appeal to intuition here may seem psychologistic, and certainly it is distinct from 
his semi-​Kantian appeal to mathematical intuition (which will be addressed 
later). Though Poincaré’s remarks are vague, both the metaphors and the refer-
ence to intuition point to the idea of transcending individual results and local 
logical inferences. How is this related to structuralism?

Consider, for example, the metaphor of “seeing from afar”; plausibly this 
includes the ability to connect distinct results and even different areas of mathe-
matics. To do so requires a more abstract, higher-​level, perspective—​a perspec-
tive that seems generally structural. At the very least, structure is something that 
different areas of mathematics can have in common. For example, as we will later 
see, Poincaré cites the group structure as what is common to various mathemat-
ical systems. And in a chapter on the relation between mathematics and physics 
he writes rather poetically:

What has taught us to know the true, profound analogies, those that the eyes do 
not see but reason divines?
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It is the mathematical spirit, which disdains matter to cling to pure form. This 
it is which has taught us to give the same name to things differing only in ma-
terial, to call by the same name, for instance, the multiplication of quaternions 
and that of whole numbers. . . . He sees best who stands highest. ([1905] 1958, 
chap. 5, II, 77–​78)

The view from afar, or above, is where one can “see” structural, relational similar-
ities between systems “differing only in material.”9

Structure also underpins the perception of beauty according to Poincaré, 
which, in turn, supports understanding. When we perceive the beauty of a piece 
of mathematics, he thinks, we understand it better, and vice versa. Further, he 
argues that mathematical beauty involves the more primitive properties of order 
and unity. Good ideas, the impression of elegance, the use of analogy, and the im-
portance of generality all depend on perceptions of order and unity, in his view. 
Successful creative work, he argues, is guided (consciously or unconsciously) by 
“the feeling of mathematical beauty, of the harmony of numbers and forms, of 
geometric elegance” ([1908] 1982, Book 1, chap. 3, 391). For him, these “feelings” 
are all grounded in unity and order, which is both aesthetically pleasing and 
useful in “guiding” the mind to fruitful results. This view—​that perceptions of 
order and unity facilitate understanding—​fits well with basic structuralism, 
since structure is an organizing tool. Poincaré’s conception of mathematical 
understanding is thus harmonious with the view that mathematics is (at least 
largely) about abstract structure.10

2.2.2. � The Subject Matter of Mathematics
In addition to the epistemic view that the perception of structure facilitates 
mathematical understanding, Poincaré also expresses structuralist views about 
the subject matter of mathematics. In fact these claims seem parallel. Just as the 
general “overview” perspective is essential for mathematical understanding, so 
a “bigger picture” perspective is critical for the subject matter, since the signif-
icant results are general and have broad scope. In addition, as we saw earlier, 
Poincaré makes the standard structuralist point that mathematics is “about” re-
lations rather than objects. His emphasis on both general truths over particular 
truths, and relations over particular objects, reflects a structuralist vision of the 
subject matter and methodology of mathematics.

	 9	 One may perceive here an early expression of something like the category-​theoretic perspective. 
For more on the path toward category theory, see the chapters on Noether (by Audrey Yap), Bourbaki 
(by Gerhard Heinzmann and Jean Petitot), and Mac Lane (by Colin McLarty) in this volume.
	 10	 I attempt to more fully address this connection between mathematical structure and under-
standing in Folina 2018.
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Regarding the importance of generality, he remarks: “So a chess player, for 
example, does not create a science in winning a game. There is no science apart 
from the general” (1894, II, 975). Further, he aligns generality in mathematics 
with infinity, claiming that without the idea of mathematical infinity “there 
would be no [mathematical] science, because there would be nothing general” 
(1894, V, 979).

About relations, he famously says of Dedekind cuts:11

Mathematicians study not objects, but relations between objects; the replace-
ment of these objects by others is therefore indifferent to them, provided the 
relations do not change. The matter is for them unimportant, the form alone 
interests them.

Without recalling this, it would scarcely be comprehensible that Dedekind 
should designate by the name incommensurable number a mere symbol, that 
is to say, something very different from the ordinary idea of quantity, which 
should be measurable and almost tangible. ([1902] 1952, chap. 2, 44–​45)

The first paragraph seems a canonical statement of methodological structur-
alism. However, what about the negative tone of the second paragraph?

The context is relevant. In this section of the chapter Poincaré not only 
explicates, he also criticizes, work he considers reductionistic.12 For example, he 
is unhappy about attempts to define the continuum “without using any mate-
rial other than the whole number” (44). He objects as follows after explaining 
Dedekind cuts.

But to be content with this would be to forget too far the origin of these symbols; 
it remains to explain how we have been led to attribute to them a sort of con-
crete existence, and, besides, does not the difficulty begin even for the fractional 
numbers themselves? Should we have the notion of these numbers if we had not 
previously known a matter that we conceive as infinitely divisible, that is to say, 
a continuum? (45–​46)

Poincaré is thus not just citing Dedekind cuts as an example of the fact that math-
ematics is about abstract structure; he is criticizing Dedekind cuts as a theory 
of the real numbers. He seems to regard it as too abstract and too formal, or 

	 11	 For Dedekind, including a further discussion of this remark by Poincaré about his use of cuts, 
see again the chapter by Ferreirós and Reck in this volume.
	 12	 He cites the “Berlin school” here, and “Kronecker in particular,” for these sins, but then goes on 
to discuss Dedekind in some detail (who is usually not considered as having belonged to the Berlin 
school). His point seems to have been against reductionist programs generally without differenti-
ating between the various motives and origins of specific projects.
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symbolic.13 At least, it is insufficient if a theory should provide understanding. 
Since structuralism is associated with the increasing abstraction and formal-
ization of the content of mathematics, this critique of Dedekind (and similar 
projects) may appear to weaken the structuralist interpretation of Poincaré. Let 
me flesh out this concern before attempting to assuage it.

In contrast with a formal/​symbolic theory of the real numbers, as one might 
regard Dedekind cuts, Poincaré insists that understanding the mathematical con-
tinuum comes from our relating it to experience. He makes the following familiar 
argument: we experience a physical continuum, but this leads to contradictions 
owing to our limited senses. That is, we can experience three lengths or weights 
as A = B and B = C. But we can also tell that A is longer or heavier than C; so A > 
C; but now this is inconsistent. We solve this by citing the limited nature of our 
sense perceptions; so we suppose that even though A seemed the same weight 
as B and B seemed the same weight as C, at least one of these measurements 
was not quite right. That is, we conceive the things measured in terms of quanti-
ties that are further divisible—​beyond our capacities to sensibly distinguish such 
differences. In addition, once we interpolate between two given quantities, “we 
feel that this operation can be continued beyond all limit” ([1902] 1952, chap. 2, 
48). We thus suppose the operations are indefinitely iterable, which leads to 
the conception of everywhere dense sets like the rationals. Irrationals are then 
postulated owing to theoretical gaps in the rationals. Poincaré states the point 
thus: “the mind has the faculty of creating symbols. . . . Its power is limited only 
by the necessity of avoiding all contradiction; but the mind only makes use of this 
faculty if experience furnishes it a stimulus thereto” (49). Returning to our issue, 
the problem with Dedekind cuts is that the theory can be presented completely 
in its abstract, formal guise; and this would make the real number system seem 
independent of both geometry and experience. But analysis emerges from the 
union of geometry with the needs of physics and arithmetic, which the subject 
matter should reflect.14

In fact, Poincaré was generally suspicious of mathematics that is detached 
from history and experience, and when applied to this case, this may seem con-
trary to structuralism or the structuralist enterprise.15 For example, regarding 
nowhere differentiable continuous functions he says: “Instead of seeking to rec-
oncile analysis with intuition, we have been content to sacrifice one of the two, 
and as analysis must remain impeccable, we have decided against intuition” 

	 13	 Poincaré was anti-​logicist, but his concern here seems more general. He is questioning our 
ability to understand formal, symbolic definitions without supplementary information, whether or 
not they are part of a logicist program.
	 14	 His critique implies that he thought the connections to experience must go beyond merely 
motivating or teaching the theory.
	 15	 Of course in another sense, attention to the “larger” view is an expression of structuralism—​as 
just argued.
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([1902] 1952, chap. 2, 52). The remark is clearly a complaint or a regret; it is not 
merely a report of mathematical progress by increasing formalization. I think it is 
fair to say that Poincaré was a bit ambivalent about some of the changes in math-
ematics associated with the development of the structuralist viewpoint.

We can now return to our concern, which is that Poincaré’s canonical state-
ment of methodological structuralism is accompanied by critical remarks about 
the central example of Dedekind cuts.16,17 More evidence and more particulars 
regarding the nature of his structuralist commitments will clarify and improve 
our case that Poincaré genuinely embraced structuralism. Geometry provides 
this support.

2.2.3. � Geometric Conventionalism
Poincaré’s conception of the subject matter of geometry provides some key, 
added evidence of his structuralism. Now, Shapiro connects both axiomatics 
and the idea of implicit definition with structuralism, singling out Hilbert’s 1899 
Grundlagen der Geometrie as “the culmination of a trend toward structuralism 
within mathematics” (sec. 1).18 Why is the axiomatic method associated with 
structuralism? Because along with the idea of implicit definition, the axiomatic 
method lifts the subject matter of mathematics up to a higher, more abstract, 
level. For example, rather than thinking of geometry as having a single, object-​
level subject matter, which the axioms are about, the “axiomatic view” is that ax-
ioms are about whatever systems fulfill the criteria they jointly stipulate. So the 
axiomatic method changes our perspective from single subject matter to a multi-
plicity, or set, of possible interpretations. Indeed, the ascendance, or abstraction, 
of subject matter was important for 19th-​century developments in both geom-
etry and algebra.19

Poincaré clearly conceives the subject matter of geometry similarly to 
Hilbert—​in this “elevated” way. He is famous for claiming that geometric axioms 
are implicit definitions, or conventions:

	 16	 To elaborate a bit on Poincaré’s mixed feelings in these passages: he recognized that the more 
formal, abstract “structuralist” perspective enables advances in mathematics, so it is crucial. But 
he also recognized that abstraction makes even ordinary mathematics harder to understand. Thus, 
more formal, symbolic methods are desired at times; but these must be supplemented to facilitate 
“understanding.”
	 17	 One might respond here by pointing out that these criticisms of Dedekind are strictly epistemic; 
they do not undermine the general structuralist view regarding the subject matter of mathematics. 
Nevertheless, more evidence will solidify my interpretation. Additionally, the epistemology of math-
ematics should cohere with its subject matter.
	 18	 I assume that “structuralism within mathematics” is (essentially) what I (after Erich Reck and 
others) have been calling “methodological structuralism.”
	 19	 This is of course historically complex and interesting, though I cannot here address it further.
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The axioms of geometry, therefore, are neither synthetic a priori judgments nor 
experimental facts.

They are conventions; our choice among all possible conventions is guided 
by experimental facts; but it remains free and is limited only by the necessity of 
avoiding all contradiction. . . .

In other words, the axioms of geometry (I do not speak of those of arith-
metic) are merely disguised definitions.

Then what are we to think of that question: Is the Euclidean geometry true?
It has no meaning.
As well ask whether the metric system is true and the old measures false. 

([1902] 1952, chap. 3, 65)

That geometry is based more on choice than truth expresses the fact that like 
Hilbert, Poincaré viewed geometric axioms as “disguised” or implicit definitions. 
The comparison to measurement systems—​for which the main criteria for ac-
ceptability are consistency and convenience rather than truth—​shows that 
Poincaré sees geometry as at least partly detached from a truth-​determining sub-
ject matter.

It may be worth elaborating a bit on the differences between geometry and 
arithmetic, as Poincaré saw it. To him, arithmetic has an intuitively grounded 
subject matter. In contrast, intuition does not anchor geometry in a similar way.20 
We have no direct intuition of points:  “What is a point of space? Everybody 
thinks he knows, but that is an illusion” ([1902] 1952, chap. 5, 89–​90). Nor does 
intuition decide what is straight: “I grant, indeed, that I have the intuitive idea of 
the side of the Euclidean triangle, but I have equally the intuitive idea of the side 
of the non-​Euclidean triangle. Why should I have the right to apply the name of 
straight to the first of these ideas and not to the second?” ([1905] 1958, chap. 3, I, 
37–​38). This is why conventional choices, or implicit definitions, are necessary. 
We decide which axiom system is most convenient, and this decision determines 
what lines will be considered straight when using that system; that is, the axiom 
system is the implicit definition of “straight line.” In this way, geometry is no 
longer seen as reflecting a single definite subject matter (though it was once so 
regarded).

What we might call “mathematical geometry” thus occupies a more abstract, 
structural, position than ordinary Euclidean geometry. In contrast, ordinary 
geometry—​working within a particular geometric system—​is in a sense closer 

	 20	 This is not to say intuition does not anchor geometry at all. Indeed geometry is supported both 
by the intuitive continuum and by the intuition of indefinite iteration. (He even refers to “geometric 
intuition” in later work (e.g., [1913] 1963, 26–​27and 42–​44). The difference is that, unlike arithmetic, 
intuition does not yield any particular geometric system as true.
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to applied mathematics, since it lies at a lower level of abstraction. In any case, 
like Hilbert, Poincaré’s conception of geometric axioms as implicit definitions 
provides further evidence of his structuralist perspective, at least regarding 
geometry.

Before moving on, I’ll note that in addition to his view of axioms as im-
plicit definitions, Poincaré also calls certain key concepts “implicit axioms.” 
Here he draws attention to the existence of concepts or principles that unite 
different systems. While changing an axiom creates a different axiom system, 
Poincaré’s point is that despite the differences, there are often important 
connections, or relations, between the systems ([1902] 1952, chap. 3, 60–​62). 
For example, rigid body motion is presupposed by several geometric systems; 
but its possibility is neither self-​evident nor analytically true. So Poincaré 
considers rigid body motion to be an “implicit axiom,” in that it acts as a uni-
fying principle for the geometries of constant curvature. As we shall see, the 
group concept plays a similar role. My point is that it is not only the differences 
between systems—​e.g., the proliferation of geometries—​that can be linked 
to the structuralist perspective. Emphasizing the links between the different 
systems—​the unifying concepts and principles—​also expresses structuralism. 
Indeed, in my view, Poincaré’s emphasis on unifying concepts provides an 
even stronger connection to structuralism than his view of axiom systems as 
implicit definitions. Let us now turn to a key example—​that of the unifying 
concept of group.

2.2.4. � The Group Concept
In addition to conceiving the geometric axioms as implicit definitions, Poincaré 
further emphasizes geometric form, and the group concept is central here. An 
interesting twist is that the group concept is a priori for Poincaré—​not as an in-
tuition, or form of sensibility, but as a “form of our understanding” ([1902] 1952, 
chap. 4, 79). It underpins our ability to conceive geometry from the more ab-
stract perspective, which, in turn, helps us make sense of multiple possible geo-
metric systems.

What we call geometry is nothing but the study of formal properties of a cer-
tain continuous group; so that we may say, space is a group. The notion of this 
continuous group exists in our mind prior to all experience; but the assertion 
is no less true of the notion of many other continuous groups; for example, 
that which corresponds to the geometry of Lobatchevski. (1898, Conclusions, 
1010)

A variety of continuous groups are a priori possible, and are studied in mathe-
matics. The choice for a theory of physical space (Euclidean or non-​Euclidean, 
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3-​dimensional or 4-​dimensional) is conventional, depending on experience, sci-
ence, and other factors.21 Because the mathematics behind geometry is common 
to a variety of options, it—​mathematical geometry—​lies at a more abstract level 
than work within particular geometric systems. The group concept, and the idea 
that the various geometries are simply different continuous groups, facilitates the 
“ascendance” to this more abstract mathematical perspective. So Poincaré’s ap-
peal to the group concept, and its role in articulating the abstract perspective 
of mathematical geometry, provides even more evidence of his methodological 
structuralism.

Crucially, however, Poincaré’s view about groups goes further. It not only 
furnishes a clear statement of basic structuralism; it also includes properly philo-
sophical views about the metaphysical nature of groups as well as our knowledge 
of them. Thus, his view here clearly advances beyond methodological struc-
turalism to a more philosophical position about (at least some) mathematical 
structure.

One addition is an epistemological claim, noted previously. The apriority of 
the group concept, and the view that this a priori status provides mathematics 
with a unifying ideal, transcends basic methodological structuralism (which 
mainly concerns the general subject matter of mathematics). For Poincaré, the 
group concept provides a perspective from which to consider, compare, and 
unify the different geometries (as well as other structures). His views about 
the group concept thus address the epistemology of geometry, in its new, more 
abstract, guise.

But he also makes an ontological claim. That is, in addition to the apriority, 
and unifying role, of the group concept, Poincaré adds that the group structure 
is prior to the systems falling under it. The following remark, in particular, shows 
him asserting a view similar to Shapiro’s “ante rem” structuralist (in the “struc-
ture first” sense):

We must distinguish in a group the form and the matter. For Helmholtz and 
Lie the matter of the group existed previously to the form. . . . The number of 
dimensions is therefore prior to the group. For me, on the contrary, the form 
exists before the matter. The different ways in which a cube can be superposed 
upon itself, and the different ways in which the roots of a certain equation may 
be interchanged, constitute two isomorphic groups. They differ in matter only. 
The mathematician should regard this difference as superficial, and he should 
no more distinguish between these two groups than he should between a cube 

	 21	 There is a large literature on this; for example see the anthology de Paz and DiSalle (2014).
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of glass and a cube of metal. In this view the group exists prior to the number of 
dimensions. (1898, Form and Matter, 1009–​1010)

That the important mathematical properties of geometry concern form rather 
than matter is simply methodological structuralism. But that the “form exists 
before the matter” is a much stronger view, one that coincides with the “structure 
first” view of ante rem structuralism. For form to exist before matter—​for it to be 
prior—​ it must also be independent of matter or specific systems.

For Poincaré, the group structure, or form, is relatively independent—​
independent of the mathematical objects or systems exemplifying it. Now, 
Poincaré was not a realist about mathematical existence, so his view is not that 
of (Shapiro’s) Platonic ante rem structuralism. Yet his view perfectly matches the 
independence and priority aspects of the ante rem view. Because the group con-
cept is a priori, the group structure is epistemically prior to any particular group. 
And because, as he asserts, the form of a group exists prior to any specific group, 
the group structure is prior in (some sense of) existence as well. Detached from 
Platonism, the category of ante rem structuralism simply indicates the relative 
independence and priority of structures to their systems and objects. As we just 
saw, this is precisely what Poincaré asserts about the group structure.22

3.  Structuralism and Other Issues in Poincaré’s Philosophy

Supposing that Poincaré’s view of groups matches that of ante rem structuralism, 
how does this fit with his other philosophical commitments? Are there any other 
structures that come “first,” or are groups unique on this matter? Was Poincaré 
consistently anti-​realist in his philosophy? If so, how does his mathematical con-
structivism, or anti-​realism, combine with this view about groups; that is, can 
one be a constructivist and still think that any mathematical structures are prior 
to and independent of their instances?

I will now take up these last three questions, each in its own section. Starting 
with the nature and extent of Poincaré’s constructivism, I will present his semi-​
Kantian conception of mathematical intuition as structuralist. That is, I’ll argue 
that intuition for Poincaré regards mathematical structures, and moreover, that 
the intuitive structures come “first” in a way similar to that of the group struc-
ture. Intuition on my reading thus adds to the stock of abstract structures that 
come “first.” The second question is whether or not Poincaré is consistently anti-​
realist. Here I note that his philosophy of natural science is generally considered 

	 22	 Again, I will come back to this issue subsequently.
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a form of structural realism. I argue, however, that his views about mathematical 
structures and those about natural structures are independent of one another. 
So his realism about some scientific structures is consistent with his general 
constructivist, or anti-​realist, position on mathematical existence.23 Last, I ad-
dress the apparent tension between his anti-​realism about mathematics, on the 
one hand, and the view that mathematical structures can come “first,” on the 
other; that is, I try to make sense of how one can be a “constructivist ante rem 
structuralist.”

3.1.  Intuition and Structuralism

It may be easy to understand how group theory fits with structuralism, but in-
tuition may seem more puzzling. As for Kant, Poincaré sees intuition as neces-
sary for both the subject matter of mathematics and our knowledge of it. Yet, as 
argued earlier, he also endorses a structuralist view of the subject matter of math-
ematics. If intuition governs the content and our knowledge of mathematics, 
and mathematics is about structure, then intuition must provide insight into 
structure. Intuition for Poincaré delivers an epistemology of mathematics that 
complements the new structuralist conception of its subject matter.

Poincaré is clearly a “constructivist” given his repeated claims to support a 
semi-​Kantian conception of mathematics, including mathematical intuition. But 
his view is distinctive. For Kant, intuition in mathematics is spatiotemporality, 
the a priori form of all experience; there is, for Kant, no specifically mathematical 
intuition. Furthermore, the role of intuition in mathematics is quite complicated, 
having to do with the necessity of input from space and time to instantiate the 
mathematical concepts via a process he calls “construction of concepts.”

Like Kant, Poincaré defends two a priori intuitions in relation to mathematics; 
but instead of space and time, he cites the intuition of the continuum and the 
intuition of indefinite iteration. These are more abstract and closer to mathe-
matical intuitions. In some ways they are like “stripped down” versions of space 
and time:  spatiotemporality minus most of the sensorial aspects we associate 
with it. To put it another way, intuition for Poincaré is more cognitive and less 
connected to ordinary sense experience than space and time are for Kant. Also 
in contrast with Kant, there is no explicit reliance on “construction of concepts” 
in Poincaré.24

	 23	 More than consistent, I actually find the two views mutually supporting despite the appearance 
of a contrast between them.
	 24	 For Kant constructing concepts is distinctive of mathematical methodology, and means some-
thing quite specific having to do with considering/​exhibiting arbitrary instances of mathematical 
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3.1.1. � Arithmetic and Intuition
In arguments against programs like logicism, Poincaré emphasizes both the 
centrality of the principle of induction and its basis in intuition. As mentioned, 
unlike Kant, Poincaré appeals to indefinite iteration rather than time. But as in 
Kant, intuition’s role in grounding mathematical knowledge makes that know-
ledge synthetic a priori. So the dependence of induction on intuition makes our 
knowledge of induction, as well as any knowledge it yields, synthetic a priori for 
Poincaré.

This is clear in his early writings on the nature of mathematical reasoning, 
where he argues that the power of mathematical reasoning—​its ability to tran-
scend the merely tautological—​springs from the principle of induction. And 
since induction is grounded in intuition, it’s really intuition that gives mathemat-
ical reasoning this power.

Why then does this judgement force itself upon us with an irresistible evidence? 
It is because it is only the affirmation of the power of the mind which knows 
itself capable of conceiving the indefinite repetition of the same act when once 
this act is possible. The mind has a direct intuition of this power, and experience 
can only give occasion for using it and thereby becoming conscious of it. (1894, 
VI, 979–​980)

The intuition of indefinite iteration is a mental capacity that allows us to con-
ceive of certain sets, or certain sequences, by conceiving of the way they can be 
produced by us: iteratively, step by step. Poincaré’s skepticism about transfinite 
cardinals, as well as any philosophy that accepts actual infinity, is related to this 
idea that sets must be conceived (if not strictly constructed) by envisioning our 
producing, or “running through,” their elements in a stepwise fashion.

Though essential for conceiving discrete infinite sets, Poincaré’s main expla-
nation of the importance of indefinite iteration focuses on how we understand 
induction rather than how we construct the mathematical sets that induction 
might target. Further, his explanation of why intuition is required for induction 
articulates the intuition as insight into a certain type of mental process. It is the 
focus on type in these and surrounding arguments that supports the connection 
to structuralism. Poincaré claims the same intuition is the basis for inferences 
about very different sorts of objects. What unifies these, what the different 
systems of objects have in common, is their structure, or order type, not their 

concepts in space and/​or time. Mathematical “constructions” are central to Poincaré’s view, but their 
role is less specific; sometimes “construction” simply means defining and perhaps comprehending. 
(See later in this chapter for one such use regarding the continuum.)
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content.25 Thus the main intuitive basis for arithmetic is that which provides cog-
nition of structure. Let me explain this in a bit more detail.

For Poincaré, the paradigm case of knowledge that requires the intuition of 
iteration is inductive knowledge. “The essential characteristic of reasoning by 
recurrence [induction] is that it contains, condensed, so to speak, in a single 
formula, an infinity of syllogisms” (1894, V, 978). The puzzle is this:  if induc-
tion implicitly contains an infinity of inferences, how can we recognize it as 
yielding truth? The answer for Poincaré is intuition. We can arrange some initial 
inferences as the following: property P is true of 0, and if true of n then true of 
n + 1, so property P is true of 1. Since P is true of 1, and if true of n then true of 
n + 1, the property P is also true of 2. And so on. Poincaré notes that when the 
inferences are ordered this way, they are “arranged in ‘cascade’ ”; because of this 
arrangement we can see that they will continue to be valid indefinitely, or infi-
nitely. And intuition, the mind’s ability to conceive “the indefinite repetition of 
the same act when once this act is possible” (1894, VI, 979), is what provides the 
necessary insight into the infinite chain of modus ponens steps constituting the 
“cascade.”

Not only do we see induction as thus leading to truth, we recognize it as neces-
sary. Unlike empirical induction, “Mathematical induction, that is, demonstra-
tion by recurrence, on the contrary, imposes itself necessarily because it is only 
an affirmation of a property of the mind itself ” (1894, VI, 980). Induction affirms 
the property of the mind associated with the intuition of iteration. Thus, the par-
adigm case of intuitive knowledge is not (acquaintance) knowledge of a series of 
objects, such as the natural numbers, but (propositional) knowledge that a type 
of inference preserves truth. The intuitive basis for arithmetic is thus more dis-
tant from sensibility than an account focused on the potential construction of 
finite objects (such as sequences of strokes for cardinal numbers). In short, it is 
more epistemic, more abstract, and less ontological.

Moreover, Poincaré defends his semi-​Kantianism about arithmetic against 
challenges from logicism and formalism/​axiomatics by arguing that different 
types of induction are really the same principle, all depending on the same in-
tuition.26 The kernel of the argument is expressed at least by 1894: “If we look 
closely, at every step we meet again this mode of reasoning, either in the simple 
form we have just given it, or under a form more or less modified” (1894, IV, 
978). He also claims at this time that induction cannot be demonstrated in a 
non-​circular way (1894, VI, 979), though he doesn’t provide an argument for 
this until a later series of circularity objections to logicism (Poincaré [1905] 1996, 
[1906a] 1996, and [1906b] 1996).

	 25	 Their order type being that of a simply infinite system.
	 26	 That is, induction, or really iteration, acts as another unifying principle for Poincaré.



292  Janet Folina

I cannot go into the details of his circularity arguments here.27 Though his 
point at first regards the different ways we reason inductively about numbers, 
he later adds that metatheoretic uses of induction depend on the same under-
lying intuition of iteration.28 If metatheoretic uses of induction and induction on 
numbers depend on the same intuition, intuition is formal, and independent of 
any particular content.

For example, in discussing any proof that the arithmetic axioms are consistent, 
he writes, “recourse must be had to procedures where in general it is necessary 
to invoke just this principle of complete induction which is precisely the thing to 
be proved” ([1905] 1996, IV, 1027). So a consistency proof about arithmetic uses 
“precisely” the same principle as when reasoning inductively in arithmetic. Since 
the two uses obviously will concern different objects, any precise sameness must 
regard form or type. His associating intuition so closely with a form of reasoning 
applicable to various domains, rather than (just) a method for constructing 
objects to constitute a domain, gives this intuition a more abstract feel. That is, 
similarly to how the group concept facilitates the ascendance to a more abstract 
way of thinking about geometry, intuition is appealed to here to explain a more 
abstract way of thinking about inductive reasoning and the domains to which 
it applies. In short, what grounds and guides induction is intuition of structure.

Indeed, Poincaré explains why this form of reasoning can be used in such dif-
ferent contexts by invoking structuralist terms—​by reference to the common un-
derlying structure as an “ordinal type.”

Thus one envisages a series of reasonings succeeding one another, and one 
applies to this succession, regarded as an ordinal type, a principle that is true for 
certain ordinal types, called finite ordinal numbers, and which is true for these 
types precisely because these types are by definition those for which it is true. 
([1906a] 1996, XXIII, 1043)

Though the remark is a little cryptic, I  take it as supporting a strong connec-
tion between intuition and structure. Whether it is induction about numbers, 
or about sequences of inferences, the reasoning depends on the fact that intui-
tion enables both the understanding of induction and the cognition of the simply 
infinite systems to which induction can be applied. Without this intuition, this 
insight, we (finite thinking beings) would not be able to do mathematics about 
discrete infinite systems, and we would not be able to see that the principle of in-
duction is true.

	 27	 But see Folina (2006) and Goldfarb (1985) for opposing views on these arguments.
	 28	 This is how he justifies the earlier circularity claim.
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On my interpretation, then, Poincaré thought of the natural number struc-
ture as—​like the basic group structure—​more fundamental than any particular 
system of natural numbers. His stress on the equivalence of the various uses of 
induction ([1906a] 1996, 1050) supports this interpretation, as does his descrip-
tion of intuition as insight into an abstract, or type of, mental capacity. Intuition 
for Poincaré is a format—​for producing, understanding, and reasoning about 
various systems of objects. Since it is what enables us to produce infinite sets 
(insofar as we can—​in our conceiving them) it is prior to those sets. Thus, like 
the group concept, the natural number structure, as given by a priori arithmetic 
intuition, is another structure that comes “first.”

3.1.2. � Geometry, Analysis, and Intuition
Despite his famous conventionalism about geometry (more specifically, the 
choice of a geometry for physics), Poincaré also endorses “geometric intuition” 
([1913] 1963, 43–​44). But “geometric” is a bit of a misnomer here. Geometric 
intuition does not yield a particular set of geometric truths, or knowledge that 
a particular geometric structure is true. So it is not an intuition of geometry. 
Rather, it provides more general cognitive access to physical and mathematical 
continua, via the “intuitive notion of the continuum.”

I shall conclude that there is in all of us an intuitive notion of the continuum of 
any number of dimensions whatever because we possess the capacity to con-
struct a physical and mathematical continuum; and that this capacity exists in 
us before any experience, because, without it, experience properly speaking 
would be impossible and would be reduced to brute sensations. . . . And yet this 
capacity could be used in different ways; it could enable us to construct a space 
of four just as well as a space of three dimensions. ([1913] 1963, 44)

Like indefinite iteration, the intuition that lies behind the more “spatial” areas of 
mathematics, such as geometry, analysis, and topology, is a mental capacity—​a 
capacity for constructing various types of abstract spaces.29

Poincaré associates this intuition most closely with “analysis situs,” or to-
pology, “the true domain of geometric intuition” ([1913] 1963, 42). But it also 
supports other areas of mathematics that are “spatial,” including geometry and 
analysis. For example, in assessing Hilbert’s axiomatic approach to geometry, 
Poincaré argues that the axioms of order are genuine intuitive truths ([1913] 
1963, 43). They are central to topology, and they also play a fundamental role in 
our cognition of ordinary (metric) geometry.

	 29	 Though in rather Kantian style he also asserts that it is a form of experience—​necessary for ex-
perience as we know it.
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Because the intuitive continuum functions as a template for cognizing and de-
fining various mathematical and physical continua, it is structural in a similar way 
to iteration. For example, it too precedes any particular instantiation, since the intu-
ition is what “enable[s]‌ us to construct” the continuous space we wish to consider. 
Thus, the intuitive continuum joins arithmetic intuition and the group concept to 
provide a third example of a mathematical structure that comes “first,” i.e., before its 
instances.

To conclude this section, I aimed to show that Poincaré’s conception of math-
ematical intuition harmonizes with the structuralist interpretation. Indeed, it 
strengthens it by adding new mathematical structures that come “first”: the simply 
infinite structure and the (n-​dimensional) continuum. Like the group concept, intu-
ition precedes its uses. Recall that the group concept is a priori and the group struc-
ture is prior to its instances. Similarly, mathematical intuition is a priori; it enables 
synthetic a priori mathematical knowledge about infinite domains by providing 
insight into infinite structures, which are prior to their instances. The structures 
supplied by intuition are prior for Poincaré because we need the intuitive structures 
in order to “construct” (or conceive) the mathematical domains for which they pro-
vide the template. Thus, Poincaré’s conception of intuition strengthens and adds to 
the “structure first,” ante rem, interpretation.

3.2.  Structural Realism and Mathematical Structuralism

Before turning to the question of how Poincaré (or anyone) could combine a 
semi-​Kantian anti-​realist view of mathematics with a “structure first” view, we will 
first briefly consider the fact that he is also commonly associated with realism—​
structural realism in the philosophy of (natural) science. This is roughly the view 
that although science does not generally provide us with absolute truths about 
objects in nature, it can yield knowledge of structures in nature. Structural realists 
acknowledge the so-​called pessimistic meta-​induction—​scientific theories come 
and go—​and they concede from this that it is naive to think that any one scientific 
theory provides eternal knowledge or insight into the essences of things. But this 
does not mean that science provides no knowledge at all. Instead, they maintain, 
there is evidence that science yields knowledge of the structure of reality. The success 
of science and the persistence of form through theory change are two supporting 
arguments commonly deployed by structural realists.

Poincaré has been cited as one of the first to articulate structural realism.30 
As I see it, the structuralist perspective guided his work in both mathematics 

	 30	 See the classic piece by Worrall (1989); but also see Brading and Crull (2017) for a more modest, 
middle position on the “realism” in Poincaré’s structural realism.
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and physics, providing a cornerstone for his overall scientific epistemology. 
Structural realism about science and structuralism about mathematics are thus 
in a sense two sides of one epistemic coin.

One can find at least four arguments from Poincaré supporting structural 
realism. There are two familiar “negative” arguments against naive realism: (i) 
the privacy of acquaintance knowledge and the resulting weakness of direct 
realism,31 and (ii) the acknowledgment of scientific change—​the so-​called 
pessimistic meta-​induction ([1905] 1958, chap.  6). Poincaré also provides 
two common “positive” arguments aiming to rescue scientific knowledge 
from a more skeptical viewpoint, to which the two negative arguments might 
seem to lead. These are claims about (iii) the success of science ([1902] 1952, 
Introduction, 28) and (iv) the persistence of form through theory change ([1902] 
1952, chap. 10, 153). His “rescue” leads to a type of structural realism.

Poincaré agrees that science is neither a direct reflection of reality nor is it 
simply cumulative: revisions and revolutions are part of science. Yet he resists 
skepticism. That is, despite the fact that scientific theories often change (the 
basis for the pessimistic meta-​induction) Poincaré was optimistic about sci-
entific knowledge. For example, though he emphasizes scientific conventions, 
it is a mistake to think this is the view that science is just, or mainly, based on 
decisions. That is, overemphasizing the freedom of conventions makes science 
seem arbitrary.

If this were so [if science were arbitrary], science would be powerless. Now 
every day we see it work under our very eyes. That could not be if it taught us 
nothing of reality. Still, the things themselves are not what it can reach, as the 
naïve dogmatists think, but only the relations between things. Outside of these 
relations there is no knowable reality. ([1902] 1952, Introduction, 28)

There may be other realms of truth, or other ways of knowing reality; certainly 
the reality we can know is limited. Direct acquaintance knowledge is not objec-
tive for it is not even intersubjective; and things in themselves cannot be known 
at all.32 But from the success of science Poincaré concludes that we do have objec-
tive knowledge—​that of general, relational facts.

	 31	 “The sensations of others will be for us a world eternally closed. We have no means of verifying 
that the sensation I call red is the same as that which my neighbor calls red. . . . In compensation, what 
we shall be able to ascertain is that, for him as for me, the cherry and the red poppy produce the same 
sensation. . . . The relations between the sensations can alone have an objective value” ([1905] 1958, 
chap. 11, 136).
	 32	 Along these lines, just as logical positivism can be seen as an adjustment of Kant’s vision, one 
can see Poincaré’s structural realism similarly.
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In addition, there is evidence that science uncovers the structure of reality in 
particular: this is the persistence of equations, or equation-​forms, across theory 
change.

Not only do we discover new phenomena, but in those we thought we knew, 
unforeseen aspects reveal themselves.  .  .  . Nevertheless the frames are not 
broken. . . . Our equations become, it is true, more and more complicated, in 
order to embrace the complexity of nature; but nothing is changed in the re-
lations which permit the deducing of these equations one from the other. In a 
word, the form of these equations has persisted. ([1902] 1952, chap. 10, 153)

Putting some of this together, we can fill in our picture a bit. Essences of things, or 
things in themselves, are not knowable. This resonates with his broadly Kantian 
epistemic vision, and it explains why the “images” of things shift with changes in 
scientific theory. But skepticism on these grounds is “superficial” according to 
Poincaré ([1902] 1952, chap. 10, p. 140). Instead, he believes that science reveals 
relations that actually exist in nature:  “equations express relations, and if the 
equations remain true it is because these relations preserve their reality” ([1902] 
1952, 140). Together, these views express a fairly straightforward version of sci-
entific structural realism.33

Now, structural realism about science is neither necessary nor sufficient for 
structuralism about mathematics. Yes, mathematics is the “language” of science; 
but that scientific theory reveals the structures, or relations, of nature is simply dif-
ferent from the view that the subject matter of mathematics is abstract structure. 
Of course, the two views are not completely independent, or merely consistent. 
Though Poincaré was realist about (some) scientific structure and anti-​realist 
about mathematics, the emphasis on structure in both views makes them har-
monious and mutually supportive. In particular, they share a compelling view 
about perspective. The perspective of object-​level content is “superficial” both in 

	 33	 Putting “Kantian” in the same paragraph with “realism” may jar some readers. However, I do 
think Poincaré held versions of both views. With Kant we cannot know the things in themselves; also 
with Kant, mathematics provides a synthetic a priori foundation for scientific knowledge. Unlike 
Kant, Poincaré expresses confidence that the persistent structures and relations revealed by scientific 
inquiry reflect the way things are in nature, rather than just the way we are constituted to experience 
and/​or conceptualize nature. There is a hint of Darwinism in this view, reminiscent also of Hume’s 
“pre-​established harmony” between nature and ideas (Hume, Enquiry Part V, last two paragraphs). 
For Poincaré, general, simple laws are most interesting and most beautiful—​perhaps because we are 
constituted to appreciate them; but they are also necessary for science. If there were no general laws 
in reality, if there were 60 million chemical elements or only individuals but no biological species, 
“In such a world there would be no science; perhaps thought and even life would be impossible, 
since evolution could not there develop the preservational instincts” ([1905] 1958, Preface, 5; see also 
chap. 10, sec. 3, 115–​122, for the view that there are prescientific “crude” facts, which science merely 
“translates” rather than “creates”). Though his arguments focus mostly on epistemological issues, his 
conclusions clearly endorse realism about at least some structural facts.
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natural science (e.g., [1902] 1952, 140) and in mathematics (e.g., 1898, Form and 
Matter, p. 1009). However, this epistemic point—​that the higher-​level, structural 
perspective is crucial in both natural science and mathematics—​is indifferent to 
the metaphysical question of whether or not the relevant structures exist inde-
pendently of the scientists and mathematicians.

3.3  Constructivism versus “Structure First”?

In section 1, I argued that within Shapiro’s basic taxonomy, the category of ante 
rem structuralism best fits Poincaré’s further philosophical assertions about the 
group structure. And in section 3.1, I argued that we can extend the ante rem in-
terpretation to the structures given by mathematical intuition. Indeed, as I recon-
struct Poincaré’s vision, the main a priori elements of mathematics—​the group 
concept, the intuition of iteration, and the intuitive continuum—​are each associ-
ated with what appear to be the fundamental mathematical structures. The group 
structure, the simply infinite structure, and continua are singled out as known a 
priori and as existing prior to the mathematical systems and constructions that 
instantiate them, which the a priori structures make possible.

A question about the consistency of my interpretation can now be addressed 
more clearly. The priority and independence of form over matter aligns Poincaré 
with the ante rem “structure first” view. However, in Shapiro’s taxonomy, ante 
rem structuralism appears only as a form of realism,34 and Poincaré was anti-​
realist about mathematics. (Despite his structural realism about natural sci-
ence, Poincaré’s appeal to mathematical intuition, his claims to defend Kant, and 
his views on mathematical existence all show this.)35 Is this consistent? Is the 
structures-​first, ante rem view consistent with the semi-​Kantian constructivist 
view of mathematics that Poincaré defends? How can structures exist prior to, 
and/​or independent of, mathematical objects and systems for an anti-​realist?

One way to understand Poincaré is that the priority of structures to their 
objects and systems is merely epistemic and not ontological.36 After all, as a con-
structivist, the ontology of mathematics will be constrained by its epistemology. 
If so, if the priority of structures is just epistemic, then one may object that his 
conception of structure better fits the eliminativist view than the ante rem view, 
since it is the main anti-​realist alternative in the basic structuralist taxonomy. 
What about this alternative?

	 34	 While this is not asserted, the only type of ante rem structuralism he discusses is “Platonic.”
	 35	 For example, he argues repeatedly against the existence of actual infinities because infinity just 
means there is “no reason for stopping” the generation of elements in a set.
	 36	 This appears to be Heinzmann’s inclination (2014).
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On the one hand, the emphasis on epistemology is right. The structures that 
are “prior” in Poincaré’s philosophy are grounded in a priori intuitions and 
concepts, which, of course, lie more in the category of epistemology than on-
tology. On the other hand, eliminativism is the view that structures don’t exist 
at all, that talk of “structure” is a mere manner of speech. And this does not fit 
Poincaré’s views about mathematical structures. For him, structure is the core of 
the subject matter of mathematics; structure is the most important form of math-
ematical existence; indeed, as we saw above, focusing on the matter, or specific 
mathematical systems, rather than the form is “superficial” to him. This directly 
opposes the eliminativist view, according to which objects and systems may exist 
but structures do not.

Admittedly, Poincaré’s rhetoric can be confusing. Intuitions and concepts do 
seem to concern epistemology; for example, the intuitions of iteration and con-
tinuity are “faculties” that enable the construction of simply infinite systems and 
physical and mathematical continua. Yet, for Poincaré intuition can also have a 
realist “feel.”

It is the intuition of pure number, that of pure logical forms, which illuminates 
and directs those we have called analysts. This it is which enables them not only 
to demonstrate, but also to invent. By it they perceive at a glance the general plan 
of a logical edifice. (1900, VI, 1020, my emphasis)

Here intuition is presented as like a telescope; it “illuminates”; it enables us to 
“perceive at a glance” things we couldn’t otherwise perceive—​pure logical forms, 
or structures. It is still epistemic, but it is articulated in terms of the ontology to 
which it provides access, rather than the activities by which we construct that 
ontology. And this may encourage a picture of the ontology as independent, or 
“out there.” That is, a telescope does not create the objects we see with its aid;37 
thus, this way of describing intuition may encourage a similar view of mathe-
matical structure—​a more realist view of structure than would be consistent 
with constructivism. There are similar remarks about geometric intuition: be-
cause mathematics includes spaces of more than three dimensions, “there is 
surely an intuition about the continua of more than three dimensions” ([1913] 
1963, 42–​43, my emphasis). Finally, Poincaré explicitly says that the group struc-
ture “exists” prior to its instances. Recall that he says Helmholtz thinks the form 
of a group is posterior to, or dependent on, the matter, whereas in contrast, for 
him “the form exists before the matter” (my emphasis). At points like this, the 
structures of interest seem to preexist in a more ontological, rather than a merely 
epistemic, way.

	 37	 Pace a more strident form of scientific nominalism than would suit most, including Poincaré.
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Is such talk just sloppy? Perhaps. To interpret Poincaré as consistent we must 
start with his mathematical anti-​realism. That much is clear. Given this, no math-
ematical objects exist in a mind-​independent sense, not even the fundamental 
structures. The “existence” of the group and intuitive structures is therefore 
something like existence in the minds of mathematicians. The priority in each 
case—​a priori intuition and the a priori group concept—​can be understood as a 
kind of mental template that enables specific instantiations, or constructions, in 
mathematical practice. So the priority of structures seems consistent with con-
structivism as long as “priority” and “existence” can be interpreted as reliant on 
minds (or finite thinking beings).

Furthermore, though they are generally associated with each other, ante rem 
structuralism does not require metaphysical realism. Note that Shapiro adds 
“Platonic” to the label “ante rem structuralism.” This implies that the ante rem 
aspect—​priority—​does not entail Platonism, or realism; otherwise “Platonic” 
would be redundant. And this, in turn, implies that there can be a non-​realist 
version of ante rem structuralism too.

That is, the term “ante rem” just indicates the priority in existence/​reality of 
a general to its particulars. This is consistent with constructivism. Though for 
constructivists no mathematical entities exist absolutely independent of the minds 
and activities of mathematicians, some things can exist prior to others. Some 
templates can be required for some constructions, and some constructions can 
be required for others. An anti-​realist version of the priority of structure would 
precisely fit Poincaré’s conception of the a priori elements in mathematics—​the 
elements that I have highlighted in my interpretation of his structuralism.

Of course, as mentioned, the taxonomy with which we began, and which is 
fairly common in the literature, is incomplete. Poincaré is not a Platonic ante rem 
structuralist because he is not a Platonist. He is not an in re structuralist because 
for him structures are not posterior to and dependent on systems; rather they 
are prior to and independent of the systems instantiating them. And he is not 
an eliminativist about structure because he believes that they—​as well as many 
other mathematical objects—​do exist (though we may have to do mathematics 
to make them exist). Eliminativism cannot be the only option for a structuralist 
who rejects realism about mathematical existence. Constructivist versions of 
both the ante rem and the in re views therefore seem coherent options.

4.  Concluding Thoughts

Like many others at the time, Poincaré endorsed the basic methodological struc-
turalist view. What’s unusual for his time is that he expressed further philosophical 
views about the metaphysics and epistemology of mathematical structures. I have 
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attempted to articulate these views and to situate them with respect to some of his 
other main commitments. In particular, I have argued that Poincaré’s views about 
structure should be understood in a “strong” ante rem way, and that they are, never-
theless, consistent with his general constructivist approach to mathematics.

As a constructivist, Poincaré endorses a close connection between the epis-
temology and the ontology of mathematics. So his philosophy does not permit 
the same type of independence that one sees in traditional Platonism—​that 
is, independence of mathematical reality from the minds and activities of 
mathematicians. But this is not the type of independence that characterizes ante 
rem structuralism. Ante rem structuralism only requires that structures be inde-
pendent of, and prior to, their instances, which is exactly what Poincaré asserts.

For Poincaré, the form exists before the matter in that—​to speak crudely—​
we need the form in order to cognize the matter. Though no mathematical 
entities or structures exist absolutely independent of the work and minds of 
mathematicians, the fundamental structures—​the group structure, the nat-
ural number structure, and the continuum—​have more independence than the 
domains they yield. In other words, they are prior to their instantiating systems.38

The fundamental mathematical structures, given by a priori concepts and 
intuitions, are thus, for Poincaré, a kind of cognitive blueprint necessary for 
conceiving and instantiating mathematical systems. Systems are the result of 
definitions; but both the definitions and our understanding of what they yield 
are guided by our “blueprints.” The intuition of indefinite iteration guides our 
cognition of simply infinite systems as well as our inductive inferences about 
them. The intuitive continuum “enables” us to define physical and mathemat-
ical continua and to work with them in mathematics and science. The a priori 
group concept is a “form” that exists prior to the matter of any group, providing 
a unifying mathematical ideal and a foundation for geometry and group theory. 
In each of these cases the form “exists” prior to the domains, or systems.39 
Additionally, structures are more significant than matter or particular systems, 
which Poincaré dismisses as “superficial.” This is the sense in which structures 
“preexist” for Poincaré: in the mind as an a priori intuition of structure, or as an a 
priori concept, rather than as independently existing Platonic reality.40 Provided 
we agree that ante rem structuralism does not require Platonism, we can appre-
ciate Poincaré’s “constructivist ante rem structuralism”—​a view that fits Shapiro’s 
ante rem category, minus the “Platonism” typically attached to it.

	 38	 And possibly other, less fundamental, structures.
	 39	 Indeed, epistemologically speaking, each of these forms (the fundamental structures) are a 
priori, not just relatively prior.
	 40	 Whose mind? Interestingly not just humans for Poincaré; he implies that at least some a priori 
elements of mathematics (concepts, intuitions) are common to all finite beings who can conceive of 
infinity or space ([1902] 1952, p. 39; [1908] 1982, 427–​428).
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12
 “If Numbers Are to Be Anything At All, 

They Must Be Intrinsically 
Something”: Bertrand Russell and 

Mathematical Structuralism
Jeremy Heis

Russell’s philosophy of mathematics is often opposed to structuralism for a 
number of reasons. First, Russell is a paradigm logicist (indeed, perhaps the most 
thoroughgoing and systematic defender of logicism ever), and structuralism is 
often defended as an alternative to logicism. Second, Russell’s famous defini-
tion of cardinal numbers as classes of equinumerous classes has the very fea-
ture that structuralists deny is necessary: it goes beyond the “structural” features 
of numbers and attributes to them an intrinsic character (namely, as classes). 
Third, Russell forcefully defended his logicist definition of real numbers over 
Dedekind’s, by accusing him of engaging in “theft over honest toil”—​postulating 
the existence of objects that fulfill a certain structural description, without first 
proving that there are such objects (Russell 1919, 71).1 In the century since 
Russell first wrote these words, this accusation has been a standard objection to 
at least some versions of structuralism, and overcoming this objection has been 
a source of ongoing work for many of structuralism’s contemporary adherents.

Nevertheless, this chapter will show that Russell’s relationship to structur-
alism is not entirely negative. Russell defended—​and in some cases even intro-
duced into philosophy—​many ideas that were essential for the full articulation 
and defense of structuralism. (Indeed, some of Russell’s ideas were explicitly 
appropriated in Ernst Cassirer’s philosophical defense of structuralism.) Of 
course, Russell was a critic of mathematical structuralism—​the most thorough-
going and trenchant critic of structuralism in the early twentieth century. As this 

	 1	 Russell is here discussing the definition of real numbers in terms of Dedekind cuts. He argues 
that Dedekind himself simply laid down an axiom that postulates that any segment of the series of 
rationals has a bound; he advocates instead for constructing the reals as sets of segments of the series 
of rationals.

Jeremy Heis, “If Numbers Are to Be Anything At All, They Must Be Intrinsically Something” In: The Prehistory of Mathematical 
Structuralism. Edited by: Erich H. Reck and Georg Schiemer, Oxford University Press (2020). © Oxford University Press.
DOI:10.1093/oso/9780190641221.003.0012
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chapter will show, Russell’s criticisms of structuralism are manifold and subtle, 
going well beyond the well-​known ideas I mentioned in the opening paragraph.

This chapter has two parts. In the first part (“Russell’s Positive Contribution to 
Structuralism,” section 1), I identify three theses of Russell’s philosophy of math-
ematics that could be—​and indeed have—​been employed as key parts of struc-
turalism. In the second part (“Russell’s Criticism of Dedekind’s Structuralism,” 
section 2) I show how Russell, between the years 1898 and 1901, returned again 
and again to the structuralist idea in Dedekind’s philosophy of arithmetic, and 
developed four series of criticisms of this structuralism.

Two clarifications before we begin. First, the main topic of this chapter is 
Russell’s relation to “non-​eliminative” versions of structuralism, such as the 
version in Dedekind’s Was sind und was sollen die Zahlen? (Dedekind [1888] 
1963).2 As other philosophers have made clear (Reck and Price 2000), the core 
idea of structuralism, that mathematics is about positions in structures, can be 
developed in multiple, incompatible ways. For non-​eliminative structuralism, 
mathematical objects are just positions in structures: that is, all of the essential 
properties of, say, a particular natural number are irreducible relational prop-
erties between it and the other natural numbers. On this view, the positions in 
the structure are distinct from any of the systems of objects that have that struc-
ture. For example, the number 4 in the natural number series is an object in its 
own right, distinct from any particular things that have the fourth position in 
some system (e.g., the fourth planet in the solar system, or the fourth child of J. S. 
Bach). This clarification is necessary, since (as I will argue later) some of Russell’s 
philosophy of mathematics is quite close to certain eliminative versions of struc-
turalism. Second, beyond the quip about theft and honest toil in Introduction 
to Mathematical Philosophy, there is little substantial discussion of recognizably 
structuralist ideas in Russell’s writings in the philosophy of mathematics after his 
1903 Principles of Mathematics (POM). What’s more, throughout POM, and in 
Russell’s various papers and drafts that he wrote while composing POM, Russell 
returns to Dedekind’s version of non-​eliminative structuralism repeatedly. For 
this reason, my focus in this chapter will be on POM and Russell’s papers in the 
years immediately preceding its publication.

1.  Russell’s Positive Contribution to Structuralism

In this section, I identify three theses of Russell’s philosophy of mathematics that 
could be—​and indeed, as I will show, have—​been employed as key parts of a fully 
articulated structuralism. First, the logic of relations makes it possible to conceive 

	 2	 On Dedekind as a non-​eliminative structuralist, see Reck (2003).
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structures abstractly, without any reference to space, time, or empirical properties. 
Second, Russell is one of the first philosophers (if not the first) to explicitly separate 
pure from applied mathematics in such a way that all of the rival metric geometries 
become parts of pure mathematics. Third, Russell introduced the concept of a “rela-
tional type” and distinguished the various areas of pure mathematics according to 
the specific relational type that they study—​an approach that provides a concrete 
way of cashing out the idea that the various branches of pure mathematics con-
cern distinct “structures.” I take each of these theses in turn.

1.1.  The Logic of Relations and Abstract Structures

The core idea of structuralism is that all the essential properties of mathematical 
objects are their relational properties to other mathematical objects within the 
structure. This core idea is incompatible with the view that spatial, temporal, in-
tuitive, or empirical properties are essential properties of mathematical objects. 
Consider spatial properties (by which I mean properties of an object in relation 
to “physical” space, the space occupied by concrete bodies). Spatial proper-
ties involve essential relations to things in space, since it is the fact that phys-
ical space is occupied by concrete bodies that distinguishes it from, say, color 
space or abstract mathematical “spaces.” A similar point holds for temporal, in-
tuitive, and empirical properties: temporal properties involve relations to events 
in the physical world, intuitive properties involve relations to our sensibility, and 
empirical properties involve relations to empirical (and so non-​mathematical) 
objects. Thus, structuralism requires that the concept of a structure does not 
depend conceptually on spatial, temporal, intuitive, or empirical concepts. In 
short, the objects of mathematics are abstract structures (or positions in abstract 
structures).

But is it possible to conceive structures abstractly, without any reference to 
space, time, intuitive, or empirical properties? Consider our paradigm structur-
alist theory, Dedekind’s philosophy of arithmetic. Dedekind defines the natural 
number numbers by first defining a simply infinite system, or in Russell’s lan-
guage, a “progression.” A progression is a structure with a distinguished element, 
0, and a successor map that takes each position in the structure to the “next” 
position. But is this notion spatial, temporal, intuitive, or empirical? Certainly, 
the word “next” suggests such an origin. More generally, in chapter 31 of POM, 
Russell considers the following constellation of ideas, which he attributes to 
Leibniz and Meinong: progressions are a kind of series; series presupposes order, 
which in turn presupposes distance; distances are magnitudes, but magnitude is 
an empirical notion. This is a natural line of reasoning. After all, if, say, A, B, 
and C are ordered in such a way that B is between A and C, what else could this 
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mean than that the distance from A to B is less than the distance from A to C? So, 
our objector concludes, the concept of a progression ultimately has an empirical 
origin.

Russell’s reply to this objection depends on his definition of order, and ulti-
mately on his new logic of relations. In chapter 24, he isolates six distinct ways 
of generating a series. For example, elements may be ordered into a series using 
the notion of distance, or the notion of between, or the notion of separation. In 
chapter 25, he argues in detail that these methods for generating a series can be 
reduced to one single method:

The minimum ordinal proposition, which can always be made wherever there 
is an order at all, is of the form “y is between x and z”; and this proposition 
means: “There is some asymmetrical, transitive relation which holds between x 
and y and between y and z.” (§207)

(In the case of the natural numbers, this asymmetrical, transitive relation is n < 
m, and “m is between n and o” means “n < m and m < o”). And so the objection 
is defeated, since the notion of order depends ultimately on the concept of an 
asymmetrical transitive relation—​not on the notion of distance or magnitude. 
Russell concludes further that the concept of an asymmetrical transitive relation, 
being a logical notion, does not depend conceptually on any spatial, temporal, in-
tuitive, or empirical concepts. And this is just what the defender of mathematical 
structuralism needed.3

Russell’s analysis of the notion of series depends, then, on the concepts 
that he had developed in the logic of relations. Russell developed (independ-
ently of Frege) an original version of modern polyadic higher-​order quanti-
ficational logic in the fall of 1900, and published his first version of it as “The 
Logic of Relations” (Russell 1901c). This paper (see also POM §§27–​30; chap. 9) 
distinguishes kinds of relations—​as say, transitive or intransitive, symmetrical, 
asymmetrical, or anti-​symmetrical—​in the now standard way, in many cases 
introducing the terms that we use today. Russell made the logic of relations inde-
pendent of the theory of classes, thus avoiding the artificiality that beset the logic 
of relations done in the Boolean tradition by DeMorgan, Schröder, and Peirce. 
Unlike Frege, who thematized the function/​argument analysis when arguing for 
the originality of his polyadic quantificational logic, Russell repeatedly pointed 
to the relational character of his logic to explain its originality and significance. 
And, most importantly for our purposes, he loudly proclaimed the centrality of 

	 3	 I have spoken of the conceptual independence of the concept of an asymmetrical transitive rela-
tion. Russell would of course also held that certain abstract relations are ontologically independent of 
anything empirical, spatial, temporal, or intuitive.
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the logic of relations for understanding mathematics: “the logic of relations has 
a more immediate bearing on mathematics than that of classes or propositions, 
and any theoretically correct and adequate expression of mathematical truths is 
only possible by its means” (POM, §27).

Of course, Russell himself was not a non-​eliminative structuralist (see section 
2). But a philosopher could draw on Russell’s ideas to defend and elaborate struc-
turalism. Not only could Russell’s theory of relations be used to shore up structur-
alism, but in fact it was so used. Ernst Cassirer was, arguably, the first philosopher 
to give an explicit articulation and defense of a thoroughgoing non-​eliminative 
mathematical structuralism (see Cassirer 1907, which is a very positive review 
of Russell’s POM, and Cassirer [1910] 1923, chaps. 2 and 3). Though Cassirer 
finds the structuralist point of view paradigmatically in Dedekind’s philosophy 
of arithmetic (Cassirer [1910] 1923, 39),4 he self-​consciously draws on ideas 
from Russell in this articulation and defense. In Cassirer 1907 (§II), Cassirer 
endorses Russell’s idea that the reals, and more generally, continuity, can be de-
fined entirely in terms of order; and that order, being definable using concepts 
from the logic of relations, does not presupposes space, distance, or magnitude. 
“One recognizes in this connection,” Cassirer writes, “the value and necessity of 
the new foundation on which Russell is seeking to place logic. Mathematics in 
his treatment is nothing other than a special application of the general logic of re-
lations” (Cassirer 1907, 7). Indeed, Cassirer claims, Russell’s point of view is con-
firmed in Dedekind’s structuralist philosophy of arithmetic (Cassirer 1907, 7).

1.2.  Russell on Pure and Applied Geometry

According to structuralism, the objects of pure math are abstract structures. 
Concrete structures, then, are the concern of applied mathematics only (Parsons 
2008, §14). Now, “physical” space, the space occupied by concrete bodies, is itself 
a concrete structure. And so, a thoroughgoing non-​eliminative mathematical 
structuralism will have to identify some other subject matter for geometry be-
sides physical space. The standard way for structuralists to address this issue is by 
distinguishing pure from applied geometry: only applied geometry is concerned 
with physical space; pure geometry concerns some family of abstract structures.

The pure/​applied geometry distinction has played an important role in the 
emergence of mathematical structuralism through a more specific historical 
route. By the 1860s, mathematicians had proven that there are other consistent 
theories of metrical geometry besides classical Euclidean geometry. In the early 

	 4	 On Cassirer’s structuralism, see Erich Reck’s chapter in this volume. On Cassirer’s reception of 
Dedekind, see also Yap (2017).
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1870s, Klein discovered deep interrelations between these non-​Euclidean geom-
etries and projective geometry and group theory.5 In the 1880s, Poincaré used 
non-​Euclidean geometry to prove some very important results in complex anal-
ysis. These results convinced mathematicians by the end of the 19th century that 
the non-​Euclidean geometries were just as much a part of pure mathematics as 
classical Euclidean geometry. What, philosophically, could justify this attitude? 
How could mathematicians accept, as equally legitimate, contradictory theories 
of space? (In what follows, I’ll call this “the puzzle of non-​Euclidean geometry.”) 
The structuralist has a ready answer: only applied geometry is concerned with 
physical space, and so whether it turns out to be Euclidean or not is a question 
for physics, not pure mathematics; pure geometry, on the other hand, concerns 
certain kinds of abstract structures, some of which are Euclidean and some of 
which are not.

Structuralism’s ability to justify the mathematicians’ attitude toward the rival 
metric geometries was a chief argument in its favor.6 Once again, this argu-
ment was presented very clearly by Cassirer ([1910] 1923, chap. 3, sec. 4; [1921] 
1923, 432), thereby extending the non-​eliminative structuralism he found in 
Dedekind’s philosophy of arithmetic to pure geometry (Schiemer 2018; Heis 
2011). Structuralists such as Cassirer solve the philosophical puzzle posed by 
non-​Euclidean geometry, then, in four steps:  first, distinguish pure from ap-
plied geometry; second, argue that the question of the metric of physical space 
is a question for the latter only; third, conclude that therefore the subject matter 
of pure geometry is something other than physical space; and, fourth, propose 
abstract structures as the subject matter of pure geometry. The first three steps 
have now become standard in the philosophy of mathematics, even among those 
philosophers who do not take the final distinctively structuralist step. But it is es-
sential to recognize that very few, if any, philosophers or mathematicians prior to 
Russell took these three steps.

In fact, the first philosopher to clearly take these first three steps, and thereby 
justify the equal legitimacy of the rival geometries as pure mathematical theories 
independent of physical space, was arguably Russell himself.7 He first articulated 
the idea in Russell (1902), which was written around December 1898:

	 5	 On Klein, see Georg Schiemer’s chapter in this volume.
	 6	 This historical point is presented in detail in Shapiro (1997), chap. 5, “How We Got Here”, espe-
cially sections 2 and 3. Shapiro, unfortunately, does not mention Cassirer, who in fact presents this 
argument for structuralism very clearly.
	 7	 Russell was, as far as I  know, the first philosopher to take these three steps. There were 
mathematicians before Russell who distinguished pure from applied geometry, and denied that 
physical space is the subject of pure geometry. These include Grassmann, Pieri, and Whitehead 
(Grassmann [1844] 1894, 23–​24; Pieri 1898; Whitehead 1898, vii, 370).
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We have seen that there are a number of possible Geometries, each of which 
may be developed deductively with no appeal to actual facts. But no one of 
them, per se, throws any light on the nature of our space. Thus geometrical 
reasoning is assimilated to the reasoning of pure mathematics, while the in-
vestigation of actual space, on the contrary, is found to resemble all other em-
pirical investigations as to what exists. There is thus a complete divorce between 
Geometry and the study of actual space. . . . It points out a whole series of possi-
bilities, each of which contains a whole system of connected propositions; but it 
throws no more light upon the nature of our space than arithmetic throws upon 
the population of Great Britain. (Russell 1902, 503)

One year later (in Russell 1901a, written in December 1900 or January 1901), this 
solution to the puzzle of non-​Euclidean geometry motivated8 a new way of char-
acterizing the distinction between pure and applied mathematics:

Pure mathematics consists entirely of assertions to the effect that, if such and 
such a proposition is true of anything, then such and such another proposition 
is true of that thing. It is essential not to discuss whether the first proposition 
is really true, and not to mention what the anything is, of which it is supposed 
to be true. Both these points would belong to applied mathematics. (Russell 
1901a, 366)

On this view, the sentences of pure mathematics are all “formal implications,” 
sentences of the form for all x, φ(x) ⊃ ψ(x).9 Thus, a sentence of Euclidean ge-
ometry, understood as a branch of pure mathematics,10 would be for all x xn1 , ,…
, if the axioms of Euclidean geometry are true of x xn1 , ,… , then such and such is 
also true of x xn1 , ,… . Russell characterizes the antecedent of these generalized 
conditionals as definitions: in the case of Euclidean geometry, “φ(x)” would be 
the definition of a Euclidean space, and so a sentence of pure Euclidean geom-
etry is equivalent to the sentence “ψ is true of every Euclidean space.” In parallel 
passages in the following years,11 Russell clarifies that “φ” and “ψ” contain only 

	 8	 Russell cites the puzzle about non-​Euclidean geometry as the decisive argument for his defini-
tion of pure mathematics in the introduction to the 1937 second edition of POM (vii) and earlier in a 
January 1902 letter to Couturat (Russell 2002, 220).
	 9	 Russell allows that the quantifiers in formal implications be higher order. On formal 
implications, see POM, §§40–​45.
	 10	 I speak here of Euclidean geometry, understood as a branch of pure mathematics. However, 
there are passages in POM where Russell asserts that metric geometry is an empirical science and 
so “does not belong to pure mathematics” (POM, §411; cf. Gandon 2012, 72). These passages have 
led Gandon to conclude that there was no fundamental break in Russell’s philosophy of geometry 
between Russell 1897 and POM, as I am claiming (2012, 53). Unfortunately, space considerations 
preclude the extended discussion that Gandon’s claims merit.
	 11	 Draft of Part I of Principles of Mathematics (Russell 1901b, 185, 187), written in May 1901; Part 
I of POM (§1), which Russell composed in May 1902.
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logical constants. A sentence of applied mathematics, then, results from a sen-
tence of pure mathematics when the universal quantifier is instantiated by a con-
stant that is not a logical constant (or analyzable into logical constants); when the 
antecedent of the conditional is asserted outright for some nonlogical constant; 
or when some new primitive, nonlogical vocabulary is added.

Once again, not only could Russell’s use of the pure/​applied mathematics dis-
tinction to solve the puzzle about non-​Euclidean geometry be used to motivate 
a structuralist theory of pure geometry, in fact it was used in precisely this way. 
Cassirer, in the section of Cassirer ([1910] 1923) on non-​Euclidean geometry, 
draws the pure/​applied geometry distinction and solves the puzzle about non-​
Euclidean geometry in precisely Russell’s way. The axioms of the various metric 
geometries, Cassirer says, simply pick out different “pure logico-​mathematical 
forms” ([1910] 1923, 109). He criticizes other possible solutions to the puzzle, 
such as empiricist solutions or Poincaré’s conventionalist solution. And of course 
we know that Cassirer had studied Russell’s POM very closely just a few years 
earlier (Cassirer 1907). Furthermore, Carnap’s Der Raum, which articulates a 
structuralist philosophy of pure geometry, explicitly points to Russell’s distinc-
tion between pure and applied geometry for inspiration, and draws on Russell’s 
characterization of pure geometry for his theory of “formal space.”12

1.3.  Relational Types

For a structuralist, it is not enough to characterize the sentences of mathematics 
as conditionals of the form “if axioms, then theorems”: for a structuralist, the ax-
ioms characterize abstract structures. But what are abstract structures? How can 
we pick out the distinctly structural properties of a system of entities? Russell’s 
logic of classes and relations provides a ready language for characterizing these 
structural properties. Moreover, the structuralist holds that the various areas of 
pure mathematics are distinguished from one another by the kind of structure 
they study: number theory studies the structure of progressions, analysis studies 
the structure of the continuum, etc. But how do we individuate structures? Once 
again, Russell’s logic of relations and classes provides a means.

Russell picks out “structural” properties and distinguishes structures through 
his notion of a “relational type,” which he defines in the following way:

	 12	 See Schiemer’s chapter on Carnap for details. Carnap, like Cassirer (see section 12.1.1), also 
points to Russell’s logic of relations to show that formal space, inasmuch as it is a “pure theory of rela-
tions,” is “free of non-​logical (intuitive or experiential) components” (Carnap 1922, 8).
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Now a type of relation is to mean, in this discussion, a class of relations charac-
terized by the above formal identity of the deductions possible in regard to the 
various members of the class; and hence, a type of relations, as will appear more 
fully hereafter, if not already evident, is always a class definable in terms of log-
ical constants. We may therefore define a type of relations as a class of relations 
defined by some property definable in terms of logical constants alone. (POM, 
§8; cf. §412)

In fact, Russell argues that the “true subject matter” of mathematics is rela-
tional types (§27), and he engages in a detailed program of analyzing the var-
ious branches of existing mathematics as each concerned with a different 
relational type.

An example will make Russell’s analysis of mathematics vivid. In chapter 46 of 
POM, Russell gives an axiomatization of “descriptive geometry”:

	 1.	 There is a class of relations K, whose field is defined to be the class point.
	 2.	 There is at least one point.

If R be any term of K we have

	 3.	 R is an aliorelative (i.e., for all x, ~Rxx).
	 4.	 R−1 is a term of K.
	 5.	 R2 = R (i.e., for all x, y, z, if Rxy and Ryz, then Rxz).
	 6.	 The points in the domain or range of R−1 are also in the domain or 

range of R.
	 7.	 Between any two points there is one and only one relation of the class K.
	 8.	 If a, b be points in the domain or range of R, then either aRb or bRa.

Descriptive geometry, intuitively, is the geometry of directed line segments. 
“Rxy” means “y comes after x on the directed line segment R”; every relation R 
represents a directed line segment, R−1 is the same line segment directed in the 
opposite way. But note that this axiomatization does not make mention of lines 
or directions: it simply picks out various classes K of relations that have the spe-
cified logical properties. The only nonlogical word is “point,” which is actually 
just a shorthand for “object in the domain or range of some relation R in some 
class K of relations satisfying the axioms.” Any two classes of relations K and K′ 
that each satisfy the axioms share a relational type, and descriptive geometry is 
the theory of this relational type. Russell summarizes his procedure in this way:

We saw that the above method enabled us to content ourselves with one inde-
finable, namely the class of relations K. But we may go further, and dispense 
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altogether with indefinables. The axioms concerning the class K were all capable 
of statement in terms of the logic of relations. Hence we can define a class C of 
classes of relations, such that every member of C is a class of relations satisfying 
our axioms. The axioms then become parts of a definition, and we have neither 
indefinables nor axioms. If K be any member of the class C, and k be the field of 
K, then k is a descriptive space, and every term of k is a descriptive point. . . . This 
affords a good instance of the emphasis which mathematics lays upon relations. 
To the mathematician, it is wholly irrelevant what his entities are, so long as they 
have relations of a specified type. It is plain, for example, that an instant is a very 
different thing from a point; but to the mathematician as such there is no rele-
vant distinction between the instants of time and the points on a line. (§378)

This procedure is not exactly what a structuralist would adopt. For her, once 
the relational type of descriptive spaces has been identified, she would pick out 
(perhaps by an act of “Dedekind” abstraction) the structure exemplified by all 
descriptive spaces. This structure for the non-​eliminative structuralist is an in-
dividual (as are positions in this structure), and is distinct from any concretum 
that has this structure. Russell does not seem to make this move: POM suggests 
two alternatives, neither of which would be palatable to the non-​eliminative 
structuralist. On one alternative—​which is suggested by his definition of pure 
mathematics—​a sentence of descriptive geometry is just a universally quantified 
conditional: for all K, if K is a collection of relations that satisfies the axioms of 
a descriptive space, then ψ(K). No individual is mentioned here and there is no 
object the relational type of descriptive spaces; instead we have the higher-​order 
propositional function x is a collection of relations that satisfies the axioms of a 
descriptive space. In fact, this alternative is really a kind of eliminative structur-
alism. More precisely, it is a kind of modal eliminative structuralism, where the 
modal operator means “it is a logical truth that . . .” The modal character derives 
from Russell’s insistence that the relational types be characterized using purely 
logical vocabulary, and that the sentences of pure mathematics be logical.13

The second alternative interpretation of relational types is suggested by his 
definition of a relational type at §8 and by §378, quoted earlier. On this alter-
native, a sentence of descriptive geometry expresses a relation between two 

	 13	 For a reading of early Russell as an eliminative structuralist: Reck and Price (2000, 354–​361). 
For a contemporary defense of modal eliminative structuralism, see Hellmann (1989). On the af-
finity between some of Russell’s views and modal eliminative structuralism, see Hellman (2004, 564). 
Of course, the standard objection to a view like Russell’s is that Russellian logic includes the theory of 
classes, which is no longer considered to be obviously logical. For contemporary readers, then, this 
view just collapses into set theoretic realism.

So-​called if-​thenism is closely related to eliminative structuralism. Reck and Price (2000) read 
Russell in POM as a kind of if-​thenist, as does Musgrave (1977). Gandon (2012) argues at length that 
Russell in POM is not an if-​thenist about pure geometry. Unfortunately, again space considerations 
preclude the extended discussion that Gandon’s claims merit.
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classes: The class of all classes of relations that satisfy the axioms of descriptive 
geometry is contained in the class of terms that are ψ. Thus, the relational type is 
a class. Since Russell never suggests a structuralist interpretation of the theory of 
classes, this alternative still does not provide what the non-​eliminative structur-
alist would want. In fact, this alternative is really a kind of set-​theoretic realism.

Interestingly, in the parts of POM that were written first in late 1900, such as 
part III (on quantity), Russell suggests a third reading of relational types that 
has a stronger structuralist flavor. When writing these sections, Russell endorsed 
a novel program using “abstraction” principles. By “abstraction” principles, 
Russell means principles, such as Frege’s famous “Hume’s Principle” (Frege 1884, 
§63), that analyze equivalence relations (say, among classes) into identity claims 
about some new entities (say, cardinal numbers). Thus, cardinal numbers are de-
fined by the biconditional The number of Fs = the number of Gs iff the Fs and the 
Gs are equinumerous. Similarly, directions are defined by the biconditional The 
direction of l = the direction of m iff l and m are parallel lines. He makes free use 
of abstraction principles in these parts of POM. For instance, in §231 he defines 
the ordinal number ω by abstraction as the abstractum to which all progressions 
(which are themselves related by the equivalence relation of isomorphism) are 
related. Thus, when two collections of objects, classes, and relations both satisfy 
the same logically describable axiom system, they are related by an equivalence 
relation (having the same relational type as), and their common relational type is 
then defined by abstraction. At various places, he suggests that the entity defined 
by abstraction is “unanalyzable” and thus distinct from any class (see, e.g., §155 
and §157 on magnitudes).14 By spring 1901, Russell rejected definitions by ab-
straction (see §110, written in June 1901). However, if this program of late 1900 
and very early 1901 had been carried out to completion, this would have been 
close to what non-​eliminative structuralists would want. That is, a mathematical 
theory such as number theory would have as its object some abstract object, dis-
tinct from all concrete progressions and distinct from classes.

Just as in the case of his theory of relations and his pure/​applied distinction, 
not only could Russell’s notion of a relational type be employed in a structuralist 
account of mathematical objects, in fact it was used in precisely this way. In his 
review of POM, Cassirer emphasized Russell’s project of identifying the various 
relational types that characterize the various branches of mathematics (Cassirer 
1907, 5). Later, Cassirer systematically used Russell’s logic of relations to identify 

	 14	 Russell was not consistent on this point, even in late 1900: elsewhere Russell suggests that the 
abstracta picked out by definitions by abstraction are just classes of equivalent terms (see, e.g., §231).

Russell (1919, chap. 5) introduces what he calls a “relation-​number,” which is a class of “similar” 
(i.e., isomorphic) relations. This is clearly the descendant of POM’s relational type, now interpreted 
in this third way, where the equivalence relation is isomorphism and the abstracta are classes of iso-
morphic relations.
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the relational type of some mathematical theories (e.g., Cassirer [1910] 1923, 
37–​39), before applying an act of abstraction to identify the “system of relations” 
(110), which constitutes the true object of pure mathematics. In fact, Cassirer’s 
position is what one gets by taking the object C mentioned in §378, that is, the re-
lational type of all descriptive spaces, considered not as a class, but as distinct kind 
of abstractum. Furthermore, Carnap self-​consciously draws on Russell’s notion of 
relational types in identifying structures in his structuralist “general axiomatics 
project” from the mid-​1930s, and in his pre-​Syntax period philosophy of math-
ematics. In many writings from these periods, Carnap follows Russell’s proce-
dure of axiomatizing a mathematical theory, removing all nonlogical vocabulary, 
and treating the resulting axioms as a definition of a higher-​order propositional 
function that applies to tuples of objects, relations, etc. Indeed, Carnap at various 
points endorses all three of Russell’s interpretations of relational types.15

2.  Russell’s Criticism of Dedekind’s Structuralism

Although Russell’s philosophy could furnish the raw materials for essential 
components of a worked out non-​eliminative structuralism such as Cassirer’s, 
Russell himself presented a sustained and multipronged attack on non-​
eliminative structuralism, in the form in which Dedekind had developed it. He 
returned to Dedekind’s structuralism again and again in a series of writings, both 
published and unpublished, between 1898 and 1901.16 In this section I present 
three groups of criticisms that Russell developed of Dedekind’s non-​eliminative 
structuralism in these years.

2.1.  Russell’s Earliest Criticisms:  
The Priority of Cardinals over Ordinals

Russell first read Dedekind’s Was sind und was sollen die Zahlen? in April 1898.17 
Even on his first reading, Russell was alert to the non-​eliminative structuralist 
aspect of Dedekind’s work, and he found it untenable. In particular, from this 

	 15	 See Schiemer’s chapter on Carnap for details and references on the structuralist aspects of 
Carnap’s “general axiomatics project” and his pre-​Syntax philosophy of mathematics. Schiemer’s 
chapter also clearly lays out Russell’s influence on Carnap.
	 16	 Since many of Russell’s criticisms can be adequately understood only in the context of the par-
ticular views and preoccupations he had at the time of their writing, I will discuss the chronology 
of Russell’s criticisms of Dedekind’s structuralism. However, I cannot here give a full defense of the 
chronology, nor can I give a complete account of Russell’s rather complex history of reading and 
writing about Dedekind in this period. I hope to come back to these issues in more detail elsewhere.
	 17	 See “What Shall I Read?” (Russell [1891–​1902] 1983).
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first reading, he responded critically to the passage in Was sind where Dedekind 
presents his version of non-​eliminative structuralism. The passage (§73) reads as 
follows:

If in the consideration of a simply infinite system N set in order by a transforma-
tion φ we entirely neglect the special character of the elements; simply retaining 
their distinguishability and taking into account only the relations to one an-
other in which they are placed by the order-​setting transformation φ, then are 
these elements called natural numbers or ordinal numbers or simply numbers, 
and the base-​element 1 is called the base-​number of the number-​series N. With 
reference to this freeing the elements from every other content (abstraction) we 
are justified in calling numbers a free creation of the human mind.

This act of “freeing the elements from every other content” is now often called 
“Dedekind abstraction.” It purportedly allows one to move from a representation 
of a particular model of the Peano axioms to a new independent object—​what we 
might call the “structure” shared by all models, or simply “the numbers.”

From his earliest reading,18 Russell highlighted two features of Dedekind’s 
view. First, what Dedekind calls “natural numbers” or simply “the numbers” are 
finite ordinal numbers, not cardinals. Dedekind thus defines the finite ordinals 
independently of defining cardinal numbers, and in fact he defines the finite car-
dinals in terms of the ordinals. (That is, Dedekind shows that there are n Fs just in 
case the Fs can all be paired off 1-​1 with the ordinals from 1 to n. See Dedekind 
[1888] 1963, §161.) Second, Dedekind believes that the natural numbers are 
arrived at by what he calls “abstraction.”

I’ll say more about the second feature in the following two sections. 
Concerning the first feature, Russell argued in the following way.19 To say of the 
Fs and the Gs that they have the same cardinal number requires only the notion 
of a “correlation,” i.e., a 1-​1, onto relation. Modifying Russell’s terminology and 
symbols for readability, Russell suggests the following:

The cardinal number of Fs = the cardinal number of Gs iff there is a 1-​1, onto 
relation from the Fs to the Gs.

On the other hand, to say of x (under some relation R) and y (under some re-
lation R′) that they have the same ordinal number requires both the notion of a 

	 18	 These two features are highlighted in a long marginal comment Russell made in April 1898 in 
his copy of Was sind next to §73. This copy is available at the Russell archives at McMaster University.
	 19	 This criticism was articulated in a set of notes from October 1900 (available at McMaster: RA 
230.030870), and written out in prose in §232 of POM, which was written in November 1900.
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correlation and the notion of a “serial relation.” Again modifying Russell’s termi-
nology and symbols for readability, Russell holds:

The ordinal number of x = the ordinal number of y iff x is in the co-​domain, but 
not the domain20 of the serial relation R, and similarly for y and the serial rela-
tion R′, and there is a correlation S from the field of R to the field of R′, such that 
for all x′, y′, x″, y″, if x′Sx″ and y′Sy″, then x′Ry′ iff x″R′y″.

Neither of these definitions presupposes the other. Thus, Russell holds, the 
ordinals need not be defined using the notion of a cardinal number, nor do the 
cardinals need to be defined using the notion of an ordinal number (as Dedekind 
in essence does). Nevertheless, since under Russell’s proposed analysis of the car-
dinal number of Fs = the cardinal number of Gs and the ordinal number of x = the 
ordinal number of y, the first proposition requires only the notion of a correla-
tion, and the second requires that same notion and a further one (namely, of a 
serial relation), the notion of a cardinal number is simpler than that of an ordinal 
number. Thus, the cardinal numbers are prior to the ordinals, when ordered by 
conceptual complexity.

The question of the relative priority of the notion of an ordinal and of a cardinal 
has been a mainstay of philosophical reflection on structuralism since the very 
beginning. Cassirer highlighted and defended Dedekind’s view that the ordinals 
are conceptually prior to the cardinals, criticizing Frege’s and Russell’s alternative 
view (Cassirer 1950, 59ff.). Dummett, in his wide-​ranging, probing, and highly 
influential critical discussion of Frege and Dedekind in his Frege: Philosophy of 
Mathematics, also highlights the issue of the conceptual priority of ordinals and 
cardinals (1991, 53, 293). Dummett criticizes Dedekind and other structuralists, 
who hold that the natural numbers are intrinsically ordinal, and defends the 
Fregean and Russellian view that numbers are intrinsically cardinal.21 Charles 
Parsons has defended structuralism against this objection (2008, §14, 73ff.), as 
have W.W. Tait (1996, §§VI–​VII) and Reck (2013, 159). Given this later history, 
it is very noteworthy that from his very first reading of Dedekind’s book, Russell 
isolated the core philosophical issue of the priority of the cardinal and ordinals 
as a potential objection to Dedekind’s non-​eliminative structuralist theory of the 
natural numbers.

	 20	 A term that is in the co-​domain but not the domain of a relation is a referent but not a relatum 
of the relation, as (for instance) the number 4 is in the finite ordinals up to 4 related by the successor 
relation. It is the “last” term in the series.
	 21	 For Dummett, the structuralist view of the natural numbers as intrinsically ordinal violates 
what has come to be called “Frege’s constraint,” that the definition of a mathematical object (e.g., a 
natural number) should make its canonical application obvious (e.g., its role in giving the cardinality 
of things). This argument was in fact given explicitly by Russell (1919, 9–​10): “We want our numbers 
not merely to verify mathematical formula, but to apply in the right way to common objects. We want 
to have ten fingers and two eyes and one nose . . . and this requires that our numbers should have a 
definite meaning, not merely that they should have certain formal properties.”
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2.2.  Principles of Mathematics, Chapter 30

As we’ve seen, from his very first reading of Was sind, Russell saw clearly the 
philosophical significance of the non-​eliminative structuralist view suggested by 
Dedekind in §73, and focused on two issues: the alleged priority of ordinal over 
cardinal notions, and the philosophical tenability of “Dedekind abstraction.” 
I discussed the first issue in the last section; in this section I turn to the second.

Russell addressed this second issue in earnest in a compressed and difficult-​
to-​interpret passage that, though it was published in 1903 as chapter  30 
(“Dedekind’s Theory of Number”) of POM, was actually written in November 
1900. I believe that it is important to keep this date in mind, since the criticism of 
Dedekind abstraction in chapter 30 was written before Russell adopted his classic 
definition of cardinals as classes of equinumerous classes.22

In §241 of chapter 30, Russell quotes Was sind, §73, where Dedekind presents 
the natural numbers as abstractions from some simply infinite system. He 
objects as follows (I have numbered Russell’s sentences to make later references 
easier, and italicized key phrases):

	 (1)	 Now it is impossible that this account should be quite correct. For it 
implies that the terms of all progressions other than the ordinals are com-
plex, and that the ordinals are elements in all such terms, obtainable by ab-
straction. But this is plainly not the case. A progression can be formed of 
points or instants, or of transfinite ordinals, or of cardinals, in which, as we 
shall shortly see, the ordinals are not elements.

	 (2)	 Moreover it is impossible that the ordinals should be, as Dedekind 
suggests, nothing but the terms of such relations as constitute a progres-
sion. If they are to be anything at all, they must be intrinsically something; 
they must differ from other entities as points from instants, or colours from 
sounds.

	 (3)	 What Dedekind intended to indicate was probably a definition by means 
of the principle of abstraction, such as we attempted to give in the pre-
ceding chapter. But a definition so made always indicates some class of 
entities having (or being) a genuine nature of their own, and not logically 
dependent upon the manner in which they have been defined. The enti-
ties defined should be visible, at least to the mind’s eye; what the principle 
asserts is that, under certain conditions, there are such entities, if only we 
knew where to look for them. But whether, when we have found them, 
they will be ordinals or cardinals, or even something quite different, is not 
to be decided off-​hand.

	 22	 Russell adopted this definition sometime between March and June 1901. See Gregory Moore’s 
introduction to Russell (1993, xxvii).
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It will take a bit of unpacking to understand Russell’s objections.23 I will take the 
three objections in turn, starting with the second.

Objection (2) is directed against the metaphysical commitments that Russell 
finds in Dedekind’s claim that the numbers “retain their distinguishability” de-
spite having no “special character,” standing only in relations to one another. 
Russell’s objections draw on his own reflections on the metaphysics of relations. 
Since the time of his dissertation (in 1896), Russell had been preoccupied with 
an apparent paradox concerning points. Since each point is qualitatively indis-
tinguishable from every other point, points must be distinguished by their re-
lations to other points. If, for instance, there are two congruent triangles ABC 
and A′B′C′, A  differs from A′ inasmuch as it stands in a certain relation to 
BC which A′ does not, and A′ in a certain relation to B′C′ that A  does not. 
But what distinguishes BC from B′C′? A circularity or vicious regress threatens. 
Russell called this the “paradox of relativity”: “a conception of difference without 
a difference of conception” (Russell [1898] 1983, 259; see Griffin 1991, 181ff., 
317ff.; Galaugher 2013, 29ff.).

By 1900, Russell was keen to block this paradox. Russell’s maneuver—​which 
was articulated in a series of papers written in the summer of 1900, and incorpo-
rated into chapter 51 of POM, written in December 1900—​was radical: though 
each point is qualitatively indistinguishable to us, he insisted that points are in 
fact all qualitatively different, even if we cannot detect these intrinsic properties.

And more generally, two terms cannot be distinguished primitively by differ-
ence of relations to other terms; for difference of relation presupposes distinct 
terms, and cannot therefore be the reason why the two terms are distinct. Thus 
if there is any diversity at all, there must be immediate diversity, and this kind 
of diversity occurs between the various points of space. . . . As with people so 
with points: the impossibility of recognizing them must be attributed, not to 
the absence of individuality, but exclusively to our incapacity. (1900a, 255; cf. 
POM §428)

The supposed paradox of relativity concerning points in space, then, contravenes 
a principle that Russell believes holds generally: every term must have intrinsic 
properties peculiar to it, and no two terms can ever be distinguished by relational 
properties alone.

	 23	 There has been some discussion of Russell’s criticisms of Dedekind in §241. Much of this litera-
ture, I believe, misinterprets Russell’s meaning in various ways. For example, Shapiro (1997, 175), in 
a brief discussion, remarks only that Russell’s objection “looks like Frege’s Caesar problem.” In fact, as 
I’ll show, Russell’s objections are quite different from the Caesar problem. See also Dummett (1991, 
51–​52); Tait (1996, §III); Hellman (2004, 570); Reck (2013, 145–​147).
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This reply to the paradox was surely fresh in his mind when he reread §73 of 
Was sind and formulated objection (2). He saw clearly that the structuralist view 
of the natural numbers, as intrinsically identical objects that differ only in their 
relational properties, was exactly like the paradoxical theory of points he rejected. 
Dedekind abstraction purports to take some particular progression, composed 
of terms with intrinsic properties, and form for us a new progression—​the nat-
ural numbers, the structure common to all progressions—​composed of terms 
that lack intrinsic properties. Russell rejects this move: “If they are to be anything 
at all, they must be intrinsically something.”24

In objection (3), Russell argues that, even if Dedekind were correct in holding 
that the natural numbers are defined by “abstraction,” it would not follow that the 
numbers have only the relational properties identified by this definition. This is 
because, on Russell’s view, no definition (whether by abstraction, or otherwise) 
guarantees that the defined entities have only the properties that follow from the 
definition.

In formulating this objection, Russell interprets Dedekind abstraction in an 
idiosyncratic way: as an instance of what he calls definition by the “principle of 
abstraction.” A definition by the “principle of abstraction” is a definition based 
on a principle, such as “Hume’s Principle,” that analyzes an equivalence relation 
into an identity claim about some new entities (see section 1.3).25 In late 1900 
and early 1901, Russell held that these definitions could be justified by a general 
principle, which he called the “principle of abstraction”:

This principle asserts that, whenever a relation, of which there are instances, 
has the two properties of being symmetrical and transitive, then the relation 
in question is not primitive, but is analyzable into sameness of relation to some 
other term; and that this common relation is such that there is only one term 
at most to which a given term can be so related, though many terms may be so 
related to a given term. (POM, §157)

	 24	 Although Russell does not point this out in POM §241, the paradox of relativity emerges in 
non-​eliminativist structuralism in a more direct way. In symmetric structures, such as the integers 
together with addition, there is apparently no non-​circular way to distinguish, say, −1 from 1. This 
paradox has been discussed in the contemporary literature on structuralism: e.g., Keränen (2001) 
and Parsons (2008, 107ff.). Contemporary philosophers have noted the affinity between this paradox 
and Kant’s argument from incongruent counterparts; Russell had noted, a century earlier, an affinity 
between Kant’s argument and the paradox of relativity (POM, §214n).

Of course, Euclidean 3-​space is symmetric in uncountable ways, and so admits of uncountably 
many structure preserving nontrivial automorphisms. So the paradox discussed by Keränen and 
Parsons applies even more radically to space than to the integers. In this sense, this contemporary 
paradox is a special case of the more general paradox of relativity. Again, Russell’s solution would be 
to deny the very possibility of objects with no distinguishing intrinsic properties.
	 25	 Russell in fact defines cardinal numbers in just this way in the first draft of “Logic of Relations” 
(Russell 1900b, §3, proposition 1.4).
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According to this principle, the relation of equinumerosity (for example) between 
the class F and the class G is analyzable into a new relation, is the number of, that 
holds between both F and G and some new object, a cardinal number. Cardinal 
numbers are then defined as those objects to which equinumerous classes stand 
in the is the number of relation. Thus, when Russell was composing objection (3), 
he accepted definition by the “principle of abstraction” as an acceptable form of 
abstraction, and interpreted Dedekind abstraction accordingly.26

Russell’s objection, then, is that though we define the numbers only in terms of 
the structural properties mentioned in the definition, it does not follow that the 
entities defined have only the properties that are mentioned in the definition. As 
Russell put it: “a definition so made always indicates some class of entities having 
(or being) a genuine nature of their own, and not logically dependent upon the 
manner in which they have been defined.” Thus, though we make no mention 
of intrinsic properties in the definition, it does not follow that the defined enti-
ties themselves in fact lack intrinsic properties. A more pedestrian example will 
make this clear. If A and B are full siblings, then—​in accordance with the prin-
ciple of abstraction, since is a full sibling with is an equivalence relation—​A and 
B stand in some common relation to some common third thing—​in this case, 
a common set of parents. We can then define the parents of A and B by abstrac-
tion. But it surely does not follow that A’s and B’s parents have only the property 
of being parents—​they are also intrinsically a certain height and weight. Each 
of them is an “an actual [person] with a tailor and a bank-​account or a public-​
house,” to repurpose a well-​known Russellian passage (§56).

One possible reply to this objection would be to emphasize Dedekind’s claim 
that the numbers are a “free creation of the human mind.” On one possible inter-
pretation of this phrase, Dedekind means that the mathematician, in performing 
Dedekind abstraction, creates a new set of objects.27 These objects, plau-
sibly, would fail to have nonstructural properties because the mathematician, 

	 26	 Though Russell interprets Dedekind abstraction idiosyncratically as an instance of definition 
by the principle of abstraction, I do not believe that Russell’s objection (3) depends on this interpre-
tation. After all, Russell denies that definition by Dedekind abstraction picks out objects with only 
structural properties, not because of some specific feature of definition by the principle of abstrac-
tion, but because of a general feature of definitions in general: it never follows, from the fact that an 
object is defined as φ, that an object is only φ and therefore lacks properties that are not implied by the 
definition.
	 27	 A psychologistic reading of Dedekind is suggested by Dummett 1991; a non-​psychologistic 
reading was first given by Cassirer (and by many others since:  e.g., Reck 2013; Yap 2017). For 
Cassirer’s non-​psychologistic reading of Dedekind, see Reck’s chapter on Cassirer.

Russell, at least in POM and earlier, does not read Dedekind psychologistically. (In this way, 
Russell’s discussion of Dedekind’s structuralism is both more sympathetic and more interesting 
than many later objections, e.g., by Dummett.) Russell’s best reconstruction of Dedekind abstraction 
interprets it as definition from the principle of abstraction, which he took to be a candidate logical 
(not psychological) principle, motivated by a mind-​independent metaphysical fact about equiva-
lence. Indeed, none of the objections that are surveyed in this chapter depend on reading Dedekind 
in a psychologistic way.
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in creating them, removed these intrinsic properties. Russell does not read 
Dedekind in this psychologistic way, and so does not formulate explicitly a re-
sponse to this reply. However, it is clear that Russell would be deeply opposed 
to this way of thinking. We saw already, in his assertion that points do have in-
trinsic properties, even if they are indistinguishable to us, that Russell was deeply 
committed to the mind-​independence of all entities, even mathematical entities. 
What is true is independent of the mind, both in its being, and in its being true. 
In the same vein, things do not come into being by being defined by us. The prin-
ciple of abstraction does not bring new abstract objects into being. It is simply a 
true proposition about mind-​independent reality: “what the principle asserts is 
that, under certain conditions, there are such entities.” Furthermore, the defined 
entities are not under our control; it is emphatically not the case that they have 
only the properties that we give them.

Objection (1)  draws on Russell’s peculiar way of defending the “principle 
of abstraction.” Russell in November 1900 motivated the principle on the 
grounds that it is an explication of the widespread philosophical intuition that 
equality and other relations akin to it (namely, equivalence relations) are “al-
ways constituted by possession of a common property” (§157). If two classes are 
equinumerous, they must have something in common (namely, the property of 
having n members); if two lines are parallel, the two lines must share some fea-
ture (namely, having such and such direction). However, Russell raises a worry 
about this defense. Plausibly, the intuition that equivalence relations are consti-
tuted by possession of a common property could be explicated in this way: for 
any relation R that is transitive, symmetrical, and non-​empty,

(*)	 ∃ ≡ ∃ ( )( )S x y xRy z xSz ySzsuch that ∀ , & .

This appears to be a perfectly correct explication of the intuition, where the 
“common property” is being related by S to z. However, on this explication, the 
right-​hand side of the biconditional does not guarantee the transitivity of the 
relation R, for the following reason. Suppose A is equivalent under R to B, and 
A and B share property P, while B is equivalent under R to C, and B and C share 
property Q. It would therefore not follow that there is any property that A and C 
share. Thus, the fact that two equivalent terms share some property cannot be an 
analysis of what it is to stand in an equivalence relation, since sharing a property, 
in the sense of (*) guarantees only the symmetry, not the transitivity, of R.

Russell blocks this worry by insisting that, in the cases where we want to use 
a principle of abstraction to analyze an equivalence relation, the relation S is 
many-​one: “In order that [the relation R] may be transitive, the relation [S] to the 
common property must be such that only one term at most can be the property 
of any given term” (§157). An example of a many-​one relation is x is the number 



322  Jeremy Heis

of Fs, which could be used to analyze by abstraction the relation equinumerosity; 
an example that is not many-​one is x is a parent of y, which therefore could not 
be used to analyze by abstraction the relation being a full sibling. But what reason 
could be given, for a specific equivalence relation, that would guarantee that the 
relation that holds between the equivalent terms and the common property be 
many-​one? Russell addresses this worry in the context of the relation equality, 
which he analyzes, through the principle of abstraction, in terms of abstract 
magnitudes: Two quantities (for instance, two material bodies A and B) are equal 
(say, in mass) if the body A has the magnitude M and body B has the magnitude 
M. Russell further claims that in this case, the abstractum (the magnitude; in our 
example, a magnitude of M grams) is an “element” of the concreta (the quantities; 
in our example, the two material bodies A and B) from which it can be abstracted 
(POM, §157). The relation between the quantity and the magnitude that it has is 
many-​one, since, Russell argues, it is an “axiom” that only one magnitude can exist 
at a given spatiotemporal place. Thus, there cannot be two magnitudes of a given 
kind that both exist in the location where body A is located. That means that the 
troublesome case that I described in the previous paragraph cannot arise for equal 
quantities and their common properties, and transitivity is guaranteed after all.

The fact that a quantity has one and only one magnitude as its “element,”28 
then, explains why the principle of abstraction can be used to analyze the rela-
tion of equality, and magnitude can be defined by abstraction. Will the same be 
true in the case of the natural numbers, if they are defined by abstraction? We 
saw, in the case of objection (3), that Russell used his particular way of under-
standing definitions by abstraction to try to make sense of Dedekind’s talk of 
“abstraction.” I believe that this is true also of objection (1), and explains why 
he alleges that Dedekind’s procedure can make sense only if ordinals are always 
“elements” of any terms arranged in a progression. Russell writes that Dedekind 
“implies that the terms of all progressions other than the ordinals are complex, 
and that the ordinals are elements in all such terms, obtainable by abstraction” 
(emphasis added).

Let me spell out in some more detail how Russell is interpreting Dedekind’s 
“abstraction.” Each progression, whether it be of natural numbers, points, or 
propositions, stands in an equivalence relation (namely, being isomporphic to) 
to every other progression. Similarly, each element in a progression stands in 
an equivalence relation to every corresponding element in some other progres-
sion. For example, 4, the fourth element of the natural number series, stands 
in an equivalence relation to D, the fourth element in the English alphabet: the 

	 28	 By “element,” Russell most likely here means what he calls a “part” in POM, chap. 16 (“Whole 
and Part”).
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relation is having the same ordinal position in one’s series as.29 Using the abstrac-
tion schema (*), the fact that 4 and D stand in the relation R (having the same or-
dinal position in one’s series as) implies that there is some relation S between 4 and 
D and some abstract object z. The abstract object z is the “position” of 4 and D, 
and the relation S is the relation between 4 and the position that it occupies. But 
why think that the relation between 4 and its position is many-​one?

Russell is probing what is plausibly a vulnerable commitment in Dedekind’s 
picture: what guarantees that a definition by Dedekind abstraction will pick out 
a unique set of objects, the natural numbers?30 For Russell, the only plausible 
reason is if the natural numbers are elements of all the objects that are ordered into 
progressions, just as (he claimed) magnitudes are elements in all quantities. Thus, 
Dedekind requires that “terms of all progressions other than the ordinals are com-
plex, and that the ordinals are elements in all such terms.” But, Russell alleges, this 
is plainly not the case. As Russell emphasizes strongly (§231), the position that a 
term occupies in a series is not intrinsic to the term itself, and there are infinitely 
many possible orderings of, say, the finite cardinals into a progression. In one series 
(1, 2, 3, 4, . . .) 4 is fourth, but in another (1, 3, 5, 7, 9, 2, 4, 6, 8, 10, . . .) 4 is seventh. 
So the cardinal number 4 must contain as an element both the ordinal 4 and the or-
dinal 7, and clearly an infinite number of other elements besides. But this is absurd.

2.3.  Principles of Mathematics, Part II, Chapter 14

Russell returned to Dedekind’s theory of the natural numbers seven months later, 
in June 1901, when he wrote Part II of POM, on cardinal numbers. In this part, 
he presents his classic definition of cardinal numbers as classes of equinumerous 
classes (§111), which he had developed sometime in March to June of 190131—​
after he wrote the texts I discussed in sections 2.1 and 2.2 of this chapter. In POM 
Part II, Russell uses his definition of cardinal numbers to define (in chap. 14) 
the natural numbers (in essence, as classes of equinumerous finite classes). In 
defending this definition, he considers other definitions of the natural numbers 
by abstraction (§122). In this section, he poses the question: “Is any process of ab-
straction from all systems satisfying the five [Peano] axioms . . . logically possible?” 

	 29	 More precisely: the series of numbers up to 4 is ordinally equivalent to the series of letters up to 
D. This is the notion of “likeness,” which Russell defines in POM, §231.
	 30	 This objection is particularly pressing on psychologistic readings of Dedekind. Suppose I take 
some progression and freely create, by abstraction, a new system of objects, the numbers. Suppose 
you take the same progression and freely create a system: need it be the same system as the one 
I freely created? Or suppose I perform the act of abstraction a second time on the same progres-
sion: will I again get the same system of abstract objects? There needs to be some reason why the 
answer to these questions must be yes.
	 31	 See note 22.
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He answers in the negative, giving a series of new objections to theories of abstrac-
tion such as Dedekind’s.32 In this section, I identify three such objections.

The first objection concerns the identity of the abstracta. Suppose Dedekind 
could identify the natural numbers as the unique elements of a progression 
that have merely structural properties. Even so, each of the progressions 0, 1, 
2, . . . and 1, 2, 3, . . . satisfies Dedekind’s definition of a progression, and each can 
make an equally good claim to be composed of elements with merely structural 
properties. So which progression is the numbers?33 As Russell points out, if we 
consider the numbers with respect to their cardinal character, we can distinguish 
these two cases, but Dedekindian structuralists preclude this when they conceive 
of the numbers as having no features besides the structural features they have 
in virtue of being elements in a progression.34 Perhaps, one might contend, the 
numbers are what one gets when one abstracts away the differences between the 
progression 0, 1, 2, . . . and the progression 1, 2, 3, . . . . But this is absurd, for 
then the products of that abstraction—​the numbers themselves—​would have to 
be distinct from the progressions from which they are abstracted: that is, they 
would have to be distinct from every progression of numbers.35

Russell considers, and rejects, one plausible escape from this objection. One 
might insist that the natural numbers are to be identified with neither 0, 1, 
2, . . . nor 1, 2, 3, . . . since the natural numbers are that unique progression that 
has nothing but merely structural, and so no intrinsic, properties. Thus, the first 
element of the natural number progression is neither 0 nor 1, since it is not in-
trinsically anything other than the first element in the progression. But as we saw 
in objection (3) from section 2, Russell denies that possibility: “there is there-
fore no term of a class which has merely the properties defined by the class and 
no others” (§122). So there is no progression in the class of progressions that is 
merely a progression and nothing else.

	 32	 In §122, Russell specifically targets Peano’s view that the natural numbers are defined by ab-
straction from what all progressions have in common. (On the use of definitions by abstraction in 
Peano and his school, see Mancosu 2016, chap. 2.2.1.) He clearly intended his criticisms to support 
his class-​theoretic definition by undermining every definition of the natural numbers “by abstrac-
tion”—​not just Peano’s. Moreover, most of the objections leveled against Peano would, if valid, also 
apply to Dedekind’s definition of the natural numbers by abstraction.
	 33	 This objection arises even on psychologistic readings of Dedekind. For suppose I create the 
numbers, and then pick them out ostensively as the progression that I just created. Still, each progres-
sion can also make an equally plausible claim to being the progression that I just created—​since, if 
I create a new progression by abstraction and call it “the numbers,” I would still be at a loss whether 
the first element is 0 or 1.
	 34	 One reply to this worry is to admit that the progression of numbers, defined by Dedekind ab-
straction from (0, N, S), cannot be identified with either series. However, when we bring in arithmet-
ical operations and define the numbers by Dedekind abstraction from (0, N, S, +, ×), we expand the 
structure and definitively settle on one of the two alternatives. Russell does not consider this reply.
	 35	 POM, §122. More recently, this objection was directed against non-​eliminative structuralists 
by Dummett (1991, 53). Parsons (2008, 76–​78) provides a reply to Dummett, which to me at least is 
convincing. This objection is also articulated, and endorsed, though without reference to POM §122, 
in Hellman (2004, 572).
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There is, however, one way that Russell identifies for Dedekind and other 
abstractionists to get around this objection: they could regard the symbols “0,” 
“successor,” and “number” as really variables:

[One could] regard 0, number, and succession as a class of three ideas belonging 
to a certain class of trios defined by the five primitive propositions. It is very easy 
so to state the matter that the five primitive propositions become transformed 
into the nominal definition of a certain class of trios. There are then no longer 
any indefinables or indemonstrables in our theory, which has become a pure 
piece of Logic. But 0, number and succession become variables, since they are 
only determined as one of the class of trios. (§122)

This of course is the eliminative structuralism that we first encountered in sec-
tion 1.3 in the context of Russell’s discussion of relational types. On this view, 
a sentence of arithmetic is just a universally quantified conditional:  for every 
x, class N, and relation S, if {x, N, S} are an object, class, and relation that sat-
isfy the axioms of arithmetic, then ψ(x, N, S). This brings us to Russell’s second 
objection:  once this eliminative structuralist alternative is clearly articulated, 
Dedekind’s non-​eliminative structuralism becomes unmotivated. Dedekind 
insists that the intrinsic character of the numbers is irrelevant; but this insistence 
is satisfied by the eliminative procedure (whereby arithmetic is about all objects 
that form progressions, regardless of their intrinsic properties), just as much as it 
is satisfied by the non-​eliminative procedure (whereby arithmetic is about some 
sui generis objects with no intrinsic properties).

Nevertheless, eliminative structuralism itself faces one last significant hurdle. 
Even if we construe the primitive symbols of arithmetic as variables, and treat 
every sentence of arithmetic as a claim about every class {x, N, S} that satisfies 
the axioms of arithmetic, “nothing shows that there are such classes as the defini-
tion speaks of ” (§123). Suppose the Dedekindian structuralist were able to evade 
objection (1) from section 2.2 of this chapter, by coming up with a principled 
reason why the relation S between the progression from which the numbers are 
abstracted and the numbers themselves is many-​one. There is still a more funda-
mental worry, which even the eliminative structuralist must face. What justifies 
the claim that there is any relation S at all, or any abstract objects z? Surely, if 
definition by abstraction were creative, and the mathematician’s act of abstrac-
tion produced the abstracta, these existence claims could be satisfied. But Russell 
rejects creative definitions.36 Instead, Russell suggests that the existence claim 
can be justified only by explicitly constructing the numbers from classes. The 
class {0, N, successor}, defined in Russell’s now well-​known way in terms of 

	 36	 Dedekind famously argued that his Gedankenwelt is an instance of a progression ([1888] 1963, 
§66). On Russell’s reception of this argument, see Reck (2013, 147–​149).
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classes of equinumerous finite classes, proves the existence of trios that satisfy 
the Peano axioms. But, now, even eliminative structuralism is unmotivated. For 
once we’ve explicitly constructed in a class-​theoretic way finite cardinals that sat-
isfy the Peano axioms, the extra step of treating sentences of arithmetic in the 
eliminative structuralist way itself feels otiose. And the particular brand of logi-
cism that Russell made famous in the published version of POM, and later in 
Principia, is left as the only plausible philosophy of mathematics.

This last objection to even eliminative structuralist is the very objection that 
Russell famously expressed, almost 20 years later, in his quip about theft and 
honest toil. The sentiments behind this quip have been well studied and elab-
orated in the century since it was written. Far less, unfortunately, has been de-
voted to the wealth of Russell’s thinking that I have laid out in this chapter. I hope 
that this chapter has shown, though, that Russell’s engagement with structuralist 
ideas was far deeper, more extensive, and more complex than a narrow focus on 
the virtues of honest toil would suggest.
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13
 Cassirer’s Reception of Dedekind 

and the Structuralist Transformation 
of Mathematics

Erich H. Reck

For much of the 20th century, Ernst Cassirer was seen as an intellectual historian, 
besides being the last member of Marburg Neo-​Kantianism. More recently, he 
has been rediscovered as an original, substantive philosopher in his own right, 
perhaps even one of the great philosophers of the 20th century. This concerns 
his contributions to the philosophy of science (relativity theory, quantum me-
chanics, etc.), his mature, wide-​ranging philosophy of symbolic forms (leading 
to a “philosophy of culture”), and the ways in which his views position him, in 
potentially fruitful ways, at the intersection of “analytic” and “continental” phi-
losophy.1 In addition, Cassirer was a keen observer of developments in pure 
mathematics, especially of their philosophical significance. There are two sep-
arable, though not unrelated, strands on that topic in his writings. The first 
concerns his reflections on revolutionary changes in geometry during the 19th 
century, culminating in David Hilbert’s and Felix Klein’s works. The second 
strand involves parallel changes in algebra, arithmetic, and set theory, where 
Evariste Galois, Richard Dedekind, and Georg Cantor played key roles.

In this essay the main focus will be on the second of the strands just mentioned, 
and in particular, on Cassirer’s reception of Dedekind, which still deserves more 
attention.2 As we will see, Cassirer was a perceptive reader of Dedekind, arguably 
still his subtlest philosophical interpreter. What he was concerned about with 

	 1	 For the philosophy of physics, cf. Ryckman (2005) and French (2014), more generally also Ihmig 
(2001) and Part I of Friedman and Luft (2017); for the philosophy of culture, cf. Recki (2004), Luft 
(2015), and Part III of Friedman and Luft (2017); for Cassirer’s position between the analytic and 
continental traditions, cf. Friedman (2000) and Part II of Friedman and Luft (2017). For more ge-
neral discussions, see also Ferrari (2003) and Kreis (2010).
	 2	 Cf. Reck (2013), chapter  4 of Biagioli (2016), Yap (2017), and Heis (2017) for some recent 
discussions of the topic. For Cassirer’s views on geometry, Klein’s Erlangen program, and Hilbert’s 
axiomatics, which have found more attention in the literature already, cf. Ihmig (1997, 1999), 
Mormann (2007), Heis (2011), most of Biagioli (2016), and Schiemer (2018). I will come back to the 
latter briefly later in this essay.

Erich H. Reck, Cassirer’s Reception of Dedekind and the Structuralist Transformation of Mathematics In: The Prehistory 
of Mathematical Structuralism. Edited by: Erich H. Reck and Georg Schiemer, Oxford University Press (2020). © Oxford 
University Press.
DOI:10.1093/oso/9780190641221.003.0013
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respect to mathematics in general was the introduction of “ideal elements”, to-
gether with related, very significant expansions of its scope over time. This led 
to a reconsideration of its subject matter, including the rejection of the tradi-
tional view that mathematics is “the science of quantity and number”. Cassirer’s 
discussion of this topic often took place under the label of “concept formation” 
in science; and he identified a corresponding shift from “substance concepts” to 
“function concepts”, seen as culminating in the 19th and early 20th centuries. 
What he arrived at with such considerations was, in later terminology, a struc-
turalist conception of mathematical objects; and that conception was rooted 
in observations about mathematical methodology. Dedekind’s work was deci-
sive for Cassirer since he saw in it the clearest and most powerful example of the 
structuralist “unfolding” of mathematics, i.e., of the systematic, mature develop-
ment of older structuralist “germs” in it.3

This essay will proceed as follows: first, an outline of Cassirer’s overall per-
spective on mathematics will be provided. In the second section, we will turn to 
a brief summary of Dedekind’s relevant contributions, one in which their crucial 
but also controversial structuralist dimension will be highlighted. Third, we will 
see how Cassirer’s sympathetic reception of Dedekind’s structuralism contrasts 
sharply with criticisms and dismissals by other philosophers, starting with Frege 
and Russell. This will lead to some historically grounded and philosophically 
significant observations about “existence,” “determinateness,” and “givenness” 
in modern mathematics. In the fourth section, several aspects of Cassirer’s own 
views about structuralism, related to but also going beyond Dedekind, will be 
discussed. The latter will include a deeper motivation for structuralism than is 
usually provided today; some original views about the role of constructions in 
structuralist mathematics, together with its historical “unfolding”; and his insist-
ence on the fact that the metaphysics and the methodology of mathematics, or of 
any science for that matter, should be viewed as inseparable. A brief conclusion 
will round off the essay.

 1.  Cassirer’s Overall Perspective on Mathematics

Dedekind’s contributions to mathematics play a prominent role in Cassirer’s 
writings from early on. The first clear expressions of this fact occurs in his 
survey article “Kant und die moderne Mathematik” (1907), the second in his 
first systematical book, Substanzbegriff und Funktionsbegriff (1910). Dedekind 
remains an important reference point later on, e.g., in Die Philosophie der 

	 3	 A second aspect of Dedekind’s work important for Cassirer was his logicism. While not unre-
lated, I will leave it largely aside here; cf. Reck and Keller (forthcoming) for more.
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Symbolischen Formen, vol. 3 (1929) and in The Problem of Knowledge, vol. 
4 (1950).4 The general context is Cassirer’s discussion, in the relevant parts of 
these works, of the rise of modern mathematics and mathematical science—​
from Kepler’s, Galilei’s, and Descartes’s innovative “mathematization” of nature, 
through the introduction of the integral and differential calculus by Leibniz, 
Newton, and their followers, to a number of developments in the 19th century.

With respect to the emergence of modern mathematics, there are two main 
strands one can distinguish: the gradual acceptance and systematization of var-
ious new geometries (projective, elliptic and hyperbolic, etc.), leading to David 
Hilbert’s formal axiomatics and Felix Klein’s “Erlangen program”; and the par-
allel expansion and diversification of algebra and arithmetic (complex numbers, 
Galois theory, Hamilton’s quaternions, new conceptions of the real numbers, 
etc.), which brought with it the rise of set theory (including Cantor’s transfinite 
numbers) and the replacement of Aristotelian logic by modern mathematical 
logic (Boole, Frege, Peano, Russell, and others). One noteworthy component 
of both strands is the introduction and systematic use of “ideal elements” in 
modern mathematics, such as points at infinity in projective geometry or, earlier, 
the complex numbers.

Cassirer was not the only philosopher surveying and analyzing these 
developments at the time. In fact, in this respect he followed his teachers in the 
Marburg School: Hermann Cohen and Paul Natorp (cf. Cohen 1883 and Natorp 
1910). However, both Cohen and Natorp make the concept of the infinites-
imal central to their accounts of science, while Cassirer shifts to a different per-
spective. He fully accepts the “arithmetization of analysis” by Cauchy, Bolzano, 
Weierstrass, Cantor, Dedekind, and others, with its replacement of infinitesimals 
by the familiar ε-​δ treatment of limits. Unlike Cohen and Natorp, he also 
emphasizes that set theory and modern logic are natural next steps in this devel-
opment, just as Hilbert’s and Klein’s approaches are with respect to unifying the 
new geometries. Moreover, Cassirer explicitly endorses Cantor’s and Dedekind’s 
emphasis on “mathematical freedom”, i.e., the fact that modern mathematics has 
gone far beyond what is suggested in applications to nature and is exploring rad-
ically new “conceptual possibilities”.5

What all these developments require, if we want to account for them systemat-
ically, is a novel conception of mathematics with respect to both its methodology 
and its subject matter. In Cassirer’s own words:

	 4	 Cassirer mentions Dedekind in other writings too, including his early book on Leibniz (1902), 
his monumental series, Das Erkenntnisproblem, vols. 1–​3 (1906–​1910), and some of his later works, 
e.g., An Essay on Man (1944). But Cassirer (1907, 1910, 1929, 1950) will be the main sources of evi-
dence for me, since they contain the most relevant and extensive discussions.
	 5	 For the idea of “mathematical freedom,” cf. Tait (1996), for the exploration of new “conceptual 
possibilities,” Stein (1988). (While in line with Cassirer’s approach, neither of them mentions him.)
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Mathematics is no longer—​as it was thought of for centuries—​the science of 
quantity and number, but henceforth encompasses all contents for which com-
plete law-​like determinateness and continuous deductive interconnection is 
achievable. (Cassirer 1907, 40, my trans.)

It should be clear what is given up here, namely the view of mathematics as “the 
science of quantity and number”, with its roots going back to Euclid. But what 
does Cassirer have in mind when he writes about “complete law-​like determi-
nateness” and “deductive interconnection”? Presumably these are meant to en-
compass the new developments in geometry, algebra, and arithmetic already 
mentioned. But how exactly; and what are some specific examples?

As we will see soon, it is Dedekind’s treatment of the natural numbers and the 
real numbers that serves as the new paradigm for Cassirer here. It is primarily, 
although not exclusively, with those examples in mind that he writes:

Here we encounter for the first time a general procedure that is of decisive 
significance for the whole formation of mathematical concepts. Wherever a 
system of conditions is given that can be realized in different contents [das sich in 
verschiedenen Inhalten erfüllen kann], we can hold on to the form of the system 
as an invariant, putting aside the difference in contents, and develop its laws de-
ductively. (Cassirer [1910] 1923, 40, trans. modified)

As a relevant “system of conditions”, consider Dedekind’s characterization of the 
real numbers in terms of the concept of a continuous ordered field; and as two 
ways of “realizing” these conditions, take Dedekind’s construction via the system 
of cuts on the rational numbers and Cantor’s alternative construction via equiv-
alent classes of Cauchy sequences (more on both later). The “invariant” to which 
we hold on in this case is “the real numbers”; and we “develop their laws deduc-
tively” based on Dedekind’s definitions. This, then, is a paradigm of “law-​like 
determinateness” and “logical interconnection”.

Cassirer does not call the resulting “invariant”, or the system of abstract 
objects thereby characterized, a “structure”. But he comes close, e.g., when he 
writes:

In this way we produce a new “objective” formation [Gebilde] whose structure 
[Struktur] is independent of all arbitrariness. But it would be uncritical naïveté 
to confuse the object thus arising with sensuously real and actual things. We 
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cannot read off its “properties” empirically; nor do we need to, for it is revealed 
in all its determinateness as soon as we have grasped the relation from which it 
develops in all its purity. (1910, 40–​41, trans. modified)

In the example just used, the “objective formation” is the system of real numbers 
as introduced by Dedekind—​which “has”, or alternatively “is”, a certain struc-
ture. The fact that its “determinateness” is independent of empirical facts corres-
ponds to the “mathematical freedom” Dedekind and Cantor emphasized. And 
the resulting “purity” has to do with the fact that all of this can be done in “pure 
logic” for both Dedekind and Cassirer. Finally, what is crucial about this concep-
tion of mathematics for Cassirer is that it is applicable equally to older, seemingly 
concrete parts of mathematics, such as elementary arithmetic or Euclidean ge-
ometry, and to novel, more abstract parts involving “ideal elements”, e.g., com-
plex numbers and points at infinity—​both can now be understood as concerning 
(relational or functional) structures. Along such lines, pure mathematics in its 
entirety concerns “ideal” objects.

In Cassirer’s 1910 book, Substanzbegriff und Funktionsbegriff, the conception 
of pure mathematics and mathematical science that results is characterized as 
involving “function concepts”, as opposed to “substance concepts”. Before exam-
ining further how he understands that distinction, let me complete my initial 
survey of Cassirer’s perspective on mathematics throughout his career. While the 
focus in his 1910 book is on “scientific cognition”, Cassirer broadens his point of 
view considerably during the 1920s and 1930s, by developing his wide-​ranging 
philosophy of symbolic forms. Basically, a “symbolic form” is a way of “objecti-
fying” various things, or better, a way of “constituting” both subjects and objects; 
and Cassirer now identifies several of them as integral parts of human culture.6 
The symbolic form at play in mathematical science, especially in its modern 
shape, remains a prime example (in some sense the most advanced example, al-
though all are interdependent in the end); but there is also a variety of others, 
including mythical and religious thought, ordinary language and ordinary 
knowledge, art, history, law, technology, etc. (in an open-​ended list).

According to Cassirer’s mature position, human thought always involves sym-
bolic processes, i.e., various ways of determining, constituting, and presenting 
things, be it in science or in other cultural spheres. The primary foil in this con-
nection, i.e., the view to which he is fundamentally opposed, is a kind of naive 
realism according to which objects are simply “given” to subjects in experience, 
without any symbolic mediation or constitution (with nature already “cut at its 

	 6	 What exactly a “symbolic form” is, or how Cassirer understands the underlying notion of 
“symbol,” is a complex question. Roughly, a “symbolic form” is a system of signs, rules, and practices 
used to represent, and constitute in the first place, aspects of the world or of oneself. For more, cf. 
Cassirer (1923, 1927, 1929), Ferrari (2003), chapter 6, and much of Kreis (2010).
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joints”, as it were). Cassirer follows in Kant’s footsteps in this respect, and more 
specifically, his “critical” approach to philosophy” (in the form adopted by the 
Marburg School).7 According to how he develops that position further, from the 
1920s on, his focus on the symbolic constitution of subjects and objects requires 
close attention to logical and methodological issues.

Cassirer calls the general perspective that results “logical idealism”. With his 
original example of mathematics in the foreground (although the core points 
apply more generally), he characterizes it as follows:

Logical idealism starts from an analysis of mathematical “objects” and seeks 
to apprehend the peculiar determinacy of these objects by explaining them 
through the peculiarity of the mathematical “method,” mathematical concept 
formation, and the formulation of its problems. (Cassirer [1929] 1965, 405, 
trans. modified slightly)

Cassirer’s paradigm in the case of pure mathematics, i.e., his main inspiration 
and illustration, remains Dedekind besides Cassirer 1929, cf. Cassirer 1950 and 
1999. And it is to Dedekind’s (methodological and metaphysical) structuralism 
that we now turn in more detail.

2.  Dedekind’s Structuralism and Its Critical Reception

The two texts by Dedekind on which Cassirer focuses, like most later philosophers 
of mathematics, are his 1872 essay, Stetigkeit und irrationale Zahlen, on the real 
numbers ℝ, and his 1888 essay, Was sind und was sollen die Zahlen?, on the nat-
ural numbers ℕ.8 In both, Dedekind does exactly what we saw Cassirer high-
light:  he formulates “systems of conditions” that can be “realized in different 
contents”; and he considers a corresponding “objective formation”, i.e., an ab-
stract structure that is logically and fully determined by the system of conditions.

In the 1872 essay, the relevant “system of conditions”—​which defines a (higher-​
order) concept—​is that for a “continuous ordered field”. Actually, Dedekind 
introduced the concept of a field (Körper) already earlier, in his writings on al-
gebra and algebraic number theory.9 What he adds now is the concept of conti-
nuity (Stetigkeit) (or line-​completeness). Famously, the latter is defined in terms 

	 7	 Kant’s “Copernican Revolution” plays a central role here; cf. Keller (2015). With respect to my 
general understanding of Cassirer, and this point especially, I owe a big debt to Pierre Keller.
	 8	 Somewhat surprisingly, Cassirer does not comment on Dedekind’s important contributions to 
algebra, algebraic number theory, etc., while he mentions some closely related works, e.g., by Galois 
and Hamilton. Cf. Reck (2016) for connections between all of Dedekind’s contributions.
	 9	 Cf. the essay on Dedekind in the present volume, co-​authored by José Ferreirós and me.
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of Dedekind’s concept of cut. Dedekind then considers the system of all cuts on 
the rational numbers ℚ, endowed with a corresponding ordering and field op-
erations (induced by those on ℚ), and he shows that that system is a continuous 
ordered field. He is well aware that alternative such systems can be constructed 
too, most prominently that of all equivalence classes of Cauchy sequences on ℚ, 
as Cantor and others had done. In other words, the “conditions” for being a con-
tinuous ordered field are “realized” by several systems. In a final step, Dedekind 
introduces “the real numbers” as a separate “pure” system corresponding to the 
system of cuts (isomorphic to but not identical with it); and he calls its introduc-
tion an act of “creation”.10

Implicit in the procedure of Dedekind’s 1872 essay, in the introduction of the 
system of cuts on ℚ, are two assumptions: first, that we have the (infinite) system 
of all rational numbers available; second, that we can perform certain “logical” 
or set-​theoretic constructions on it (essentially by forming the power-​set of ℚ). 
A main aim of Dedekind’s 1888 essay, Was sind und was sollen die Zahlen?, is to 
provide a framework in which both of these assumptions can be justified fur-
ther, i.e. a general theory of sets (Systeme) and functions (Abbildungen).11 Within 
that framework, he then formulates another crucial “system of conditions”, 
by defining the (higher-​order) concept of a “simply infinite system”. The latter 
depends, in turn, on several previously introduced concepts that are all “logical” 
(the concept of “infinity” and the more technical concept of “chain”). After that, 
he gives an argument that there are simply infinite systems (involving “thoughts”, 
“thoughts of thoughts”, etc.), parallel to his construction of the system of cuts 
on ℚ in 1872. And at that point, Dedekind adds a step not present in his earlier 
essay yet (although it can be supplemented retrospectively). Namely, he proves 
that any two simply infinite systems are isomorphic (his famous categoricity the-
orem). Finally, he uses both results to justify the “free creation”—​via a process 
of “abstraction”—​of a system that deserves to be called “the natural numbers”. 12

	 10	 In Dedekind’s own words: “Whenever, then, we have to do with a cut (A1, A2) produced by no 
rational number, we create a new, an irrational number α, which we regard as completely defined by 
this cut (A1, A2); we shall say that the number α corresponds to this cut, or that it produces this cut” 
(Dedekind 1872, 15).
	 11	 The justification of the two assumptions mentioned remains implicit, however. Dedekind does 
not formulate basic laws for his set-​ and function-​theoretic constructions; nor does he explicitly con-
struct ℚ from ℕ, although he was familiar with how to do so. Cf. Reck (2003, 2016) for details.
	 12	 In Dedekind’s own words again: “If in the consideration of a simply infinite system N set in 
order by a mapping φ, we entirely disregard the particular character of the elements, retaining merely 
their distinctness, and taking into account only the relations to one another in which they are placed 
by the order-​setting mapping φ, then are these elements called natural numbers or ordinal numbers or 
simply numbers, and the base-​element 1 is called the base-​number of the number-​series N. With ref-
erence to this freeing the elements from every other content (abstraction) we are justified in calling 
numbers a free creation of the human mind” (Dedekind 1888, 68).
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The natural way to understand Dedekind’s talk of “free creation” (although 
not an uncontroversial one) is the following: by a kind of “abstraction” we move 
from a previously constructed, relatively concrete system of objects (a particular 
continuous ordered field, a particular simply ordered system) to a new system 
that, while isomorphic, is distinct and more basic (“pure”, more abstract, de-
fined structurally). Understood as such, Dedekind’s position amounts to a ver-
sion of “non-​eliminative structuralism” (in terminology introduced by Charles 
Parsons).13 In the next section, I will provide further evidence that this is how 
Cassirer understands Dedekind, also that it is the position he adopts himself. 
It is striking, then, that most interpreters have had a very different, more crit-
ical reaction. Or rather, while almost all readers of Dedekind have accepted his 
technical contributions to the foundations of mathematics (his definitions of 
cut, continuity, infinity, simple infinity, his construction of the system of cuts, his 
categoricity theorem for simple infinities, etc.), his informal, more philosophical 
views about “abstraction” and “free creation”, together with the resulting struc-
turalism, have often been seen as problematic.

Bertrand Russell’s critical reaction to Dedekind’s structuralism is a good early 
illustration, one that was also highly influential. Basically, Russell could not make 
sense of objects introduced purely “relationally”, like Dedekind’s natural num-
bers, i.e., what Russell calls the finite “ordinals”. As he puts it in his 1903 book, The 
Principles of Mathematics:

IIt is impossible that the ordinals should be, as Dedekind suggests, nothing but 
the terms of such relations as constitute a progression. If they are to be anything 
at all, they must be intrinsically something. (Russell [1903] 1992, 249)

Russell assumes here, without further argument, that any object must have an 
“inner nature”, one that goes beyond purely relational or structural properties 
(an assumption other philosophers have found plausible too). Hence, he finds 
the notion of an abstract or pure structure unintelligible. The other side of the 
coin is that he finds Dedekind’s notion of “abstraction” unclear and unaccept-
able. In an attempt to be charitable, he concludes: “What Dedekind presents to 
us is not the numbers, but any progression [i.e., simply infinite system]: what he 
says is true of all progressions alike” (249). He then suggests using his own “prin-
ciple of abstraction” instead, which amounts to the construction of the natural 
numbers in terms of equivalence classes of classes, as is well known. But this will 

	 13	 Cf. Reck (2003) for further details.​
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not do for Dedekind’s purposes, because Russell’s form of “abstraction” does not 
lead to a system isomorphic to the original one.14

A second philosopher whose early criticisms of Dedekind were quite influ-
ential is Gottlob Frege. In Frege’s Grundgesetze der Arithmetik, volume 2, also 
published in 1903, he considers Dedekind’s theory of the real numbers. He 
thereby lumps Dedekind with several other thinkers (Stolz, Heine, Cantor, etc.) 
who talk about the mental “creation” of mathematical objects. In Frege’s view, 
this is problematic for at least two reasons: First, it seems to lead to a subjec-
tivist, perhaps even solipsistic position in the end. Second, it is in danger of being 
inconsistent; and this is especially so if the “creation” at issue is not backed up 
by explicit principles or basic laws (like the ones Frege formulates for his own 
approach). Frege is also critical of Dedekind’s talk of set formation in his 1888 
essay in terms of “mental” operations, since he sees that as problematically 
psychologistic too. Finally, Frege and Russell take the application of the natural 
numbers as cardinal numbers to be more basic than their ordinal use. Their def-
inition as cardinal numbers, in the form proposed by both of them, thus appears 
more justifiable and appropriate.15

Frege’s and Russell’s criticisms of Dedekind’s views, especially of his remarks 
about “abstraction” and “free creation”, produced many echoes in later philos-
ophy. A particularly explicit and stark example occurs in Michael Dummett’s 
1995 book, Frege: Philosophy of Mathematics. In that book, both Frege and Russell 
are appealed to as authorities, specifically with their arguments just mentioned, 
in support of Dummett’s claim that Dedekind’s position amounts to “mystical 
structuralism”—​clearly a position not to be taken seriously. Finally, even after 
the re-​emergence of a variety of structuralist positions in the philosophy of 
mathematics from the 1960s on, the corresponding authors (Paul Benacerraf, 
Michael Resnik, Stewart Shapiro, Geoffrey Hellman, and others) have remained 
suspicious of Dedekind’s original, seemingly psychologistic ways of putting 
things, while appropriating him as a predecessor more generally. In other words, 
even in the writings of self-​proclaimed structuralists, Frege’s and Russell’s early 
criticisms still reverberate strongly.16 This is in striking contrast to Cassirer’s 
sympathetic reception of Dedekind, which we consider next.

	 14	 While Russell is dismissive of Dedekind’s structuralist position in his 1903 book, unpublished 
manuscripts show that he was more sympathetic originally and that his dismissive stance was the last 
of several stages through which he went; cf. the essay by Heis in this collection for details.
	 15	 For more details concerning Frege’s reaction to Dedekind, cf. Reck (2019). As suggested in that 
article, it might be possible to defend Dedekind by formulating both “construction” and “abstraction” 
principles for him, although it is questionable if this can be done “purely logically.”
	 16	 Cf. Reck (2013) for further details on Dedekind’s reception, including by Frege, Russell, 
Dummett, and later structuralists. In mathematics, his writings were received more positively, e.g., by 
Ernst Schröder, David Hilbert, Ernst Zermelo, and Emmy Noether. But this was also not universal; 
and his remarks about “abstraction” and “free creation” were often simply ignored in that context.
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3.  Cassirer’s Sympathetic Reception of Dedekind

As previously mentioned, Cassirer takes Dedekind’s approach to the natural and 
real numbers to be essentially correct, even paradigmatic, already in 1907, only 
a few years after Frege’s and Russell’s criticisms. He also defends Dedekind ex-
plicitly against their criticisms, arguing that his approach is superior to theirs. 
Concerning the natural numbers, this defense includes taking an “ordinal” ap-
proach to be as basic as, and in some respects more fundamental than, a “car-
dinal” approach. This leads Cassirer to the following remark:

[Dedekind showed that] in order to provide a foundation for the whole of arith-
metic, it is sufficient to define the number series simply as the succession of 
elements related to each other by means of a certain order—​thereby thinking 
of the individual finite numbers, not as “pluralities of units,” but as character-
ized merely by the “position” they occupy within the whole series. (Cassirer 
1907, 46)

The conception of natural numbers as “pluralities of units” is the traditional 
one traceable back to Euclid. It constitutes both a “cardinal” approach and a 
“substance-​based” view, in Cassirer’s terminology. As such, it is inferior to, and to 
be replaced by, Dedekind’s “ordinal” and “function-​based” conception, in which 
the natural numbers are treated simply as “positions” in a series.

With this characterization of natural numbers as “positions”, we have 
arrived at Cassirer’s own structuralism. In his 1910 book, he adds the fol-
lowing about it:

It becomes evident that the system of numbers as pure ordinal numbers can be 
derived immediately and without circuitous route through the concept of class; 
since for this we need to assume nothing but the possibility of differentiating a 
sequence of pure thought constructions by different relations to a determinate 
base element, which serves as a starting point. The theory of the ordinal num-
bers thus represents the essential minimum that no logical deduction of the 
concept of number can avoid. (Cassirer [1910] 1923, 53, trans. modified)

It is, of course, Frege and Russell who define the natural numbers “through the 
concept of class”. One reason for seeing Dedekind’s ordinal conception as supe-
rior is that, instead of using such a “circuitous route”, it brings out “the essential 
minimum” on which arithmetic relies. (Cassirer’s point is confirmed by the pos-
sibility, and now standard practice, of developing arithmetic simply based on the 
Dedekind-​Peano axioms.) With respect to the real numbers, he remarks along 
related lines:
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We thus see that, to get to the concept of irrational number, we do not need to 
consider the intuitive geometric relationships of magnitudes, but can reach this 
goal entirely within the arithmetic realm. A number, considered purely as part 
of a certain ordered system, consists of nothing more than a “position.” ([1910] 
1923, 49, my trans.)

In this case the traditional conception, thus Cassirer’s foil, starts from an appeal 
to intuitively given geometric magnitudes, a conception widely shared well into 
the 19th century. That conception gets replaced by Dedekind’s purely “arith-
metic”, or even “logical”, approach in terms of cuts, continuity, etc.

What Dedekind has thus provided, as noted by Cassirer explicitly, is “the es-
sential conceptual characterization” for both ℕ and ℝ (1907, 53); and in doing 
so, he has provided the “logical foundations of the pure concept of number” 
([1910] 1923, 35). This goes significantly beyond Frege’s and Russell’s class-​based 
constructions, in his opinion. Remember also Cassirer’s use of the term “posi-
tion” (in the two preceding passages, among others) to describe the resulting 
conception. This is more than 50  years before, in the 1960s, Paul Benacerraf 
reopened the debate about structuralism in English-​speaking philosophy of 
mathematics; and it is more than 70 years before, from the 1980s on, Michael 
Resnik, Stewart Shapiro, and others started to use that term prominently to char-
acterize non-​eliminative structuralism.17

Earlier we encountered Russell’s core objection to a non-​eliminative structur-
alist conception, based on his assumption that numbers, like all objects, must be 
“intrinsically something”. Cassirer takes up this point directly, as follows:

If the ordinal numbers are to be anything, they must—​so it seems—​have an 
“inner” nature and character; they must be distinguished from other entities by 
some absolute “mark,” in the same way that points are different from instants, 
or tones from colors. But this objection mistakes the real aim and tendency of 
Dedekind’s formation of concepts. What is at issue is just this: that there is a 
system of ideal objects whose content is exhausted in their mutual relations. 
The “essence” of the numbers consists in nothing more than their positional 
value. (Cassirer [1910] 1923, 39, trans. modified)

In Cassirer’s eyes, Russell’s view that objects have to be distinguished by some 
“absolute mark” is unwarranted. But more than that, it shows Russell to hold on 

	 17	 Cf. Reck and Price (2000) for references. One may wonder whether there was a direct influence 
in this connection. I am not aware of any references to Cassirer in published works by Benacerraf, 
Resnik, or Shapiro. But in Benacerraf ’s dissertation (on logicism), Cassirer’s use of “position” in his 
1910 book is quoted in a footnote (Benacerraf 1960, 162), as pointed out to me by Sean Walsh.
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to an older, obsolete, “substance-​based” view (despite his commendable intro-
duction of a “logic of relations”, which Cassirer praises and adopts himself). This 
is what makes Russell’s position, and similarly Frege’s, less adequate to modern 
mathematics than Dedekind’s.18

Cassirer responds to the psychologism change against Dedekind—​raised 
by Frege and, more vehemently, by neo-​Fregeans like Dummett—​as well. As 
Cassirer understands him, Dedekind’s appeal to “abstraction” and “free creation” 
should not be interpreted along problematic psychologistic lines. In fact:

[In Dedekind’s works] abstraction has the effect of a liberation; it means log-
ical concentration on the relational system, while rejecting all psycholog-
ical accompaniments that may force themselves into the subjective stream of 
consciousness, which form no constitutive moment [sachlich-​konstitutives 
Moment] of this system. ([1910] 1923, 39, trans. modified)

By taking Dedekind abstraction to involve “logical concentration on the rela-
tional system”, Cassirer points to its logical and structural nature. This is what 
the critics, with their subjectivist interpretation of Dedekind’s remarks about 
“thought”, “abstraction”, “free creation”, etc., miss. It also reveals another respect 
in which his approach is superior, according to Cassirer’s assessment.

Dedekind’s talk of “free creation”, in particular, is taken by his critics to imply 
that numbers exist as “mental entities” for him, i.e., in the subjective conscious-
ness of people thinking about them. Cassirer rejects such a reading, as just 
noted.19 Nor does he accept, however, that numbers exist “out there” in some 
crude realist sense. For him, both of those options misrepresent modern math-
ematics. What matters instead is “complete logical determinateness” (Cassirer 
1907, 49), which he understands in a sense tied to mathematical methodology. In 
the case of introducing the real numbers by means of cuts, Cassirer clarifies this 
point as follows:

The “existence” of an irrational number in Dedekind’s sense is not intended to 
mean more than such determinateness: its “being” consists simply in its func-
tion of marking a possible division of the realm of rational numbers and thus of 
a “position.” (Cassirer 1907, 49 n. 26, my trans.)

	 18	 As discussed in the essay by Jeremy Heis in the present volume, Russell made other noteworthy 
contributions to the rise of 20th-​century structuralism, however.
	 19	 For more on Cassirer’s defense of Dedekind against the psychologism charge, cf. Yap (2017).
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In Cassirer’s 1910 book, the point is explained further:

The “things” referred to in this treatment are not posited as independent 
existences [selbständige Existenzen] present prior to any relation, but they gain 
their whole being [Bestand], insofar as it is of any concern for the arithmetician, 
first in and with the relations predicated of them. (Cassirer [1910] 1923, 36, 
trans. modified)

Similarly two pages later in the same text:

The whole “being” of numbers rests, along these lines, upon the relations which 
they display within themselves, and not upon any relations to an outer objective 
reality [gegenständliche Wirklichkeit]. They need no foreign “basis” [Substrat], 
but mutually sustain and support each other insofar as the position of each in 
the system is clearly determined by the others. (38, trans. modified)

Cassirer’s reference to what “concerns the arithmetician”, i.e., what matters in 
terms of mathematical methodology, is significant here. So is his rejection of 
the view that any “outer objective reality” is involved, either mental or physical. 
Finally, noting that numbers “need no foreign basis, but mutually sustain and 
support each other” brings out another core aspect of a structuralist position.

For Cassirer, to ask further questions about the “objective reality” of 
numbers—​ontological questions that go beyond their “logical determinate-
ness”—​would bring us back to the realist perspective to which he is funda-
mentally opposed. This has the following consequence: While the structuralist 
conception of mathematical objects that Cassirer attributes to Dedekind, and 
that he accepts himself, amounts to a non-​eliminative position, it is not a realist 
position (in any traditional metaphysical sense); nor is it a form of subjective ide-
alism, psychologism, or nominalism. Cassirer rejects all of these views explicitly. 
This distinguishes his approach right away from many current forms of structur-
alism, where the realism vs. nominalism opposition is central.20 It also brings us 
back to the “logical idealism” he adopts instead. To quote the crucial passage one 
more time:

Logical idealism starts from an analysis of mathematical “objects”  
 and seeks to apprehend the peculiar determinacy of these objects by explaining 
them through the peculiarity of the mathematical “method,” mathematical 

	 20	 One exception is Charles Parsons’s form of structuralism. Like Cassirer, Parsons is careful to 
separate the “non-​eliminative” aspect of his position from any additional “realist” or “anti-​realist” 
aspect. It is no coincidence that Parsons’s perspective is also shaped strongly by Kant.
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concept formation, and the formulation of its problems. (Cassirer [1929] 1965, 
405, trans. modified slightly)

As we saw, the core of Cassirer’s “logical idealism” is to account for mathematical 
“existence,” “objects,” etc., in terms of their “logical determinateness”; and the 
latter is tied closely to “mathematical method”. Or to be more precise, it reflects 
the state of mathematical method at Cassirer’s time, after the structuralist trans-
formation of modern mathematics. This remark leads over to some further 
aspects of his position that deserve renewed attention.

4.  Function Concepts, Constructions, and Unfoldings

In this section, three further aspects of Cassirer’s “logical idealism” concerning 
mathematics will be highlighted, each of which goes beyond the current liter-
ature on structuralism in a noteworthy way. They involve, respectively, his no-
tion of “function concept” and how it is situated historically; the important role 
Cassirer assigns to “constructions” in mathematics; and his argument that a 
structuralist conception constitutes the “unfolding” of “germs” present already 
in earlier stages of mathematics.

4.1.  Function Concepts and Functional Thinking

As we saw, in his early works Cassirer characterizes the core difference between 
more traditional approaches to mathematical science and the novel structur-
alist perspective, most clearly represented in Dedekind’s works, in terms of the 
distinction between “substance concepts” and “function concepts”. What ex-
actly that distinction amounts to is subtle, as it involves a number of ingredients 
that are never discussed in a fully clear, unified, and definitive way by him.21 
Nevertheless, some of what matters is clear enough. At its core, the crucial 
change is switching from an Aristotelian perspective on concept formation to a 
neo-​Kantian perspective, both as understood by Cassirer.22

According to the position Cassirer ascribes to Aristotle (somewhat crudely, as 
one might add), concept formation proceeds as follows: We, as thinking subjects, 
encounter essentially independent objects in the natural world. We then ignore 

	 21	 Cf. Heis (2014) for a helpful, but admittedly still partial, discussion of this topic. See also Kreis 
(2010), especially chapters 2–​4.
	 22	 In recent discussions, certain forms of structuralism are described as “Aristotelian,” as opposed 
to “Platonist,” including some close to Dedekind. From Cassirer’s point of view, the latter is rather 
problematic; i.e., it misrepresents “Dedekind abstraction” fundamentally.



Cassirer’s Reception of Dedekind  343

various “marks” these objects have so as to distill out one or a few others, basi-
cally by “focusing on them selectively”. A simple example would be to observe 
a red apple and to form the concept of “redness” simply by ignoring everything 
else about it. This is an illustration of the “substance concept” perspective, both in 
terms of the underlying realism and the particular conception of abstraction in-
volved (a conception shared by various empiricist thinkers into the 19th century, 
e.g., J. S. Mill). “Function concepts”, in contrast, should be thought of very differ-
ently. Not only do we not start with the assumption of fully formed subjects that 
are affected by independent objects; we also recognize that concept formation, es-
pecially in modern science, always involves a form of “constitution” and Kantian 
“synthesis”. And crucially, the latter is based on a kind of “functional unity”.

An illustration particularly relevant for present purposes is the difference 
between thinking of natural numbers as “multitudes of units” and Dedekind’s 
approach to numbers. Along traditional lines, one assumes that some “heap” of 
objects is given to us directly. One then forms the idea of a corresponding “mul-
titude of units” by ignoring all the differences between the objects in the heap 
except their numerical distinctness. We are led to Dedekind’s alternative “func-
tion concept” once we recognize the following: Underlying any such supposedly 
basic, immediate procedure is a prior ability of “functionally relating” objects, 
including identifying and distinguishing them in the first place. But then, what 
is involved in forming a number cannot be as simple as just sketched; it must in-
volve Kantian “synthesis”. In fact, already the differentiation of a series of objects, 
one distinct from the next, does so.23 And once we recognize that, we are led to 
thinking of the whole number series in terms of Dedekind’s notion of a simple 
infinity. Rather than abstracting from the “marks” of a given heap of objects in a 
“subtractive” sense, the form of abstraction at play is more positive. In involves 
“logical concentration” on the functionally determined structure, here the nat-
ural number structure, just as Dedekind taught us. For Cassirer, this is a paradig-
matic example of “functional unity”.

As this brief sketch indicates, Dedekind’s approach to the natural numbers is 
crucial for Cassirer not just by providing a novel conception of the natural num-
bers, but by being a model for something deeper and more general. Actually, 
Dedekind himself is aware of the depth at issue, as the following passage—​quoted 
prominently and approvingly by Cassirer—​indicates:

If we trace closely what is done in counting a group or collection of things, we 
are led to consider the ability of the mind to relate things to things, to let one 

	 23	 According to Cassirer’s neo-​Kantian perspective, basic “synthetic” activities include:  identi-
fying and differentiating, relating to one another, naming, etc. (see below for more). Here, as at re-
lated places in this essay, I am heavily indebted to conversations with Pierre Keller.
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thing correspond to another thing, or to represent one thing by another, an 
ability without which no thought is possible. (Dedekind 1888, 32)

We can understand this passage better if we relate it to another remark in 
the same text. As background, consider the following:  How should we an-
swer one of the two questions raised by Dedekind in the title of his 1888 essay, 
namely: “Was . . . sollen die Zahlen?” (What is the nature, or better, the point 
or role of numbers?) His own answer, formulated in the essay’s preface, is 
this: “[Numbers] serve as a means of apprehending more easily and more sharply 
the difference of things” (31). As these passages indicate, Dedekind is reflectiong 
on our very ability to think; and for him that includes identifying and differen-
tiating things, representing some by others, naming them, interrelating them in 
other ways, etc. The most basic role of numbers is to help us in this task, e.g., by 
arranging things in series: a first, a second, etc. This idea points right back to 
the concept of simple infinity. It also leads to Dedekind’s answer to the second 
of his two title questions: “Was sind  .  .  . die Zahlen?” (What are numbers, or 
what is their nature?) Namely, the natural numbers are the things obtained, via 
“Dedekind abstraction”, from any simple infinity. And when suitably extended, 
such an approach leads to the negative, rational, real, and complex numbers as 
well, as illustrated most explicitly by his 1872 essay.

One striking thing about the passages by Dedekind just quoted, and about 
Cassirer’s reception of them, is that the notion of function is made abso-
lutely central. The notion of set is not as central; but it too plays a basic role, 
for both Dedekind and Cassirer (e.g., with respect to the domains and ranges of 
functions). Nor is the notion of relation quite as central, although it is again im-
portant (e.g., when considering the ordering relation on the rational numbers so 
as to form cuts). Why exactly is the notion of relation not as primary as that of 
function? The answer is, as Cassirer remarks briefly, that the idea of relation “can 
be traced back to the more fundamental idea of ‘functionality’ ” (Cassirer 1907, 
43); and likewise for the idea of set. In other words, using sets and relations, as 
we do in modern logic, involves “thinking functionally” in the end. In Frege’s 
and Russell’s new logic, with its emphasis on relations and sets or classes, we are 
moving toward this insight, but we do not quite reach it yet.

4.2.  The Crucial Roles of Set-​Theoretic Constructions

As just argued, what lies at the bottom of Dedekind’s approach to mathematics, 
and Cassirer’s reception of it, is “functional thinking”; and this is illustrated by the 
central role the successor function plays for the natural numbers. Nevertheless, 
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Dedekind employs sets in crucial ways too. Cassirer picks up on the latter point 
by emphasizing the role of constructions in modern mathematics more gener-
ally. In fact, with his strong emphasis on set-​theoretic constructions Cassirer 
goes, at least in part, against a distinction made prominent by Hilbert and his 
followers, namely between the “genetic” and the “axiomatic” method. As often 
claimed by Hilbertians, mathematics in the late 19th and early 20th centuries in-
volved the switch from a “genetic” to an “axiomatic” approach. For Cassirer such 
a contrast is spurious, since both sides remain crucial.

Cassirer position in this context can again be illustrated, and justified, in re-
lation to Dedekind’s work. Take Dedekind’s treatment of the real numbers. It is 
true that the concept of a continuous ordered field does, in some sense or to some 
degree, provide the basis for that treatment. Along Hilbertian lines, it is then the 
axiom system by means of which that concept is defined that becomes crucial. 
But we should not forget about the construction of the system of cuts on the ra-
tional numbers. What is the point of that construction, i.e., which basic role or 
roles does it play? The first such role, explicitly acknowledged by Dedekind and 
noted by Hilbert as well, is to establish the (semantic) consistency of the concept 
of a continuous ordered field, or of the corresponding axiom system. But for both 
Dedekind and Cassirer there is more. The system of cuts also provides the basis 
for the “abstraction” by means of which “the real numbers” are introduced. This 
is the second basic role of the set-​theoretic construction. A third role is this: it is 
only in terms of the cuts that we know how to operate with the real numbers, as is 
reflected in the fact that the ordering and the arithmetic operations on “the real 
numbers” are induced directly by those on the system of cuts.

The fact that set-​theoretic constructions, like those of Dedekind cuts, play 
such crucial roles in modern mathematics has more general implications for 
Cassirer. Let me mention three of them briefly. First, it is in terms of constructing 
novel mathematical objects out of older ones that these new objects—​including 
all the “ideal elements” characteristic of 19th-​century mathematics—​become 
intelligible and acceptable in the first place. This involves making it possible 
to operate with, say, the real numbers in terms of rational numbers. More ba-
sically, it is how we identify and differentiate them, i.e., it grounds their iden-
tity. A closely related second point is this: the constructions at issue establish 
connections between older and newer parts of mathematics. The newer parts 
are thus not separate and isolated, but integrated into mathematics as a whole 
from the start. In fact, it is this integration, or a network of corresponding 
links, that constitutes the unity of mathematics, as Cassirer notes. A third point 
concerns less mathematics itself than philosophy. For Cassirer, what the im-
portance of such constructions establishes is that Kant was right with his claim 
that mathematics involves “the construction of concepts”. Admittedly, Kant 
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was focused too narrowly on traditional geometric constructions, while with 
Dedekind’s works we see that it is set-​theoretic constructions that are crucial 
for modern mathematics.24

4.3.  The Historical Unfolding of Structuralist Aspects

I want to mention one more distinctive feature of both Cassirer’s reception of 
Dedekind and of his own structuralist philosophy of mathematics. His juxtapo-
sition of “substance” and “function concepts”, as discussed above, may initially be 
taken to imply that he conceives of the history of mathematics as involving a rad-
ical discontinuity or rupture (the move from “substance” to “function concepts”). 
But this is not quite right. In fact, Cassirer wants to emphasize a corresponding 
continuity as well. Moreover, that continuity is not unrelated to some of the roles 
of constructions just sketched. As he writes:

The new forms of negative, irrational and transfinite numbers are not added to 
the number system from without but grow out of the continuous unfolding of 
the fundamental logical function that was effective in the first beginnings of the 
system. (Cassirer [1910] 1923, 67, emphasis added)

The way in which mathematicians like Dedekind have gone from the natural 
numbers through the negative, rational, and real numbers all the way to the com-
plex numbers by means of set-​theoretic constructions is a main example of the 
“unfolding” Cassirer has in mind (in Dedekind 1854 already). But his concep-
tion of “unfolding”, and of the corresponding continuity of mathematics, is both 
richer and subtler than that. Cassirer never spells out that conception clearly and 
fully in his writings, he only hints at it (including in unpublished manuscripts, 
e.g., Cassirer 1999). Here is what I take to be the core point: even very early forms 
of mathematics contain some “functional” aspects, i.e., aspects of the kind of 
“functional thinking” sketched previously, albeit not in pure forms yet. These 
aspects are refined and generalized over time, and they come to the fore in the 
19th century, especially in works such as Dedekind’s. Still, their “germs” go way 
back, to rudimentary and rather informal parts of mathematics, in fact even be-
yond what one would normally consider mathematics today.25

	 24	 For more on this point about Cassirer and Kant, cf. Reck and Keller (forthcoming).
	 25	 For Cassirer, ordinary and mystic ways of thinking are included here, e.g., in terms of the use of 
number words in magic (where other aspects overshadow the functional/​structuralist ones, although 
they are present in very rudimentary ways). This is one way in which the various “symbolic forms,” 
highlighted in his later writings, are interrelated and build on each other.
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A basic illustration of this phenomenon is the following (cf. Heis 2017): con-
sider the natural numbers in the traditional way, i.e., as involving “multitudes of 
units”. Now think of adding two such numbers, e.g., 5 and 7. We can conceive 
of this as involving three steps: first we count five units, labeled by “1”, “2”, . . ., 
“5” ; then we add seven further units, labeled “6”, “7”, . . ., “12”; finally we record 
where this leads us, namely to the number 12. Note now that in the second step 
we treated the sixth unit “as a new 1”, by bringing to bear its “position” in the 
number series. That is to say, we started to reiterate the successor operation with 
it (the relevant number of times). What we did, in other words, is to utilize an 
initial segment of the number series and its systematic, step-​by-​step extension. 
While obscured somewhat by thinking of numbers as “multitudes of units”, this 
indicates that certain of the aspects distilled out by Dedekind are already at play 
in this context.

Cassirer’s general point here is this: while often mixed together with more 
traditional and “impure” aspects—​geometric, broadly intuitive, also sometimes 
formalist aspects—​ in earlier phases of mathematics, “functional” or structuralist 
aspects can be discerned in all of mathematics, even going back beyond Euclid. 
Once again, this establishes a unity or continuity for its historical development, 
across the supposed “substance” vs. “function concept” divide. Put differently, it 
is what allows us to speak of “mathematics” as one discipline, with a history from 
at least the ancient Greeks to Cassirer’s time. By embedding it in this broad his-
torical panorama, Cassirer has provided a rich historical background and moti-
vation for structuralism in mathematics.

5.  Summary and Concluding Remarks

This essay focused on Cassirer’s reception of Dedekind’s work, which he took to 
be paradigmatic for a shift from “substance” to “function concepts” in the math-
ematical sciences. With his sympathetic response to Dedekind’s contributions, 
including defending his remarks about “abstraction” and “free creation”, Cassirer 
went against the mostly critical, often dismissive reactions by other philosophers, 
both during his time and later, as the examples of Frege, Russell, and Dummett 
illustrated. And with his characterization of mathematical objects in terms of the 
notion of “position” in a structure, such as the natural number series, Cassirer 
anticipated the revival of structuralism in the philosophy of mathematics, by 
Benacerraf, Resnik, Shapiro, and others 50–​70 years later. Both of these facts are 
remarkable, and a main goal of the present essay was to direct attention to them.

With his positive reception of a Dedekindian structuralism Cassirer did not 
just anticipate current structuralist positions, however. There are aspects to his 
approach that are genuinely original and make it distinctive. One example is 
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his discussion—​under the umbrella of “logical idealism”—​of the specific form 
of “determinateness” operative in modern mathematics, which is closely related 
to the rejection of both realist and psychologistic views by him. Three other 
examples, discussed later in this essay, are the way in which Cassirer emphasizes, 
with Dedekind, the fundamental role of functional thinking; his emphasis on 
the roles played by constructions along Dedekindian lines; and the point that 
the historical development of mathematics, even across the substance/​function 
divide, involves continuity in terms of the “unfolding” of structuralist “germs”.

Overall, what Cassirer provides is a treatment of the structuralist transfor-
mation of modern mathematics that illuminates not only its logical and met-
aphysical aspects, but embeds it in a rich developmental and historical story. 
My summary of it could be enriched further by also covering his reflections on 
parallel developments in geometry. In the present essay, the focus was exclu-
sively on the side of arithmetic. Both sides led Cassirer to essentially the same 
conclusions, however.26 It should be acknowledged, finally, that there are limita-
tions to Cassirer’s discussion of structuralism in mathematics too, thus ways in 
which the current debates go beyond it. For example, he contributed little to its 
technical development, in the sense that he provided no formal reconstructions 
of core concepts and proved no new mathematical theorems. After all, he was not 
a mathematical logician. Then again, with respect to the philosophical and his-
torical dimensions, his treatment deserves to be reconsidered today.
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 Methodological Frames: Paul Bernays, 

Mathematical Structuralism, and 
Proof Theory

Wilfried Sieg

Mathematical structuralism is deeply connected with Hilbert’s and Bernays’s 
proof theory and its programmatic aim to ensure the consistency of all of math-
ematics. That goal was to be reached on the sole basis of finitist mathematics, 
a distinguished, elementary part of mathematics. Gödel’s second incomplete-
ness theorem forced a step from absolute finitist to relative constructivist proof-​
theoretic reductions. The mathematical step was accompanied by philosophical 
arguments for the special nature of the grounding constructivist frameworks. 

 Against this background, I examine Bernays’s reflections on proof-​theoretic 
reductions of mathematical structures to methodological frames via projections. 
However, these reflections—​from the mid-​1930s to the late 1950s and beyond—​
are focused on narrowly arithmetic features of frames. Drawing on our broad-
ened metamathematical experience, I propose a more general characterization 
of frames that has ontological and epistemological significance; it is rooted in the 
internal structure of mathematical objects that are uniquely generated by induc-
tive (and always deterministic) processes.

The characterization is given in terms of accessibility: domains of objects are 
accessible if their elements are inductively generated, and principles for such 
domains are accessible if they are grounded in our understanding of the gen-
erating processes. The accessible principles of inductive proof and recursive 
definition determine the generated domains uniquely up to a canonical isomor-
phism. The determinism of the inductive generation allows us to refer to the 
mathematical objects of an accessible domain, and the canonicity of the iso-
morphism justifies at the same time an “indifference to identification.” Thus is 
ensured the intersubjective meaning of mathematical claims concerning acces-
sible domains.
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1.  Describing the Context

Paul Bernays viewed mathematics as the science of idealized structures.1 His 
perspective highlights the methodological changes that expanded, indeed 
transformed the subject during the 19th century. In his (1930), Bernays pointed 
to three related features characterizing this transformation: (1) the advancement 
of the concept of set, (2) the emergence of existential or structural axiomatics, and 
(3) the evolution of a close connection between mathematics and logic. He saw 
these developments as confronting the philosophy of mathematics with novel 
insights and new problems. In this early essay, Bernays took on the task of situ-
ating proof theory within the philosophy of mathematics and, in particular, clar-
ifying the character of mathematical cognition (mathematische Erkenntnis).

More than 50 years later, Howard Stein observed in his (1988) that the 19th-​
century transformation of mathematics revealed a capacity of the human mind. 
He also asserted that this capacity had been discovered already in ancient Greece 
between the 6th and 4th centuries b.c. Stein emphasized that its rediscovery 
teaches us something new about its nature and claimed that what has been 
learned “constitutes one of the greatest advances in philosophy.” However, he did 
not explicitly formulate the “something new that has been learned” and, thus, did 
not clarify the dramatic philosophical advance. If we want to grasp this advance, 
we must deepen our understanding of the mind’s mathematical capacity or, even 
more broadly, its capacities as they come to light in mathematics and its uses.

Taking a step toward deepening our understanding, section 2 begins by 
discussing the character of the 19th-​century transformation as it is revealed 
in existential axiomatics and various foundational frames for it. I prefer to call 
existential axiomatics structural since it is the form of mathematical structur-
alism that evolved from Dedekind’s work and is fully expressed in Bourbaki’s 
Éléments de mathématique. Section 3 introduces Bernays’s restricted methodo-
logical frames and his idea of viewing the formalization of axiomatic systems as a 
means of uniformly projecting them into such restricted frames.2 This builds on 

	 1	 Without taking on the task of interpreting “idealized,” I consider for the purpose of this chapter 
“idealized” only to mean that structural definitions are obtained by a special kind of abstraction 
emphasized by Lotze; see (Sieg and Morris 2018, 32–​34) and the remark by Bernays quoted in note 
3. This “Begriffsbildung” is for me the core of the 19th-​century transformation of mathematics; it is 
exemplified in Dedekind’s Was sind und was sollen die Zahlen? My (2016) indicates the more philo-
sophical side of the transition from Kant through Dedekind to Hilbert and beyond.
	 2	 Charles Parsons (2008) analyzes Bernays’ “anti-​foundationalism” and “structuralism.” He 
focuses on Bernays’s “later philosophy” and compares his structuralism to the philosophical struc-
turalism of modern analytic philosophy, whereas I  emphasize the continuity in his foundational 
reflections and connect his structuralism to the mathematical structuralism that originated in the 
19th-​century transformation of mathematics; see also notes 1 and 3. An informative survey of dif-
ferent forms of structuralism is found in (Reck and Price 2000). Finally, contemporary scientific 
structuralism as advocated by Suppes and many others is rooted in the mathematical structuralism 
as it emerged in the second half of the 19th century with deep connections, in particular, to Gauss, 
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a philosophically significant distinction between two kinds of models for struc-
tural axiomatic theories, namely, those whose domains just satisfy broad struc-
tural conditions and those whose domains are in addition inductively generated. 
Bernays made this distinction in an elementary form for extensions of Hilbert’s 
consistency program. Given our broader proof-​theoretic experience, I  gener-
alize in section 4  “inductive generation” and introduce “accessible domains.” 
These considerations lead to an informative and principled distinction be-
tween “abstract” and “accessible” axiomatics, both kinds falling under structural 
axiomatics. The diagram of Figure 1 reflects that distinction.3

The preceding incorporates, however, also Hilbert’s perspective that anal-
ysis and geometry, for example, can be represented in set theory. That means 
that the different models of the axiomatic theories can be viewed as defined in 
subdomains of Zermelo’s set theory, when the latter are viewed as accessible 
domains. Hilbert’s perspective is discussed in section 2.

The elements of accessible domains have an internal structure grounding the 
principles of the structural axioms, but also ensuring that the domains are ca-
nonically isomorphic. I highlight cognitive aspects that make accessible domains 

Riemann, Dedekind, and Hilbert. These connections, evident also in the work of Hertz, deserve a 
separate investigation. A first step was taken in a talk Aeyaz Kayani and I gave at the 2016 HOPOS 
meeting in Minneapolis; the talk was entitled Roots of Suppes’ Scientific Structuralism.

	 3	 The diagram respects the distinctions made in (Bernays 1970) under the influence of Gonseth. 
Bernays asserts there, “Mathematical idealization is especially accentuated by the axiomatic treat-
ment of theories.” In German: “Die mathematische Idealisierung kommt insbesondere zur Geltung 
durch die axiomatische Behandlung von Theorien” (181). He continues, “As one knows, one has to 
distinguish two different kinds of axiomatics.” Bernays follows Gonseth in calling the one “axiomat-
isation schématisante” and the other “axiomatisation structurante.” That distinction is “parallel” to 
the one I am making between “generative structural definitions” (accessible axiomatics) and “abstract 
structural definitions” (abstract axiomatics). It would be of real interest to examine the philosophical 
aspects of their “axiomatisation schématisante” and compare them to those of accessible axiomatics.

Structural axiomatics

Accessible axiomatics Abstract axiomatics

Representation
Accessible domains Di�erent models

Figure 1  Accessible and abstract axiomatics



Methodological Frames  355

suitable to serve as the core of methodological frames and as the basis for impor-
tant relative consistency proofs. Finally, I formulate in section 5 a particular way 
in which we can investigate, I hope very fruitfully, “the mind’s capacities as they 
come to light in mathematics and its uses.”

2.  Structural Axiomatics and Frames

There is a form of axiomatization in mathematics that is not tied to theories of 
modern mathematical logic with their formal languages and logical calculi; I am 
thinking of the axioms for abstract concepts like that of a group, field, or topo-
logical space. The axioms really are just characteristics (Merkmale) of structural 
definitions. These structural definitions stand in a venerable tradition that goes 
back, in particular, to Dedekind’s work in algebraic number theory, but also to 
his essay Was sind und was sollen die Zahlen? (WZ). In this 1888 essay, Dedekind 
discards natural numbers as abstract objects and introduces instead the concept 
of a simply infinite system via a structural definition. If one reads from this per-
spective his 1872 essay Stetigkeit und irrationale Zahlen (SZ), then one can see 
that Dedekind defines there the structural notion of a complete ordered field.

The concept of a complete ordered field, with a different way of formulating 
topological completeness, is also defined in Hilbert’s 1900 essay Über den 
Zahlbegriff. The axioms of his Grundlagen der Geometrie are yet another example 
of a structural definition, namely, that of a Euclidean space. As the final example 
of such a definition, consider Zermelo’s 1908 axioms for set theory: they give 
a structural definition of the concept Mengenbereich over a set of urelements. 
Zermelo leads in three steps to the axioms (262-​263):  (1) “Set theory is con-
cerned with a domain B of individuals which we shall call simply objects and 
among which are the sets.” (2) “Certain fundamental relations of the form a ∈ 
b obtain between the objects of the domain B.” (3) “The fundamental relations 
of our domain B, now, are subject to the following axioms, or postulates.” These 
steps are typical for the definition of structural notions and parallel almost ver-
batim Hilbert’s steps in the papers just mentioned; they are then followed by the 
successive introduction and detailed discussion of the axioms. To re-​emphasize, 
the above axiom systems are not formal theories, but structural definitions in the 
Dedekindian mold.

When commenting on SZ for the third volume of Dedekind’s Gesammelte 
Abhandlungen, Emmy Noether attributed to Dedekind an axiomatic conception 
(axiomatische Auffassung). Three different points informed her judgment. Here 
are the first two: Dedekind structurally defined the concept of a complete or-
dered field and proved that the system of all cuts of rational numbers constitutes 
an instance of that definition. For the third point she referred to an 1876 letter 
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to Lipschitz in which Dedekind expressed his view on the systematic and quite 
formal development of analysis or any other mathematical theory:

All technical expressions [can be] replaced by arbitrary, newly invented 
(up to now meaningless) words; the edifice must not collapse, if it is cor-
rectly constructed, and I claim, for example, that my theory of real numbers 
withstands this test. (Dedekind 1932, 479)

These are indeed the three crucial elements of the modern axiomatic method as 
Noether and others practiced it in the 1920s. It is incisively described in Helmut 
Hasse’s talk Die moderne algebraische Methode (1930); the talk addressed a ge-
neral mathematical audience and suggested an expansion of the “algebraic 
method” to other parts of mathematics. In characterizing the algebraic method, 
Hasse emphasized the three aspects Noether pointed to—​generalizing, of course, 
her first two points to other structural definitions.

The axiomatic method, when conceived of as structural, requires an intelli-
gible and philosophically distinguished methodological frame, what Bernays 
calls “methodischer Rahmen.” For Dedekind, as emphasized in the preface to the 
first edition of WZ, that was logic with a broad contemporaneous understanding; 
the same holds for the early Hilbert and Zermelo. This logical frame allowed 
novel metamathematical investigations. The central ones could be carried out 
due to the fact that a form of semantics was available: model is any system that 
“falls under” a structural concept or that “satisfies” its characteristic conditions.4 
Dedekind introduced mappings (Abbildungen) to relate different models in 
structure-​preserving ways.5 Within this frame, carefully exposed in WZ, he 
proved the concept of a simply infinite system to be categorical and argued for the 
proof-​theoretic equivalence of any two models.6

Hilbert was a master in using models to give independence and relative con-
sistency proofs. Among other things, his investigations show in the most striking 
way the irrelevance of the “nature” of the objects making up a system that 
falls under a structural definition.7 Hilbert’s beautiful geometric model of the 

	 4	 This pre-​Tarskian semantics was sustained from Dedekind through Hilbert and Ackermann to 
Gödel in his thesis (1929); it is still used in contemporary mathematical practice.
	 5	 For Dedekind, mappings form a distinct second category of mathematical entities; they are un-
derstood as being given by laws. Sieg and Schlimm (2014) analyze the evolution of the notion of map-
ping and its use for such metamathematical purposes.
	 6	 The concept of proof-​theoretic equivalence was introduced in (Sieg and Morris 2018, section B.2) 
in order to illuminate section 134 of WZ and Dedekind’s deeply connected description of the science 
of numbers in section 73.
	 7	 John Burgess coined the apt phrase “indifference to identification.” In his letter to Frege, 
written on December 29, 1899, Hilbert asserted that “any theory is only a framework [Fachwerk] 
or a schema of concepts together with the necessary relations between them.” The basic elements 
(Grundelemente), he continued, “can be thought in arbitrary ways.”
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arithmetic concept Archimedean ordered field makes that point quite directly and 
convincingly; see (Hilbert 1899, secs. 13 and 15). However, Dedekind had articu-
lated in WZ, and even more explicitly in his letter to Keferstein (Dedekind 1890), 
a crucial foundational demand for his frame, namely, to give a logical existence 
proof (logischer Existenzbeweis) of a model of the concept of a simply infinite 
system.8 Dedekind asserted that such a proof was needed to guarantee that the 
newly introduced concept did not contain an internal contradiction. Hilbert for-
mulated this demand, from the very beginning of his axiomatic investigations, 
in a quasi-​syntactic way and required that no contradiction can be obtained in 
finitely many logical steps. (It is only quasi-​syntactic, as no logical steps were ex-
plicitly presented.)

The methodological frame was also seen as deeply significant for the repre-
sentation of mathematical practice. In Dedekind’s WZ, the representation of 
elementary number theory was at stake and was achieved through the justifica-
tion of both the principle of proof by induction and that of definition by recur-
sion.9 Hilbert dealt with geometry and analysis around the turn of the century. In 
lectures from 1920, Probleme der mathematischen Logik, he expressed the repre-
sentational strategy with respect to Zermelo’s set theory:

Set theory encompasses all mathematical theories (like number theory, anal-
ysis, geometry) in the following sense:  the relations that hold between the 
objects of one of these mathematical disciplines are represented in a completely 
corresponding way by relations that obtain [between objects] in a subdomain 
of Zermelo’s set theory. (330)

Only a short time later, this representation is refined proof-​theoretically, shifting 
from semantic model to syntactic reduction; that is the core of my discussion 
in section 4. Coming back to Dedekind’s logical frame, we can observe that the 
development of his theory of systems and of mappings is quite principled: the 
part concerning systems uses full comprehension and the extensionality prin-
ciple, whereas the part concerning mappings uses, for example, closure under 
composition, and inversion (for bijections). This framework is used to introduce 
chains (of systems) as a central concept and to develop elementary set theory up 

	 8	 The proof Dedekind gave is problematic, but not because of any “psychologistic” aspects. Frege 
viewed it as essentially correct; see (Frege 1969, 147–​148). For Bernays the real reason for its being 
problematic is “the idea of a closed totality of all logical objects that can be thought at all” (Bernays 
1930, 47).
	 9	 A similar remark can be made about Dedekind’s SZ, where he sketches in section 6 the beginning 
steps of analysis. In section 7 he establishes, in a quite dramatic way, the equivalence of his continuity 
principle to a theorem of analysis, namely, that every bounded, monotonically increasing sequence 
has a limit.
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to the Cantor-​Bernstein theorem.10 Zermelo’s system Z can be understood as a 
reconceptualization of Dedekind’s logical frame: the contradictory comprehen-
sion principle is replaced by the restricted separation principle and the latter is 
supplemented by suitable set existence principles, e.g., the power set and union 
axioms and the axiom of infinity. It should be noted that mappings are no longer 
considered as belonging to a separate category of mathematical entities but are 
rather defined as sets.

Zermelo’s system Z developed into ZF during the next 20  years and was 
adopted as the framework for structural axiomatics. This way of looking at math-
ematics from a conceptual point of view was clearly articulated by Bourbaki. In 
their programmatic The Architecture of Mathematics from 1950, the role of prin-
cipal structures (structures mères) is brought out, and their role in making math-
ematics intelligible is emphasized. Bourbaki clarifies (1950, 225–​226) “what is to 
be understood, in general, by a mathematical structure”:

The common character of the different concepts [my emphasis] designated by 
this generic name [mathematical structure], is that they can be applied to sets 
of elements whose nature has not been specified; to define a structure, one takes 
as given one or several relations, into which these elements enter (in the case of 
groups, this was the relation z = x 𝜏 y between three arbitrary elements); then 
one postulates that the given relation or relations, satisfy certain conditions 
(which are explicitly stated and which are the axioms of the structure under 
consideration).

The striking parallelism of this description with Hilbert’s and Zermelo’s 
formulations should be obvious. Indeed, Hilbert had expressed that perspective 
in his letter to Frege as follows: “Well, it is surely obvious that every theory is 
only scaffolding of concepts or a schema of concepts together with their neces-
sary relations to each other, and the basic elements can be thought in arbitrary 
ways” (Frege 1980, 13). For Bourbaki the expression “this system of mathemat-
ical objects has the structure of . . .” is synonymous with “this system of mathe-
matical objects falls under the concept of . . . ” Bourbaki concludes this passage 
on structures-​in-​general as follows:11

	 10	 The Cantor-​Bernstein theorem is not actually formulated in WZ. However, Theorem 63—​a the-
orem that is neither proved nor needed for the further development in WZ—​is used in a contempo-
raneous manuscript to prove the Cantor-​Bernstein theorem; see (Sieg and Walsh 2017).
	 11	 For a detailed understanding of Bourbaki’s notion of “structure” one has, of course, to consult 
their mathematical exposition in their “Théorie des ensembles” and, additionally, study the very in-
formative papers (Dieudonné 1939), (Cartan 1942), and (Bourbaki 1949): they lay bare their meth-
odological considerations and sympathies.
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To set up the axiomatic theory of a given structure . . . amounts to the deduc-
tion of the logical consequences of the axioms of the structure, excluding every 
other hypothesis on the elements under consideration (in particular every hy-
pothesis as to their own nature).

Again, one should notice the parallelism to Dedekind, Hilbert, and Zermelo. 
The pure structuralism exemplified by Bourbaki is also formulated in Bernays 
(1955, 109):

Not only did Euclidean geometry lose its distinguished position and thus 
its role as the evident theory of space, but now also the arithmetic theory of 
magnitudes appears just as the theory of one structure among others. The dom-
inant viewpoint is now one of a general formal theory of structures.12

The papers mentioned in note 11 that precede the programmatic (1950) show 
Bourbaki as being in the direct and deeply “formalist” tradition of Hilbert but 
refusing to take on the methodological challenge of his foundational program. 
And what a challenge it was, or turned out to be.

The consistency problem was for Hilbert, as I mentioned already, a quasi-​
syntactic one. However, all the proof ideas concerning the consistency of the 
arithmetic of real numbers—​indicated in lectures or publications from this early 
period—​are of a semantic kind. In his Heidelberg talk of 1904 Hilbert gave for 
the first time a “direct” syntactic consistency proof, but it was given for a woefully 
weak system, a purely equational theory for natural numbers without any logical 
principles. Impressed by Poincaré’s well-​known criticism of his proof, Hilbert 
gave up on the syntactic approach until around 1920, when he returned to it after 
he had taken, what prima facie seems to be a very roundabout path or a genuine 
detour.

In 1913, the group around Hilbert started a systematic study of Principia 
Mathematica (PM) that ultimately resulted in the lectures Prinzipien der 
Mathematik. These lectures were given by Hilbert in the winter term of 1917–​18 
and written up by Bernays; they are the real, exquisite beginning of mathemat-
ical logic and literally provide most of the content in Hilbert and Ackermann’s 
influential book (1928). The possibility of formally developing parts of mathe-
matics, in particular number theory and analysis, made it reasonable to recon-
sider the syntactic approach to consistency. Such formalizations are indeed the 

	 12	 Here is the German text: “Nicht nur, daß die Euklidische Geometrie ihre ausgezeichnete Stellung 
und damit ihre Rolle als evidente Raumlehre verlor, auch die arithmetische Größenlehre erscheint 
jetzt mehr nur als die Lehre von einer Struktur unter anderen. Der beherrschende Gesichtspunkt ist 
jetzt der einer allgemeinen formalen Strukturlehre.”
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basis for the uniform projection of (the mathematical development of) structural 
definitions into domains of special mathematical objects. The suggested connec-
tion to consistency and the special character of these objects must be clarified. 
Before doing so in the next section, I will let Hilbert speak one more time about 
his conception of mathematics at this point.13

In lectures from the winter term of 1919 (Natur und mathematisches 
Erkennen), Hilbert wanted to support the claim that “the formation of concepts 
in mathematics is constantly guided by intuition and experience, so that on the 
whole mathematics is a non-​arbitrary, unified structure.” Having presented 
a construction of the continuum and an investigation of non-​Archimedean 
extensions of the rational numbers, he formulated this general point:

The different mathematical disciplines are consequently necessary parts in 
the construction of a systematic development of thought; this development 
begins with simple, natural questions and proceeds on a path that is essentially 
traced out by compelling internal reasons. There is no question of arbitrariness. 
Mathematics is not like a game that determines the tasks by arbitrary invented 
rules, but rather a conceptual system of internal necessity that can only be thus 
and not otherwise. (Hilbert 1919, 19)

I quoted this passage to make it crystal clear that formalization is a tool for 
Hilbert; this tool allowed him to reconsider the consistency problem in a truly 
syntactic way. However, it took a while before features of this tool would inspire 
the particular methodological distinctions of proof theory and would be used in 
the pursuit of its reductive aims.

3.  Formalizability and Reductive Projections

In the 1917–​18 lectures, Hilbert and Bernays transformed a part of the system 
of PM with the axiom of reducibility into a tool for formalizing analysis. Having 
proved the least-​upper-​bound principle in this system of second-​order logic, 
their final comment was,

	 13	 The development to strict formalization of mathematical practice and the emergence of formal 
axiomatics is discussed in my other contribution to this volume, namely, “The Ways of Hilbert’s 
Axiomatics: Structural and Formal.” The appendix contains additional information about Hilbert’s 
and Bernays’ “formalism.”
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Thus it is clear that the introduction of the axiom of reducibility is the ap-
propriate means to turn the ramified calculus into a system out of which the 
foundations for higher mathematics can be developed. (Hilbert 1917–​18, 214)

The core methodological question was, Does this system provide a logicist foun-
dation for mathematics? If it did, a philosophically satisfying reduction of math-
ematics to logic would have been obtained. In his talk of September 1917 at the 
Zurich meeting of the Swiss Mathematical Society, Hilbert reiterated Dedekind’s 
view that mathematics is part of logic. The fundamental work of Frege and 
Russell bolstered that view, and Hilbert remarked:

But since the examination of consistency is a task that cannot be avoided, it 
appears necessary to axiomatize logic itself and prove that number theory and 
set theory are only parts of logic.

This method was prepared long ago (not least by Frege’s profound 
investigations); it has been most successfully explained by the acute mathe-
matician and logician Russell. One could regard the completion of this mag-
nificent Russellian enterprise of the axiomatization of logic as the crowning 
achievement of the work of axiomatization as a whole. (Hilbert 1918, 1113)

To help him reach this crowning achievement, Hilbert asked Bernays to become 
his assistant for the foundations of mathematics—​at this very meeting in Zurich. 
Bernays accepted Hilbert’s offer and returned to Göttingen, his alma mater, for 
the following winter semester. From the very beginning, there was a productive 
collaboration between Hilbert and Bernays that led to an immediate and sig-
nificant outcome, namely, the 1917–​18 lectures Prinzipien der Mathematik I just 
discussed.

Addressing the methodological question of section 3, Hilbert and Bernays 
analyzed PM in subsequent lectures and examined the nature of the axiom of 
reducibility. They concluded that its acceptance amounted to using structural 
axiomatics with its existential presupposition in a different guise, applied to the 
system of predicates concerning individuals. Thus, Russell’s approach did not re-
solve the foundational problem.14 Bernays articulated in his (1922b) the issue of 
assuming the existence of a model for any structural notion as follows:

In the assumption of such a system with particular structural properties lies 
something transcendental, so to speak, for mathematics, and the question 

	 14	 Their quite compelling arguments were exposed in the lectures (Hilbert 1920, 361–​362) and are 
quite carefully reviewed in (Bernays 1930, 49–​50). The evolution of Hilbert’s thought in the period 
from 1917 to 1922 is discussed in my (1999); see also (Ferreirós 2009).
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arises which principled position with respect to it should be taken. (Bernays 
1922b, 10)

An intuitive grasp of the completed sequence of natural numbers or even of the 
manifold of real numbers should not be excluded outright, Bernays asserted. 
Alluding to contemporaneous tendencies in the exact sciences, he suggested a 
different strategy, namely, to see “whether it is not possible to give a foundation 
of these transcendental assumptions in such a way that only primitive intuitive 
knowledge is used” (Bernays 1922b, 11).

Bernays’s programmatic suggestion is brought to life through the idea of 
projecting structural definitions into a constructive domain and examining the 
image from a constructivist standpoint: the formalization of the structural no-
tion was seen as the means of projecting. In Bernays’s still pre-​Gödel essay of 
1930 one finds the remark:

At this point, the investigation of mathematical proofs by means of the logical 
calculus is brought to bear in a decisive way. This [investigation] has shown that 
the concept formations and the inference patterns used in the theories of anal-
ysis and set theory are reducible to a limited number of processes and rules; in 
that way we succeed in totally formalizing these theories within the frame of a 
precisely delimited symbolism. (Bernays 1930, 57)15

Note that the total formalization with restricted processes and rules is at stake, 
not the syntactic completeness of the formal theory used to capture the structural 
concept. At this point, normative considerations as to the effectiveness of formal 
theories entered; after all, it should be decidable by a finite procedure whether 
a given syntactic configuration constitutes a formal proof or not. The total and 
effective formalizability underlies Hilbert’s view that the consistency problem 
for formal theories is a constructive one. Hilbert and Bernays saw the evolving 
formal axiomatics as applying in identical ways to different parts of mathematics. 
The significance of this fact is expressed even in Grundlagen der Mathematik I:

Formal axiomatics, too, requires for the checking of deductions and the proof of 
consistency certain evidences, but with the crucial difference (when compared 
to contentual axiomatics) that this evidence does not rest on a special epistemo-
logical relation to the particular domain, but rather is one and the same for any 

	 15	 Here is the German text: “Hier kommt nun die Untersuchung der mathematischen Beweise mit 
Hilfe des logischen Kalküls entscheidend zur Geltung. Diese hat gezeigt, daß die Begriffsbildungen 
und Schlußweisen, die in den Theorien der Analysis und der Mengenlehre angewandt werden, 
auf eine begrenzte Anzahl von Prozessen und Regeln zurückführbar sind, so daß es gelingt, diese 
Theorien im Rahmen einer genau abgegrenzten Symbolik restlos zu formalisieren.”
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axiomatics; this evidence is the primitive manner of recognizing truths that is a 
prerequisite for any theoretical investigation whatsoever. (Hilbert and Bernays 
1934, 2)

This remark provides the reason for the uniform character of the projections’ 
images in a single finitist frame.

Bernays explicitly introduced the image of projection in the early 1920s. 
The appendix to this chapter, “Transition to Hilbert’s Proof Theory in 1922,” 
describes the related pre-​finitist considerations in (Bernays 1922a) and the use of 
projections there. As late as 1970, Bernays wrote:

Taking the deductive structure of a formalized theory as an object of investiga-
tion, the (structural axiomatic) theory is projected as it were into the number-​
theoretic domain. (Bernays 1970, 186)

The result of this projection will usually be different from the structure intended 
by the theory. Nevertheless, the projection has an important point:

The number-​theoretic structure can serve to recognize the consistency of the 
theory from a standpoint that is more elementary than the assumption of the 
intended structure. (Bernays, 1970, 186)

The emphasis on number-​theoretic structures is an artifact of the developments 
in the wake of Gödel’s (1931), namely, the arithmetization of metamathematics. 
Initially, Hilbert and Bernays viewed the exclusive focus on natural numbers in 
the foundational discussion as a “methodological prejudice.”16 In their proof-​
theoretic studies during the 1920s, they operated with what they thought of as 
broader classes of mathematical objects, namely, finite syntactic configurations 
like formulae and derivations, and accepted induction and recursion principles 
for them. The methodological situation is diagrammatically depicted in Figure 
2, making clear the reductive role of the projection: it avoids the role of models 
and their representation, creating, rather, an image in the finitist domain. Hilbert 
and Bernays never precisely characterized the “finitist domain” and did not offer 
a rigorous delimitation of finitist mathematics, though the image was to be inves-
tigated from the finitist standpoint.17

	 16	 The remark is quoted in full and its context is analyzed in (Sieg 1999, 117–​118). In his (1970, 
188), Bernays calls “the arithmetizing monism in mathematics an arbitrary thesis.” In his (1937, 
81) he emphasizes that the “total elimination of geometric intuition” might be viewed as “unsatisfac-
tory and artificial.” He claims there, “The reduction of the continuous to the discrete succeeds indeed 
only in an approximate sense.”
	 17	 The term “finite Mathematik” was seemingly a familiar one at this point in early 1922; it had 
been used in (Bernstein 1919) as covering any “constructive” tendency whatsoever.
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As an exemplification of this methodological schema, consider the structural 
concept of a complete ordered field as formalized in second-​order number theory; 
in the finitist domain one has to represent only the elementary formalism, not 
the infinite objects of its models.

In line with the inspiration from science for the proof-​theoretic enterprise, 
Bernays emphasized in (1922b) the significance of what we now call the re-
flection principle. That principle is equivalent to the consistency of a formal 
theory T and states that the provability in T of a finitistically meaningful state-
ment implies its finitist correctness; see section 4.18  This refined metamathe-
matical approach to the consistency problem was successfully realized in early 
1922 for the quantifier-​free system of primitive recursive arithmetic, which is a 
theory of definite mathematical interest. In the lectures (Hilbert 1921–​22), 
one finds explicitly the beginning of Hilbert’s proof theory and his finitist pro-
gram. Attempting to extend this approach to theories with quantifiers, Hilbert’s 
Ansatz from late 1922 replaced quantifiers by epsilon terms and investigated 
the resulting proofs by the substitution method; that approach was successfully 
taken up by Ackermann in his thesis (1924), though not in as sweeping a way as it 
was at first believed. Hilbert’s address to the Bologna Congress in 1928 was a bold 
political act expressing his deep commitment to the international mathematical 
community, but it was also a remarkable scientific statement: the evolution of 
mathematical logic is described with great lucidity; the state of proof theory is 
presented, albeit mistakenly, as including consistency proofs for full elementary 
number theory by Ackermann and von Neumann; important metamathematical 
problems are formulated, in particular, the consistency problem for analysis, the 

Structural axiomatics

Formalization Finitist mathematics

Finitist domain

Projection

Figure 2.  Projection into the finitist domain

	 18	 See also (Hilbert 1928, 474) and (Bernays 1930, 55; 1937, 80; 1938, 153).
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syntactic completeness problem for number theory, and the semantic complete-
ness problem for first-​order logic.

Gödel gave in his thesis (1929) a positive solution of the last problem; in his 
attempt to address the first problem, he discovered in August 1930 the syntactic 
incompleteness of familiar theories like PM, ZF, and von Neumann’s set theory. 
A few months later he proved his second incompleteness theorem, which was 
viewed by some as radically undermining Hilbert’s finitist consistency pro-
gram.19 That program, Gödel noted, had been attractive to mathematicians and 
to philosophers alike; in his 1938 lecture at Zilsel’s, he wrote:

If the original Hilbert program could have been carried out, that would have 
been without any doubt of enormous epistemological value. The following 
requirements would both have been satisfied:  (A) Mathematics would have 
been reduced to a very small part of itself. . . . (B) Everything would really have 
been reduced to a concrete basis, on which everyone must be able to agree. 
(Gödel 1938, 113)

Gödel explored in this lecture a variety of extensions of finitist mathematics: from 
transfinite induction used in Gentzen’s 1936 proof of the consistency of arith-
metic to his own system of computable functionals of finite type that led eventu-
ally to the Dialectica interpretation; see (Sieg and Parsons 1995).

At this point, when thinking from our contemporary perspective about 
extensions of the constructive basis for Hilbert’s program, it is important to ex-
amine which structural notions need to be reduced and to reflect on the domains 
to which they are to be reduced. After all, the simplicity of the universal finitist 
basis has been lost, but there may be other bases, “on which everyone must be 
able to agree.” In the same year in which Gödel made his remarks at Zilsel’s, 
Bernays contributed a paper to Les Entretiens de Zürich, entitled Über die aktuelle 
Methodenfrage der Hilbertschen Beweistheorie; the paper was published in 
French three years later (Bernays 1941). Bernays addressed the same question 
Gödel had asked at Zilsel’s: How can one extend the finitist standpoint? Both 
examined Gentzen’s 1936 consistency proof of elementary number theory via 
transfinite induction up to the first epsilon number, and both asserted that this 
principle went beyond finitist mathematics.

Gödel referred to the French publication of this paper in a letter to Bernays of 
January 16, 1942. He writes with obvious surprise:

	 19	 For the developments that arose out of Gödel’s Königsberg remarks and his (1931), see (Sieg 
2011); von Neumann had independently discovered the second incompleteness theorem already in 
November 1930 as we know from his correspondence with Gödel that was published in volume 5 of 
Gödel’s Collected Works (2003b).



366  Wilfried Sieg

I read your article in the Entretiens de Zürich from the year 1938 with great 
interest; only what you say on p. 152, lines 8–​11 is not comprehensible to me. 
Wouldn’t that be tantamount to giving up the formalist standpoint? (Gödel 
2003a, 133)

Gödel points to the last sentence of a paragraph in which Bernays answered his 
own question: What is the methodological restriction of proof theory, if it is not 
the restriction to the elementary evidence of the finitist standpoint? Bernays 
wrote (and I translate from the German original of his Entretiens contribution 
(1938, 16)):

One can respond [to this question] that the general nature of the methodo-
logical restriction remains in principle exactly the same. However, if we want 
to keep open the possibility of extending the methodological frame, then we 
must avoid using the concepts of evidence and certainty in a sense that is too 
absolute.20

The paragraph ends with the sentence Gödel had pointed to: “In this way we 
gain, on the other hand, the fundamental advantage of not being forced to view 
the usual methods of analysis as unjustified or dubious” (Bernays 1938, 16).21 
Bernays agrees in his response to Gödel’s letter that this perspective is not that of 
strict formalism, but he also emphasizes that he has never taken a formalist posi-
tion.22 Positively, he argues:

It does not seem appropriate to posit in an absolute sense one methodological 
standpoint per se as evident and the standpoints differing from it as dubious 
or as only technically justified. That sort of opposition is also not at all neces-
sary . . . as long as one decides to distinguish between different layers and kinds 
of evidence. (In Gödel 2003a, 139)

Bernays then points out that the certainty of a thought system (Gedankensystem) 
is not given from the beginning but is acquired through a kind of intellectual 

	 20	 Here is the German text:  “Hierauf ist zu erwidern, dass die Tendenz der methodischen 
Beschränkung grundsätzlich dieselbe bleibt, nur dass wir—​wenn wir uns die Möglichkeit von 
Erweiterungen des methodischen Rahmens offen halten wollen—​vermeiden müssen, die Begriffe 
der Evidenz und der Sicherheit in einem zu absoluten Sinne zu gebrauchen.”
	 21	 Here is the German text: “Damit gewinnen wir andrerseits den grundsätzlichen Vorteil, dass 
wir nicht genötigt sind, die üblichen Methoden der Analysis als ungerechtfertigt oder bedenklich zu 
problematisieren.”
	 22	 Bernays points to his (1930) and his essay “Sur le platonisme dans les mathématiques” as exem-
plary essays in which he took exception from such a perspective. Clearly, he had taken already in his 
1922 papers such a “non-​formalist” position.
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experience (geistige Erfahrung). That observation pertains also to analysis. 
Nevertheless, he emphasizes, “that does not prevent one from contrasting the 
methods of analysis with an approach of more elementary evidence and of a 
more specifically arithmetic character” (In Gödel 2003a, 139).

Having articulated an open perspective that allows distinguishing between 
different layers and kinds of evidence, Bernays insists on the methodological sig-
nificance of syntactic consistency proofs:

The task of establishing the inner harmony of analysis from such a standpoint of 
more elementary evidence as a syntactic necessity by formalizing the inferences 
of analysis, that task gains in this way its methodological significance.23 (In 
Gödel 2003a, 138)

What standpoint of “more elementary” evidence can be taken? How is an ap-
proach based on “a more specifically arithmetic character” to be understood? 
In subsequent papers Bernays made some general suggestions, which point in a 
direction that can be given more weight and significance by exploiting our more 
extended experience with proof-​theoretic investigations.

4.  Accessible Objects and Principles

To indicate the core metamathematical and methodological issues, I will dis-
cuss three examples of relevant proof-​theoretic work. However, before giving 
these examples, I briefly recall the context as described at the beginning of the 
previous section: structural definitions are to be projected, via their associated 
formal development, into a “constructive” domain; their images are to be investi-
gated from a “constructive” standpoint with the goal of establishing the consist-
ency of the structural definition. Indeed, the methods for consistency proofs in 
the pursuit of variants of Hilbert’s Program have been required to be “construc-
tive,” i.e., processes should be effective, mathematical objects should be induc-
tively generated, and proofs should shun the law of the excluded middle. Bernays 
highlighted these features in his (1954), as the metamathematical investigations 
must be embedded in a suitable methodological frame. To be suitable for the 
programmatic proof-​theoretic aims, such a frame must satisfy the constructivity 
requirements just listed, in particular, the crucial condition on mathematical 

	 23	 Here is the German text:  “Die Aufgabe, die innere Einstimmigkeit der Analysis von einem 
solchen Standpunkt elementarerer Evidenz an Hand der Formalisierung der Schlussweisen 
der Analysis als eine syntaktische Notwendigkeit zu erweisen, erhält damit ihre methodische 
Bedeutsamkeit.”



368  Wilfried Sieg

objects: “The objects (making up the intended model of the theory) are not taken 
from the domain as being already given but are rather constituted by generative 
processes” (1954, 12). The nature of the objects is as irrelevant for Bernays as 
it was for Dedekind, but the generative processes give them a unique internal 
structure. This internal structure is independent of the completed totality of all 
the generated objects. Keep this observation in mind when I discuss now three 
paradigmatic proof-​theoretic studies.

The first proof-​theoretic study is important for two reasons: (1) it showed that 
Hilbert’s program could be pursued from an extended constructive standpoint, 
and (2) it exemplified an important shift, as the formalization of the broader con-
structive principles could be used to prove rigorously formulated relative consist-
ency results. As to (1), John von Neumann and Jacques Herbrand believed that 
Gödel’s results spelled the definite impossibility of the program for strong formal 
theories like analysis or even full number theory. When writing his (1931), 
Herbrand knew Gödel’s results well and proved finitistically the consistency of 
fragments of first-​order number theory (PA), when the induction principle is re-
stricted to quantifier-​free formulae. Gödel viewed Herbrand’s theorem, even in 
December 1933, as the most far-​reaching result in the pursuit of Hilbert’s finitist 
program (Gödel 1933a, 52). What changed the general approach to the consist-
ency problem was the metamathematical fact proved in this first study: Gödel 
and Gentzen independently established in 1932 the consistency of full elemen-
tary number theory (PA) relative to its intuitionist variant (HA).24 According to 
Bernays (1967) and the historical record, finitist and intuitionist mathematics 
had been viewed as co-​extensional up to the discovery of the reduction of (PA) to 
(HA). This result showed that intuitionist mathematics is a proper constructive 
extension of finitist mathematics.

One can view this result as having been obtained by a projection of the con-
cept simply infinite system through (PA) into a subdomain of intuitionist mathe-
matics. The arithmetic principles governing the relevant subdomain are those of 
(PA) and are joined with intuitionist logic; the resulting formal theory is Heyting 
Arithmetic (HA). Notice, first of all, that (PA) is adequate for the formalization of 
ordinary number theory. Observe, second, that derivations in (PA) are syntacti-
cally translated into proofs in (HA). Indeed, the translation and the metamathe-
matical argument, showing that the translation yields HA-​proofs, can be carried 
out in (HA). The resulting HA-​proofs are, finally, recognized from an intuitionist 
standpoint as being “correct.”25

	 24	 As to the sequence of these discoveries see (Sieg 2011, 178).
	 25	 Correct is to be understood in this context in two different ways. In the formal metamathemat-
ical argument, one establishes the partial reflection principle for (PA) within the constructive theory 
(HA) for a certain class of arithmetic statements. In the overall methodological considerations, one 
recognizes the proofs in (HA) as “fully correct” from the intuitionist standpoint. For a more detailed 
discussion, see my (1984) or its republication in (Sieg 2013, 250–​252).
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Here we have a direct and essentially logical reduction. Figure 3 points again 
to formalization as the means of projection, but it incorporates the formalized 
principles needed for the relative consistency proof. Thus, the diagram has three 
central, distinct components: (i) an articulation of the abstract axiomatic theory 
as a formal one, (ii) the identification of the syntactic objects of the formal theory 
with elements of a suitable domain, and (iii) the precise formulation of construc-
tive principles concerning that domain. The Gödel-​Gentzen result is special in 
that both the classical and constructive theory have the same mathematical prin-
ciples; it is “only” the underlying logic that is different.

Significantly later, results were obtained for the notion of a complete ordered 
field. That concept is also categorical, but I should emphasize that categoricity 
does not guarantee accessibility: Cauchy sequences, Dedekind cuts, and Hilbert’s 
“Strecken” (of his geometric model) all constitute complete ordered fields that 
are isomorphic, but not canonically so. In the second study, the classical theory 
is a subsystem of analysis (i.e., of second-​order arithmetic) with the comprehen-
sion principle for arithmetic formulae only; the system is denoted by (ACA)0. 
It can be shown to be conservative over (PA) and, as (PA) is relative consistent 
to (HA), it is consistent relative to (HA).26 Despite the fact that this subsystem 
of analysis is proof-​theoretically not stronger than (HA), it is adequate for a 
significant part of mathematical practice: Weyl’s development of classical anal-
ysis in Das Kontinuum can be formalized in (ACA)0; see (Feferman 1988) and 
also (Takeuiti 1978). All of this is reflected through an easy modification of the 

Structural axiomatics (simply in�nite system)

Formalization in (HA) Formalization in (PA)

Projection

(Sub-domain) of intuitionist mathematics

Figure 3.  Projection into a sub-​domain of intuitionist mathematics

	 26	 A proof-​theoretic argument for the conservative extension result is given in (Feferman and Sieg 
1981, 112). It can be established in (HA); that fact is important for the proof of the partial reflection 
principle. Many reductions of classical to constructive theories are found in that paper. Significant 
reductive results are presented in (Rathjen and Sieg 2018) for a much-​extended range of theories.
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diagram in Figure 3: “simply infinite system” is replaced by “complete ordered 
field” and (PA) by (ACA)0.

The third study is even more illuminating as to the broad methodological 
issues, but it is also mathematically more complex. We aim again for a projec-
tion of the notion of a complete ordered field, but this time through the classical 
and impredicative subsystem of analysis (∏1

1-​CA)0 into the domain of the finite 
constructive number classes whose principles are formalized in the intuitionist 
theory ID(O)<ω. (∏1

1-​CA)0 has the comprehension principle for ∏1
1-​formulae, 

whereas ID(O)<ω expands (HA) by closure and minimality principles for the On; 
these principles are formulated subsequently, once we have stated the generative 
clauses for the number classes. We first notice that (∏1

1-​CA)0 is adequate for the 
formalization of mathematical analysis. In Supplement IV of Hilbert and Bernays 
(1939), analysis is developed in second-​order arithmetic. A careful examination 
of their development shows that the comprehension principle is used only for  
∏1

1-​formulae. Second, the reduction is obtained in two steps. In Feferman (1970), 
(∏1

1-​CA)0 is shown to be proof-​theoretically equivalent to the classical theory of 
finitely iterated inductive definitions ID<ω. The first step is then followed by the 
reduction of the classical theory ID<ω to intuitionist ID(O)<ω; this second step 
was taken in my 1977 thesis and involves crucially transformations of infinitary 
proof figures that are identified with elements of the constructive number classes. 
The transformed infinitary proofs of a subclass of arithmetic statements are 
recognized in ID(O)<ω as correct. These considerations are reflected in a mod-
ification of the diagram in Figure 3: “simply infinite system” is again replaced 
by “complete ordered field,” (PA) by (∏ 1

1-​CA)0, and (HA) by ID(O)<ω. The 
published presentation of this second step is Sieg (1981), but a sketch is given in  
(Sieg 2013, 254–​256).

A summary discussion of the crucial aspects of these investigations can be 
given with the help of the three diagrams in Figures  1–​3. The first diagram 
simply reflects my distinction between accessible and abstract axiomatics. The 
second diagram indicates the perspective for the finitist investigation of the 
images of structural axiomatic theories; the images have been obtained through 
the formalization of the theories. The third diagram adds two significant new 
components. The image of the projected abstract notion is no longer found in the 
finitist domain, but rather in that of intuitionist mathematics; that is the first new 
component. The second new component is the formal articulation of the theory 
in which the metamathematical investigations proceed, here (HA) and ID(O)<ω. 
An appropriately generalized diagram is found in Figure 4.

What general features should be required of methodological frames, so that 
they are suitable for extensions of Hilbert’s constructivist program? Bernays re-
flected already in his (1938) on constraints for frames and took an arithmetical 
perspective in the strict sense as central:
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[Accordingly,] arithmetical is the representation [Vorstellung] of a figure that 
is composed of discrete parts, in which the parts themselves are considered ei-
ther only in their relation to the whole figure or according to certain coarser 
distinctive features that have been specially singled out; arithmetical is also the 
representation of a formal process that is performed with such a figure and that 
is considered only with regard to the change that it causes. (Bernays 1983)

These considerations underlie the requirement that methodological frames must 
have domains of objects that are constituted through generative arithmetical 
processes that are then captured through the adopted principles. Bernays called 
this special form of structural axiomatics sharpened axiomatics (verschärfte 
Axiomatik).

Thus, the crucial question is, which procedures can be viewed as generative 
(arithmetical) ones? Elementary inductive definitions of syntactic notions, like 
formula or proof, were clearly viewed in that light from the very beginning. Due 
to Aczel’s (1977) we have an extremely general way of generating mathematical 
objects that goes far beyond the arithmetical generation of Bernays. Aczel’s ways 
allow, of course, the generation of natural numbers, elementary syntactic objects, 
but they also yield constructive ordinals and even the elements in segments 
of the cumulative hierarchy of sets.27 I  focus on just natural numbers N and 

Structural axiomatics

Accessible axiomatics Abstract axiomatics

Formalization Formalization

Projection

Accessible domain 

Figure 4.  Reductions to accessible domains

	 27	 The latter case has its roots in Zermelo’s investigation of Mengenbereiche in his (1930); their 
quasi-​categoricity ensures that Zermelo’s work on Mengenbereiche is for sets what Dedekind’s work 
on einfach unendliche Systeme is for natural numbers.
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constructive ordinals O, the second constructive number class. N is generated 
from some element 0 using an injective successor operation s and two rules: 0 is 
in N and if n is in N, then s(n) is also in N. The second constructive number class 
is also generated with the help of two rules, namely, 0 is in O and if e is (the Gödel 
number of) a recursive function enumerating elements of O, then e is also in O.28 
The closure and minimality principles for domains are standard for N and can be 
articulated for O as follows:

	 ( ) ( ( ( ), ) )∀ →x x x A O O 	

and

	 ( ) ( ( ( ) ( ) ( ( ( ), ) ) ) )∀ → → ∀ →x F x F x x x F x A  O 	

The first formula expresses that O is closed under the generating clauses, 
whereas the second formula schema says (F being any formula in the lan-
guage of HA expanded by the unary predicate O) that O is minimal among all 
predicates that are closed under the generating clauses. The latter is the prin-
ciple of proof by induction for O. The intuitionist theory ID(O) is the extension 
of (HA) by the two preceding principles.29

N and O are examples of i.d. classes that obey not only the principle of proof by 
induction but also the principle of definition by recursion, because they are deter-
ministic.30 The deterministic i.d. classes are the accessible domains, and the asso-
ciated accessible principles support canonical isomorphisms between any two 
such classes. They are centrally positioned in the final diagram of Figure 4 that 
combines and generalizes the diagrams from Figures 1 and 3.

The methodological point of projections and the resulting structural 
reductions is to coordinate and bring into harmony two crucial aspects of math-
ematical experience:  the conceptual one involving abstract notions that have 
many different models, and the constructive one concerning accessible domains 
that are characterized uniquely up to a canonical isomorphism. The first aspect 
provides mathematical explanations that rest on conceptual understanding, 
whereas the second aspect facilitates thinking about mathematical objects and 
fundamental principles that are grounded in the inductive generation of those 

	 28	 The antecedents of these generating clauses can be expressed by a formula that is arithmetic in 
O. Their disjunction is abbreviated by A(O, e).
	 29	 The intuitionist theory ID(O)<ω is a similar expansion (HA) with principles for the finite con-
structive number classes On; the latter are obtained by iterating the definition of O, but allowing in 
the second generating clause also branching over already obtained number classes Ok with k less 
than n.
	 30	 An i.d. class is deterministic if the generating operations are injective. Consequently, all of its 
elements have an associated unique construction tree that is of course well-​founded.
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objects. Reductive projections are the crucial means for joining those aspects 
guaranteeing the coherence of abstract concepts. The philosophical significance 
of consistency proofs is to be assessed in terms of the objective underpinnings 
of the frames to which reductions are achieved. It is precisely here that the var-
ious accessible domains play a distinctive role and offer, through a comparison of 
their generating operations, a scale for assessing relative consistency proofs. This 
remains an open field for penetrating philosophical investigation and concrete 
mathematical work.31

In this open field, questions are being pursued that transcend traditional is-
sues in the philosophy of mathematics and that are based on one common in-
sight:  mathematics systematically investigates concepts that are structurally 
defined. Which concepts are to be considered, which logical means are to be 
used for the development of their theories, and which methodological frames 
should be considered—​these questions have been controversial. From this per-
spective, the controversy between “classical” and “constructive” mathematics can 
be transformed into two probing questions, (1) what is characteristic of and pos-
sibly problematic in classical mathematics and (2) what is characteristic of and 
taken for granted as convincing in constructive mathematics. Answers to these 
questions have hardly been advanced by “ideological” discussions. Some argue 
as if an exclusive alternative between Platonism (taken to be required for clas-
sical mathematics) and intuitionism (taken to be required for constructive math-
ematics) had emerged from sustained foundational work over the last 150 years 
or so; others argue as if that work were deeply misguided and had no bearing 
on our understanding of mathematics. Both attitudes prevent us from turning 
attention to two crucial and more specific tasks, namely, on the one hand, to un-
derstand the role of abstract structural concepts in mathematical practice and, 
on the other hand, to clarify the function of accessibility notions in philosoph-
ical analysis. These tasks have fundamentally to do with mathematical cognition; 
some fruitful directions for explorations are discussed in the next section, which 
also happens to be the last one.

	 31	 As to more up-​to-​date work in proof theory concerning proof-​theoretic reductions, see the con-
tribution to the Stanford Encyclopedia of Philosophy Rathjen and I wrote (Rathjen and Sieg 2018). The 
volumes (Kahle and Rathjen 2015) and (Jäger and Sieg 2017) are also rich sources for contemporary 
work in proof theory. To obtain an “abstract” grasp of accessible domains, I have been interested in 
their category-​theoretic characterization for quite a while see (Sieg 2002, 372–​373). Patrick Walsh 
worked on this very issue in his dissertation (Walsh 2019).
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5.  Exploring Cognitive Capacities

Reconnecting with Stein’s remarks on capacities of the mathematical mind, I am 
led back to the 19th century and to Dedekind. In his Habilitationsrede from 1854 
Dedekind remarks on different ways of conceiving the object of a science and 
asserts that this difference “finds its expression in the different forms, the dif-
ferent systems in which one seeks to frame its conception” (429).32 The need to 
frame the conception of a science arises from the fact that our intellectual powers 
are imperfect. “Their limitation leads us to frame the object of a science in dif-
ferent forms, and introducing a concept means formulating a hypothesis on the 
inner nature of the science.” How well the concept captures this inner nature 
is determined by its usefulness for the development of the science; in mathe-
matics that mainly means its usefulness for constructing proofs. Dedekind put 
the theories from his foundational essays to this test by showing that they allow 
the direct, stepwise development of number theory and analysis by means of our 
Treppenverstand using exclusively the characteristic conditions (Merkmale) of the 
structural definition of the relevant notion as starting points. Creating concepts 
and deriving theorems are consequently the tools to overcome, at least partially, 
the limitations of our intellectual powers.33

The theme of such specifically human understanding is sounded also in a re-
mark from Bernays (1954, 18): “Though for differently built beings there might 
be a different kind of evidence, it is nevertheless our concern to find out what 
evidence is for us.” Bernays emphasized, as mentioned already, that evidence 
is acquired through intellectual experience and experimentation in an almost 
Dedekindian spirit. In 1946, he wrote, for example:

In this way we recognize the necessity of something like intelligence or reason 
that should not be regarded as a container of [items of] a priori knowledge, but 
as a mental activity that reacts to given situations with the formation of experi-
mentally applied categories. (Bernays 1946, 91)

Intellectual experimentation of this kind in part supports the creation of concepts 
that define abstract structures or characterize accessible domains; in part it is 
supported through the illuminating use of these concepts in proofs of significant 
theorems of mathematical practice. These aspects of the mind are central, if we 

	 32	 Here is the German original: “Diese Verschiedenheit der Auffassung des Gegenstandes einer 
Wissenschaft findet ihren Ausdruck in den verschiedenen Formen, den verschiedenen Systemen, in 
welche man sie einzurahmen sucht.”
	 33	 This is discussed in detail in (Sieg and Morris 2018). The functional role of concepts or, in 
Bourbaki’s terminology, of structures is emphasized by Heinzmann and Petitot in their contribution 
to this volume.
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want to grasp the subtle connection between reasoning and understanding in 
mathematics, as well as the role of leading ideas in guiding the construction of 
proofs and of concepts in providing explanations.34

How can we explore these issues in a systematic and yet open way? The in-
vestigation of proofs and their conceptual contexts is central for such research. 
In a way, I  am arguing for an expansion of proof theory to consider informal 
mathematical proofs as objects of theoretical study; formal representations of 
proofs and their metamathematical investigation are important, but in the 
end—​for our purposes—​subservient to the examination of what Hilbert called 
“the notion of the specifically mathematical proof ” (1918). Even for Gentzen in 
(1936, 499), “The objects of proof theory shall be the proofs carried out in math-
ematics proper.” Hilbert had made already an additional claim concerning the 
general philosophical significance of formalized mathematics that “is carried 
out according to certain definite rules, in which the technique of our thinking is 
expressed”:

These rules form a closed system that can be discovered and definitively stated. 
The fundamental idea of my proof theory is none other than to describe the ac-
tivity of our understanding, to make a protocol of the rules according to which 
our thinking actually proceeds.  .  .  . If any totality of observations and phe-
nomena deserves to be made the object of a serious and thorough investigation, 
it is this one. (Hilbert 1927, 475)

A good start for such an investigation is a thorough computer-​based formal re-
construction of parts of the rich body of mathematical knowledge that is system-
atic, but that is also structured for human intelligibility and discovery.35 In order 
to expand formal methods by heuristics (leading ideas) and to carry out proof 
search experiments, we must isolate truly creative elements in proofs and imple-
ment them. Thus, we will come closer to an understanding of the technique of 
our thinking, be it mechanical or non-​mechanical. In a radio broadcast of 1951, 
Turing remarked: “The whole thinking process is still rather mysterious to us, 
but I believe that the attempt to make a thinking machine will help us greatly 
in finding out how we think ourselves” (Turing [1951] 2004, 486). It is no less 
mysterious more than 75 years later, but we have now powerful computational 

	 34	 In my paper Gödel’s Philosophical Challenge (to Turing) (2013a) I explore the ways in which 
Gödel and Turing, in quite different ways, try to overcome the limitations of particular formal theo-
ries. Turing appeals to “initiative” and varied mathematical experience, whereas Gödel seeks a deeper 
understanding of abstract concepts, in particular, that of “set.”
	 35	 See my paper with Patrick Walsh on natural formalization (2017), but also our discussion of 
Gowers’s “human-​centered automatic theorem-​proving” in (Gowers 2016) and (Ganesalingam and 
Gowers 2013, 2017).
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and sophisticated logical tools as well as a broad methodological perspective for 
exploring human mathematical cognition. I am convinced that such explorations 
will illuminate “one of the greatest advances in philosophy.”

Appendix: Transition to Hilbert’s Proof Theory in 1922

Hilbert’s consistency issue had been raised in a “model theoretic” form already 
by Dedekind. To guarantee that the concept of a simply infinite system does 
not contain internal contradictions, Dedekind proved the “logical existence” of 
a system falling under this concept. In the Second Problem of his Paris talk of 
1900, Hilbert formulated the goal of ensuring the “mathematical existence” of 
a structurally defined concept by giving a consistency proof. In (Hilbert 1905), 
a direct syntactic consistency proof was given for a purely equational system of 
arithmetic. It took the integration of mathematical and logical investigations 
(as described in sections 2 and 3) to be able to resume such “proof theoretic” 
investigations in the early 1920s.

Bernays’s contribution (1922a) to the issue of Die Naturwissenschaften that 
celebrated Hilbert’s 60th birthday was fully aligned with Hilbert’s conception of 
structural axiomatics. His sketch of how to address the consistency problem is 
based on talks Hilbert had given in Copenhagen and Hamburg during the first 
half of 1921; they were published as (Hilbert 1922) .36 The transitional features of 
Hilbert’s paper are also reflected in Bernays’s considerations.37 For the axiomatic 
treatment of geometry, Bernays formulated matters as follows (1922a, 96):

The spatial relationships are, so to speak, projected into the mathematical-​
abstract sphere; in this sphere, the structure of their connection presents itself 
as an object of pure mathematical thinking and is being investigated with the 
sole focus on logical relations.38

	 36	 The three aspects of 19th-​century developments he pointed out in his (1930), and which 
I discussed at the very beginning of this paper, are already present here in (Bernays 1922a). As to 
the philosophical significance of this new kind of axiomatics, he emphasized that (1)  it involves 
an “Abgehen vom Apriorismus” (95) and (2)  mathematics, so understood and developed, is an 
“allgemeine Formenlehre” (99).
	 37	 The development of Hilbert’s foundational investigations in this critical period between the 
1917–​18 lectures and the 1921–​22 lectures is described in (Sieg 1999). All the relevant sources are, of 
course, available now in (Ewald and Sieg 2013).
	 38	 Here is the German text: “Die räumlichen Verhältnisse werden gleichsam in die Sphäre des 
Mathematisch-​Abstrakten projiziert, in welcher die Struktur ihres Zusammenhanges sich als ein 
Objekt des rein mathematischen Denkens darstellt und einer Forschungsweise unterzogen wird, die 
nur auf die logischen Beziehungen gerichtet ist.”
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How is such an investigation to be realized? The structural axiomatic treatment 
provides the basis for the exclusive focus on logical relations. Any mathematical 
proof is taken to be “a concrete object all of whose parts can be surveyed; it must 
be possible, at least in principle, to communicate it [the proof] completely from 
beginning to end” (97). That a proof does or does not end in a contradiction is 
“a concretely checkable property.” At exactly this point, the logical calculus of 
“Peano, Frege, and Russell” comes in: these three logicians expanded the calculus 
in such a way “that the thought-​inferences of mathematical proofs can be com-
pletely reproduced by symbolic operations” (98). A joint formal development 
of mathematics and logic is thus ensured, but there is no sense yet of the theo-
retical means needed for metamathematical investigations. Bernays only writes 
that, in principle, it is possible to obtain consistency proofs for analysis through 
“elementary, ostensively certain considerations.” Hilbert (1922) thought that 
one would not have to appeal to any principle of induction, thus sidestepping 
Poincaré’s objection to his earlier syntactic consistency proof.

This brief appendix is simply to point out that Bernays, in his first paper on 
foundational matters, is fully aligned with Hilbert and uses the representation of 
mathematical proofs in formalisms as a tool for their investigation, not as a way 
for characterizing mathematics as a formal game.

Acknowledgments

The perspective on foundational problems I expressed in this chapter is deeply 
shaped by my intellectual experience as a student of mathematics in Berlin: I 
was fascinated by structuralist mathematics as taught by Karl Peter Grotemeyer, 
learned the elements of category theory, and read a lot of Bourbaki; at the same 
time, I was affected by Paul Lorenzen and his philosophically critical attitude to-
ward the foundations of that very mathematics.

It was only later, after having studied mathematical logic in Münster under 
Dieter Rödding and worked in proof theory at Stanford with Solomon Feferman, 
that I started to appreciate the balanced perspective of Paul Bernays: his charac-
terization of mathematics as the science of idealized structures and the philosoph-
ically significant role proof theory was assigned in his scheme of things.

That position was alluded to at the end of my first reflective essay (1984) 
and became topical and connected to Bernays in (1990). I formulated matters 
more pointedly in two seminars at the University of Bologna on April 11 and 
12, 2007, under the title Reductive Structuralism: Joining Aspects of Mathematical 
Experience. In June 2015, I gave a talk at the University of Vienna under the title 
Reductive Structuralism; the present chapter is an elaboration of those talks.



378  Wilfried Sieg

The translations in this paper are mine, unless quoted from a particular 
source. I want to thank Erich Reck and Georg Schiemer, who read earlier drafts 
and made many helpful suggestions. Critical remarks of Patrick Walsh prompted 
me to rethink and rewrite the central section 4.

References

Ackermann, W. 1924. Begründung des “tertium non datur” mittels der Hilbertschen 
Theorie der Widerspruchsfreiheit. Mathematische Annalen 93, 1–​36.

Aczel, P. 1977. An Introduction to Inductive Definitions. In Barwise 1977, pp. 739–​782.
Barwise, J., ed. 1977. Handbook of Mathematical Logic. Amsterdam: North-​Holland.
Bernays, P. 1922a. Hilberts Bedeutung für die Philosophie der Mathematik. Die 

Naturwissenschaften 4, 93–​99.
Bernays, P. 1922b. Über Hilberts Gedanken zur Grundlegung der Mathematik. 

Jahresbericht der DMV 31, 10–​19.
Bernays, P. 1930. Die Philosophie der Mathematik und die Hilbertsche Beweistheorie. 

Reprinted in Bernays 1976, pp. 17–​61.
Bernays, P. 1938. Über die aktuelle Methodenfrage der Hilbertschen Beweistheorie. 

Unpublished manuscript from the Bernays Nachlass. it was presented at Les entretiens 
de Zürich in December 1938 and published in French as Bernays 1941.

Bernays, P. 1941. Sur les questions méthodologiques actuelles de la théorie Hilbertienne 
de la démonstration. In Les entretiens de Zürich sur les fondements et la méthode des 
sciences mathématiques, edited by F. Gonseth, pp. 144–​152. Discussion, pp. 153–​161. 
Zürich: Leemann.

Bernays, P. 1946. Gesichtspunkte zum Problem der Evidenz. Reprinted in Bernays 1976, 
pp. 85–​91.

Bernays, P. 1954. Zur Beurteilung der Situation in der beweistheoretischen Forschung. 
Revue internationale de philosophie 8, 9–​13. Discussion, pp. 15–​21.

Bernays, P. 1967. Hilbert, David. In Encyclopedia of Philosophy, edited by P. Edwards, vol. 
3, pp. 496–​504. New York: Macmillan.

Bernays, P. 1970. Die schematische Korrespondenz und die idealisierten Strukturen. 
Reprinted in Bernays 1976, pp. 176–​188.

Bernays, P. 1976. Abhandlungen zur Philosophie der Mathematik. Darmstadt: 
Wissenschaftliche Buchgesellschaft.

Bernstein, F. 1919. Die Mengenlehre Georg Cantors und der Finitismus. Jahresbericht der 
DMV 28, 63–​78.

Bourbaki, N. 1949. Foundations of Mathematics for the Working Mathematician. Journal 
of Symbolic Logic 14, 1–​8.

Bourbaki, N. 1950. The Architecture of Mathematics. Mathematical Monthly 57, 221–​232.
Buchholz, W., S. Feferman, W. Pohlers, and W. Sieg. 1981. Iterated Inductive Definitions 

and Subsystems of Analysis: Recent Proof-​Theoretical Studies. Vol. 897 of Lecture Notes 
in Mathematics. New York: Springer.

Cartan, H. 1943. Sur the fondement logique des mathématiques. Revue Scientifique 
81, 3–​11.



Methodological Frames  379

Dedekind, R. 1854. Über die Einführung neuer Funktionen in der Mathematik, 
Habilitationsvortrag. In Dedekind 1932, pp. 428–​438. Translated in Ewald 1996, 
pp. 754–​762.

Dedekind, R. 1872. Stetigkeit und irrationale Zahlen. Vieweg. Reprinted in Dedekind 
1932, pp. 315–​324. Translated in Ewald 1996, pp. 765–​779.

Dedekind, R. 1888. Was sind und was sollen die Zahlen? Vieweg. Reprinted in Dedekind 
1932, pp. 335–​391. Translated in Ewald 1996, pp. 787–​833.

Dedekind, R. 1890. Letter to H.  Keferstein, Cod. Ms. Dedekind III, I, IV. Printed in 
Sinaceur 1974, pp. 270–​278. Translated in van Heijenoort 1967, pp. 98–​103.

Dedekind, R. 1932. Gesammelte mathematische Werke. Vol. 3. Edited by R. Fricke, E. 
Noether, and Ö. Ore. Braunschweig: Vieweg.

Dieudonné, J. 1939. Les méthodes axiomatiques modernes et les fondements des 
mathématiques. Revue Scientifique 77, 224–​232.

Ewald, W. B., ed. 1996. From Kant to Hilbert:  A Source Book in the Foundations of 
Mathematics. 2 vols. New York: Oxford University Press.

Ewald, W,. and W. Sieg, eds. 2013. David Hilbert’s Lectures on the Foundations of Arithmetic 
and Logic, 1917–​1933. New York: Springer.

Feferman, S. 1988. Weyl Vindicated:  “Das Kontinuum” 70 Years Later. In Temi e 
prospettive della logica e della filosophia della scienza contemporanee, vol. 1, Logica, pp. 
59–​93. Bologna: Cooperativa Libraria Universitaria Editrice Bologna.

Feferman S., and W. Sieg. 1981. Proof-​Theoretic Equivalences between Classical and 
Constructive Theories for Analysis. In Buchholz et al. 1981, pp. 78–​142.

Frege, G. 1969. Nachgelassene Schriften und wissenschaftlicher Briefwechsel. Edited by H. 
Hermes, F. Kambartel, and F. Kaulbach. Hamburg: Meiner Verlag.

Ferreirós, J. 2009. Hilbert, Logicism, and Mathematical Existence. Synthese 170, 33–​70.
Ganesalingam, M., and W. T. Gowers. 2013. A Fully Automatic Problem Solver with 

Human-​Style Output. arXiv: 1309.4501.
Ganesalingam, M., and W. T. Gowers. 2017. A Fully Automatic Problem Solver with 

Human-​Style Output. Journal of Automated Reasoning 58, 253–​291.
Gentzen, G. [1933] 1964. Über das Verhältnis zwischen intuitionistischer und klassischer 

Arithmetik. Archiv für mathematische Logik und Grundlagenforschung 16, 119–​132.
Gentzen, G. 1936. Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische 

Annalen 112, 493–​565.
Gödel, K. 1929. Über die Vollständigkeit des Logikkalküls. Dissertation, Vienna. In Gödel 

1986, pp. 60–​101.
Gödel, K. 1931. Über formal unentscheidbare Sätze der Principia Mathematica und 

verwandter Systeme I. In Gödel 1986, pp. 126–​195.
Gödel, K. 1933. Zur intuitionistischen Arithmetik und Zahlentheorie. In Gödel 1986, pp. 

286–​295.
Gödel, K. 1933a. The Present Situation in the Foundations of Mathematics. In Gödel 

1995, pp. 36–​53.
Gödel, K. 1938. Vortrag bei Zilsel. In Gödel 1995, pp. 85–​113.
Gödel, K. 1946. Remarks before the Princeton Bicentennial Conference on Problems in 

Mathematics. In Gödel 1990, pp. 150–​153.
Gödel, K. 1986. Collected Works. Vol. 1, Publications 1929–​36. Edited by S. Feferman et al. 

New York: Oxford University Press.
Gödel, K. 1995. Collected Works. Vol. 3, Unpublished Essays and Lectures. New York: Oxford 

University Press.



380  Wilfried Sieg

Gödel, K. 2003a. Collected Works. Vol. 4, Correspondence A-​G. Edited by S. Feferman et al. 
New York: Oxford University Press.

Gödel, K. 2003b. Collected Works. Vol. 5, Correspondence H–​Z. New  York:  Oxford 
University Press.

Gowers, W. T. 2016. Interview with A. Diaz-​Lopez. Notices of the AMS 63, 1026–​1028.
Hallett M., and U. Majer, eds. 2004. David Hilbert’s Lectures on the Foundations of 

Geometry, 1891–​1902. New York: Springer.
Hasse, H. 1930. Die moderne algebraische Methode. Jahresbericht der DMV 39, 22–​34.
Herbrand, J. 1931. Sur la non-​contradiction de l’arithmétique. Crelles Journal für die reine 

und angewandte Mathematik 166, 1–​8.
Hilbert, D. 1899. Grundlagen der Geometrie. In Festschrift zur Feier der Enthüllung des 

Gauss-​Weber-​Denkmals, pp. 1–​92. Göttingen: Teubner.
Hilbert, D. 1900. Über den Zahlbegriff. Jahresbericht der DMV 8, 180–​183.
Hilbert, D. 1900a. Mathematische Probleme. Nachrichten der Königlichen Gesellschaft der 

Wissenschaften zu Göttingen, 253–​297.
Hilbert, D. 1905. Über die Grundlagen der Logik und der Arithmetik. In 

Verhandlungen des Dritten Internationalen Mathematiker-​Kongresses, pp. 174–​185. 
Göttingen: Teubner.

Hilbert, D. 1917–​18. Prinzipien der Mathematik. Lecture notes by P. Bernays. In Ewald 
and Sieg 2013, pp. 59–​214.

Hilbert, D. 1921–​22. Grundlagen der Mathematik. Lecture notes by P. Bernays. In Ewald 
and Sieg 2013, pp. 431–​519.

Hilbert, D. 1927. Die Grundlagen der Mathematik. Abhandlungen aus dem 
mathematischen Seminar der Hamburgischen Universität 6, 65–​85. Translated in van 
Heijenoort 1967, pp. 464–​479.

Hilbert, D. 1928. Probleme der Grundlegung der Mathematik. Mathematische Annalen 
102, 1–​9.

Hilbert, D. 1930. Naturerkennen und Logik. Die Naturwissenschaften 18, 959–​963.
Hilbert, D., and W. Ackermann. 1928. Grundzüge der theoretischen Logik. Berlin: Springer. 

Reprinted in Ewald and Sieg 2013, pp. 806–​915.
Hilbert, D., and P. Bernays. 1934. Grundlagen der Mathematik. Vol. 1. Berlin: Springer.
Hilbert, D., and P. Bernays. 1939. Grundlagen der Mathematik, Vol. 2. Berlin: Springer. 

2nd ed., 1970.
Jäger, G., and W. Sieg, eds. 2017. Feferman on Foundations: Logic, Mathematics, Philosophy. 

New York: Springer.
Kahle, R., and M. Rathjen, eds. 2015. Gentzen’s Centenary:  The Quest for Consistency. 

New York: Springer.
Parsons, C. D. 2008. Paul Bernays’ Later Philosophy of Mathematics. In Logic Colloquium 

2005, edited by C. Dimitracopoulos, L. Newelski, D. Normann, and J. R. Steel, pp. 
129–​150. Lecture Notes in Logic 28. New York: Association for Symbolic Logic and 
Cambridge University Press.

Rathjen, M., and W. Sieg. 2018. Proof Theory. Stanford Encyclopedia of Philosophy.
Reck, E., and M. Price. 2000. Structures and Structuralism in Contemporary Philosophy 

of Mathematics. Synthese 125, 341–​383.
Sieg, W. 1977. Trees in Metamathematics (Theories of Inductive Definitions and 

Subsystems of Analysis). Dissertation, Stanford University.
Sieg, W. 1981. Inductive Definitions, Constructive Ordinals, and Normal Derivations. In 

Buchholz et al. 1981, pp. 143–​187.



Methodological Frames  381

Sieg, W. 1984. Foundations for Analysis and Proof Theory. Synthese 60, 156–​200. 
Reprinted in Sieg 2013, pp. 229–​261.

Sieg, W. 1990. Relative Consistency and Accessible Domains. Synthese 84, 259–​297. 
Reprinted in Sieg 2013, pp. 299–​326.

Sieg, W. 1999. Hilbert’s Programs:  1917–​1922. BSL 5, 1–​44. Reprinted in Sieg 2013, 
pp. 91–​127.

Sieg, W. 2002. Beyond Hilbert’s Reach? In Reading Natural Philosophy:  Essays in the 
History and Philosophy of Science and Mathematics, edited by D. Malament, pp. 345–​
375. Chicago: Open Court. Reprinted in Sieg 2013, pp. 345–375.

Sieg, W. 2011. In the Shadow of Incompleteness: Hilbert and Gentzen. In Epistemology 
versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour 
of Per Martin-​Löf, edited by P. Dybjer, S. Lindström, E. Palmgren, and G. Sundholm, 
pp. 155–​192. New York: Springer. Reprinted in Sieg 2013, pp. 155–192.

Sieg, W. 2013. Hilbert’s Programs and Beyond. New York: Oxford University Press.
Sieg, W. 2013a. Gödel’s Philosophical Challenge (to Turing). In Computability: Turing, 

Gödel, Church, and Beyond, edited by B. J. Copeland, C. J. Posy, and O. Shagrir, pp. 183–​
202. Cambridge, MA: MIT Press.

Sieg, W. 2014. The Ways of Hilbert’s Axiomatics: Structural and Formal. Perspectives on 
Science 22(1), 133–​157.

Sieg, W. 2016. On Tait on Kant and Finitism. Journal of Philosophy 112(5–​6), 274–​285.
Sieg, W., and D. Schlimm. 2005. Dedekind’s Analysis of Number: Systems and Axioms. 

Synthese 147, 121–​170. Reprinted in Sieg 2013, pp. 35–​72.
Sieg, W., and D. Schlimm. 2014. Dedekind’s Abstract Concepts: Models and Mappings. 

Philosophia Mathematica 10.1093/​philmat/​nku021, 2014, pp. 1–​26.
Sieg, W., and R. Morris. 2018. Dedekind’s Structuralism: Creating Concepts and Deriving 

Theorems. In Logic, Philosophy of Mathematics, and Their History: Essays in Honor of 
W. W. Tait, edited by E. Reck. London: College Publication, pp. 251–​301.

Sieg, W., and C. D. Parsons. 1995. Introductory note to Gödel 1938. In Gödel 1995, pp. 
62–​84. Reprinted in Sieg 2013, pp. 193–​213.

Sieg, W., and P. Walsh. 2017. Natural Formalization:  Deriving the Cantor-​Bernstein 
Theorem in ZF. Manuscript.

Stein, H. 1988. Logos, Logic, and Logistiké: Some Philosophical Remarks on Nineteenth 
Century Transformation of Mathematics. In History and philosophy of modern math-
ematics, edited by W. Aspray and P. Kitcher, pp. 238–​259. Minneapolis: University of 
Minnesota Press.

Takeuti, G. 1978. Two Applications of Logic to Mathematics. Publications of the 
Mathematical Society of Japan 13. Tokyo:  Iwanami Shoten Publishers; Princeton, 
NJ: Princeton University Press.

Turing, A. M. 1936. On Computable Numbers, with an Application to the 
Entscheidungsproblem. Proceedings of the London Mathematical Society 42, 230–​265.

Turing, A. M. [1951] 2004. Can Digital Computers Think? Radio broadcast. In The 
Essential Turing: The Ideas That Gave Birth to the Computer Age, edited by J. Copeland, 
pp. 482–​486. New York: Oxford University Press.

Turing, A. M. 1954. Solvable and Unsolvable Problems. Science News 31, 7–​23.
Walsh, P. 2019. Categorical Characterization of Accessible Domains. Dissertation, 

Department of Philosophy, Carnegie Mellon University.
Weyl, H. 1918. Das Kontinuum. Leipzig: Verlag von Veit.



382  Wilfried Sieg

Zermelo, E. 1908. Untersuchungen über die Grundlagen der Mengenlehre I. 
Mathematische Annalen 65, 261–​281. Translated in Ebbinghaus et  al. (2010), 
pp. 189-​229

Zermelo, E. 1930. Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae 
16, 29–​47. Translated in Ebbinghaus et al. (2010), pp. 401-​429



15
 Carnap’s Structuralist Thesis

Georg Schiemer

1.   Introduction

Rudolf Carnap’s philosophy of mathematics of the 1920s and 1930s is usually 
identified with his work on Fregean or Russellian logicism and with the prin-
ciple of logical tolerance first formulated in his Logical Syntax of Language 
(Carnap 1934).1 However, recent scholarly work has shown that Carnap also 
made significant contributions to the logical analysis of modern axiomatics and 
its (meta-​)theory, in particular in his unpublished manuscript Untersuchungen 
zur allgemeinen Axiomatik, written between 1927 and 1929. While the early 
metalogical work presented there has been investigated in detail (e.g., Awodey 
and Carus 2001; Reck 2007), no closer attention has so far been paid to the 
structuralist account of mathematics underlying Carnap’s “general axiomatics” 
project.

This chapter investigates Carnap’s mathematical structuralism in his work on 
formal axiomatics as well as in related contributions from the time. As will be 
shown, his account is based on a genuinely structuralist assumption, namely that 
axiomatic theories describe abstract structures or the structural properties of the 
objects in their domains. A central motivation for his work in the 1920s and early 
1930s was to give a logical analysis and explication of this structural content of 
theories. I will dub this assumption Carnap’s structuralist thesis.

The aim in the present chapter is twofold: first, to show that Carnap, in his 
various contributions to the philosophy of mathematics from the time, pro-
posed different ways to characterize the notion of mathematical structure. Three 
approaches will be analyzed in detail here. According to the first one, structure 
is what can be specified axiomatically, that is, in terms of “implicit definitions” 
expressed in a formal axiom system. Second, mathematical structures are also 
characterized in Carnap’s work in terms of “logical constructions,” more specifi-
cally, in terms of explicit definitions in a purely logical type-​theoretical language. 

	 1	 See, e.g., Carnap (1930, 1931), as well as Bohnert (1975) for a detailed study of Carnap’s account 
of logicism. Compare, e.g., Friedman (1999) and Wagner (2009) for surveys of Carnap’s contributions 
in his Logical Syntax.

Georg Schiemer, Carnap’s Structuralist Thesis In: The Prehistory of Mathematical Structuralism. Edited by: Erich H. Reck 
and Georg Schiemer, Oxford University Press (2020). © Oxford University Press.
DOI:10.1093/oso/9780190641221.003.0015
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Finally, again in the context of his general axiomatics project, Carnap proposes a 
way to think about the structures shared by isomorphic models of a given theory 
in terms of the notion of structural abstraction. Thus, so-​called model structures 
are explicitly specified in Untersuchungen as isomorphism types that can be spe-
cified by means of “definitions by abstraction.” The chapter will survey Carnap’s 
different approaches to characterize the structuralist thesis and point out several 
connections between them.

The second aim is to re-​evaluate Carnap’s early contributions to the philos-
ophy of mathematics in light of current work on mathematical structuralism. 
Specifically, I will discuss two connections between his approaches to charac-
terize mathematical structures and present philosophical debates. The first point 
of contact concerns his attempt to specify structures in terms of definitions by 
abstraction, or equivalently, by abstraction principles. The general idea here is to 
specify an identity criterion for structures based on the notion of isomorphism 
between mathematical systems that instantiate these structures. As we will see, 
different versions of this type of structural abstraction have also been introduced 
in recent work on structuralism.2

Another point of contact with the present debate concerns the notion of 
“structural properties” of mathematical objects. Informally speaking, struc-
tural properties are characterized as those properties not involving the intrinsic 
nature of objects, but rather their interrelations with other objects in a given 
system. In Carnap’s work from the late 1920s, one can find two suggestions how 
to specify such properties, namely (i) in terms of the notion of logical definability 
and (ii) in terms of the notion of invariance under isomorphic transformations 
of a given system. As will be shown, a similar duality between two ways to think 
about structural properties is also discussed in contemporary work on structural 
mathematics.

The chapter is organized as follows: section 2 will provide a brief overview 
of Carnap’s work on the philosophy of mathematics before the publication of 
his Logical Syntax. Section 3 will then focus on Carnap’s structuralist account of 
mathematics, in particular on three ways to characterize the structuralist thesis, 
namely in terms of axiomatic definitions (section 3.1), logical constructions (sec-
tion 3.2), and definitions by abstraction (section 3.3). Given this, section 4 will 
then compare Carnap’s position with modern mathematical structuralism. The 
comparison will focus on the notion of structure abstraction (section 4.1) and 
the duality between definability-​and invariance-​based approaches to thinking 
about structures (section 4.2). Section 5 will contain a brief summary.

	 2	 See, in particular, Linnebo and Pettigrew (2014), Leach-​Krouse (2017), and Reck (2018).



Carnap’s Structuralist Thesis  385

2.  Pre-​Syntax Philosophy of Mathematics

Carnap made central contributions to the philosophy of mathematics throughout 
his intellectual career. For the purpose of the present chapter, it makes sense to 
distinguish between two phases in his engagement with modern mathematics, 
namely a “structuralist” phase in his work from the 1920s and early 1930s and the 
subsequent turn to a “syntactic” period leading to the publication of his Logical 
Syntax of Language in 1934.3 Our focus here will be limited to Carnap’s pre-​
Syntax work on the philosophy of mathematics.4

His research on mathematics from this period mainly focuses on three areas 
that, on closer inspection, are connected with each other in interesting ways. 
Carnap’s most well-​known work is foundational in character and concerns 
a Fregean or Russellian logicism, that is, the reduction of mathematics to 
higher-​order logic. Carnap was a central proponent of the logicist program 
and published a number of articles on the topic.5 Logicism is described in these 
works as based on two main assumptions, namely (i) that all mathematical prim-
itive terms can be explicitly defined in a purely logical language and (ii) that all 
mathematical axioms (such as the axioms of Peano arithmetic) can be derived 
from purely logical principles (see, e.g., Carnap 1931).

While Carnap does not specify in detail the logical system to be used for such 
a logicist reduction in his work, he indicates at several places that it should be a 
simplified version of Russell and Whitehead’s type theory (henceforth TT) first 
presented in Principia Mathematica (Russell and Whitehead 1962). Logicism is 
thus understood as the general project of interpreting mathematical theories in 
a logical type theory. More specifically, according to Carnap, the logicist thesis 
consists of several interpretability results according to which the language of a 
given mathematical theory (such as Peano arithmetic) can be translated into a 
purely logical language such that all mathematical axioms and theorems become 
deducible from certain definitions and the logical principles of TT alone.6

	 3	 Compare Awodey (2017) for a similar distinction in Carnap’s work on the philosophy of 
mathematics. See Awodey and Carus (2007) for a study of Carnap’s transition to a purely syntac-
tical approach in the philosophy of logic and mathematics. Compare the articles contained in Part 2 
of Wagner (2009) for more detailed discussions of Carnap’s account of mathematics in his Logical 
Syntax.
	 4	 This should not suggest that that Carnap has made no interesting contributions on the topic 
in Logical Syntax or in later work. The present focus on Carnap’s early work is due to the fact that 
his structuralist understanding of mathematics is formulated in most detail here. See, for instance, 
Goldfarb and Ricketts (1992) for a more general discussion of Carnap’s philosophy of mathematics. 
Compare also Awodey (2007) for a study of Carnap’s post-​syntactic philosophy of mathematics and 
logic developed in his later work on semantics.
	 5	 See, in particular, Carnap (1930, 1931), and also Carnap (1929).
	 6	 Compare Carnap on this understanding of the logicist thesis:  “Every provable mathematical 
statement can be translated into a statement that consists only of logical primitive signs and that is 
provable in logic” (1931, 95).
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Given this type-​theoretic version of classical logicism, it should be noted that 
Carnap’s approach differed in several respects from earlier accounts of the logi-
cist thesis. Most importantly, logicism was not developed by him in strong op-
position to other foundational programs such as Hilbert’s formalism. Rather, at 
least from 1931 onward, his work on the foundations of mathematics can be seen 
as the attempt to “reconcile” Frege’s logicism with the emphasis on the formal ax-
iomatic method in the Hilbert school.7

A second field of Carnap’s research on mathematics concerns the foundations 
of geometry and the nature of space. While this work precedes his contributions 
to type-​theoretic logicism by a number of years, one can nevertheless iden-
tify several interesting thematic connections or continuities between the two 
fields. One such connection will be discussed in detail in section 3.2. It concerns 
Carnap’s use of logical or set-​theoretic constructions (also of central importance 
for the logicist program) in the representation of geometrical structures such as 
the structure of topological or projective space.

Carnap’s central contribution in this respect is Der Raum:  Ein Beitrag zur 
Wissenschaftslehre of 1922, a monograph based on his 1920 dissertation written 
under the supervision of the neo-​Kantian Bruno Bauch (Carnap 1922). Carnap’s 
aim in the book is to settle the long-​term debate on the nature of space by dis-
tinguishing between three types of geometrical space, namely formal, intuitive, 
and physical space, and by studying their respective interrelations. These dif-
ferent notions of space can be investigated by different types of geometrical the-
ories: formal space presents an abstract “order-​configuration” whose properties 
can be specified in terms of a formal axiomatic theory. Intuitive space, in turn, 
is described by geometrical principles grounded in some form of a priori intui-
tion (or a Husserlian Wesenserschauung). Physical space is described in applied 
or physical geometry, based on conventions concerning its metrical properties.8

This novel philosophical analysis of geometrical space was clearly motivated 
by several fundamental developments in 19th-​century geometry as well as by a 
long-​standing debate on the status of geometrical axioms. The immediate math-
ematical background of Carnap’s book includes Grassmann’s Ausdehnungslehre, 
Riemann’s theory of formal manifolds presented in his Habilitationsschrift, 
Klein’s and Sophus Lie’s algebraic study of different geometries in terms of trans-
formation groups, and Hilbert’s axiomatization of Euclidean geometry presented 
in his Grundlagen der Geometrie of 1899, to name only some. On the philo-
sophical side, Carnap’s book engages with work on the reception of the Kantian 

	 7	 See Awodey and Carus (2001), Reck (2004), and Schiemer (2012b) on Carnap’s attempted syn-
thesis of the different foundational approaches in mathematics.
	 8	 See Carus (2007) for a detailed discussion of the neo-​Kantian background of Carnap (1922). See 
Friedman (1999) and Mormann (2007) for different analyses of Carnap’s philosophy of geometry, in 
particular, on his account of the role of conventions in the book.
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account of geometrical knowledge in works by Natorp and Cassirer, Poincare’s 
geometrical conventionalism, as well as with contributions by Helmholtz and 
others on the status of geometrical axioms.

Carnap’s philosophical investigation of the nature of space and its axiomatic 
description in 1922 is closely connected to a third area of research, namely his 
subsequent work on formal axiomatics. The axiomatic method in mathematics is 
investigated in detail in several publications from the late 1920s and early 1930s. 
A main contribution is the second part of his logic textbook Abriss der Logistik 
(Carnap 1928) entitled “Applied Logicistic.” Carnap discusses here the logic of 
axiomatic definitions as well as the formalization of different axiomatic theories 
(including arithmetic, set theory, projective geometry, and topology).

A second important source is Carnap’s already-​mentioned Untersuchungen 
zur allgemeinen Axiomatik.9 In this unpublished manuscript, he develops a 
general study of the methodology of axiomatic mathematics and a logical ex-
plication of several metatheoretic concepts. This includes different notions of 
(relative) consistency, independence, and completeness of axioms or axiom sys-
tems that were discussed informally in preceding mathematical work. Carnap’s 
immediate mathematical background comprises work by Hilbert, the Italian 
“Peanists,” the American postulate theorists, as well as Richard Dedekind’s 
proto-​axiomatic study of arithmetic (Dedekind 1888). Moreover, regarding the 
study of different completeness properties of axiom systems, Carnap frequently 
refers to Fraenkel’s influential Einleitung in die Mengenlehre (1928) as an impor-
tant background for his own more systematic contributions.10

Given these thematic fields in Carnap’s early philosophy of mathematics, 
one comment concerning his general structuralist thesis is in order here. His 
analysis of the nature of formal geometry in 1922 and, more importantly, of ge-
neral axiomatics from the late 1920s clearly shows that Carnap was not only a 
“foundationalist,” but also an early proponent of a version of philosophical struc-
turalism. Interestingly, his structuralism was not an isolated position at that time, 
but shared by several other prominent philosophers, including Russell, Cassirer, 
and Quine.11 What clearly distinguishes Carnap’s account from that of his con-
temporaries is that the structuralist thesis for him was not just an informal posi-
tion regarding the nature of mathematics. On the contrary, a central motivation 

	 9	 Related articles written by Carnap on modern axiomatics are Carnap (1929, 1934), and Carnap 
and Bachmann (1936).
	 10	 See Awodey and Carus (2001) and Schiemer, Zach, and Reck (2017) for surveys of Carnap’s 
early metatheoretic work. Compare, in particular, Awodey and Reck (2002) for a detailed study of the 
development of metatheoretic notions in 19th-​ and early 20th-​century mathematics.
	 11	 See the articles on these philosophers in the present volume for detailed studies of their respec-
tive structuralist accounts of mathematics.
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underlying his work was to characterize in logical terms the structural content of 
formal theories. So what precisely is Carnap’s mathematical structuralism?

3.  Three Structuralist Ideas

Carnap’s work on the philosophy of mathematics from the 1920s and 1930s 
contains three distinct but interrelated proposals on how to characterize the 
structuralist thesis, that is, how to specify the structural content of mathematics:

	 (i)	 Structures via axiomatic definitions: a mathematical structure is what can 
be defined in terms of an axiom system.

	 (ii)	 Structures via logical constructions:  a mathematical structure is what is 
logically constructible in terms of explicit definitions in a purely logical 
language.

	(iii)	 Structures via definitions by abstraction: a mathematical structure is what 
can be specified in terms of definitions by abstraction (or by abstraction 
principles).

In the following section, I will give a more detailed discussion of these approaches 
as well as of Carnap’s understanding of their relations. Moreover, I will also dis-
cuss how the different methods of thinking about mathematical structure are 
connected to his generalized logicism.

3.1.  Formal Axiomatics

Carnap’s early writings on the philosophy of mathematics are strongly moti-
vated by the development of modern axiomatics in work by Hilbert, Dedekind, 
the Peanists, and the American postulate theorists (among others).12 What 
characterizes their contributions is a novel conception of the nature of mathe-
matical theories. Axiomatized theories were no longer understood descriptively, 
that is, as organizing our knowledge about a pre-​theoretically given system such 
as physical space or the natural numbers. Rather, they came to be understood 
prescriptively, as definitions of abstract mathematical structures.13

	 12	 Compare, e.g., Torretti (1978), Grattan-​Guinness (2000), and Gray (2008) for historical ac-
counts of the development of modern axiomatics.
	 13	 See Schlimm (2013) for a more detailed discussion of this development and the distinction be-
tween a descriptive and prescriptive account of axiomatic theories.
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Interestingly, this new account of the axiomatic method was applied not only 
in the case of algebraic theories such as the theory of groups, but also to theo-
ries traditionally viewed as descriptive in character. Hilbert’s axiom system for 
Euclidean geometry in his Grundlagen der Geometrie (1899) is a case in point 
here. Compare Paul Bernays’s apt characterization of the abstract character of 
Hilbert’s approach:

A main feature of Hilbert’s axiomatization of geometry is that the axiomatic 
method is presented and practiced in the spirit of the abstract conception of 
mathematics that arose at the end of the nineteenth century and which has gen-
erally been adopted in modern mathematics. It consists in abstracting from 
the intuitive meaning of the terms  .  .  .  and in understanding the assertions 
(theorems) of the axiomatized theory in a hypothetical sense, that is, as holding 
true for any interpretation . . . for which the axioms are satisfied. Thus, an axiom 
system is regarded not as a system of statements about a subject matter but as 
a system of conditions for what might be called a relational structure. (Bernays 
1967, 497)

Two issues are particularly noteworthy about Bernays’s account of the “abstract 
conception of mathematics” characteristic of modern axiomatics. (As we will see, 
both issues also play a significant role in Carnap’s own work on the topic.) The 
first one is a methodological point: the meaning of primitive mathematical terms 
is not supposed to be specified independently of the axiomatic theory, for in-
stance, by reference to some form of empirical or a priori intuition. Instead, their 
meaning is determined solely through their occurrence in the axioms in terms 
of implicit definitions. Second, this change is related to a new understanding of 
the very subject matter of an axiomatic theory. As is highlighted by Bernays, the 
axiomatic approach of Hilbert is characterized by the assumption that relational 
structures form the real content of mathematical theories.14

The idea that axiomatic theories deal with abstract structures also forms a 
central assumption in Carnap’s work on the philosophy of mathematics. One of 
his earliest works on the topic, Der Raum of 1922, already contains a specifica-
tion of this structuralist account of theories. As mentioned previously, Carnap 
distinguishes here between three different concepts of space, namely “formal,” 
“intuitive,” and “physical space.” The former type of space is the one investigated 
in pure or formal geometry. It is characterized by Carnap in the introduction to 
the book in terms of the concept of an “order system” (Ordnungsgefüge):

	 14	 Compare Torretti (1978) as well as the articles on Hilbert, Bernays, Dedekind, and Cassirer 
contained in the present volume for more detailed accounts of this structuralist understanding of 
modern axiomatics.
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Formal space is a general order-​system of a certain kind. By “general order-​
system” we mean a system of relations—​not between certain objects of a sen-
sible or nonsensible domain, but between entirely indeterminate relata about 
which we only need to know that one kind of link entails a different kind of link 
in the same domain. So formal space deals not with the figures usually con-
sidered spatial, such as triangles or circles, but with meaningless relata whose 
place may be taken by an enormous variety of things (numbers, colors, degrees 
of kinship, judgments, people, etc.). (Carnap 1922, 5–​6)

Notice the emphasis on the purely relational character of a formal space and on 
the fact that the nature of the primitive elements is irrelevant for its geometrical 
study. In fact, as Carnap points out, these objects are left “indeterminate” in the 
sense that only their interrelations to other objects are specified by the theory in 
question.

The first section of the book contains a closer specification of the character-
istic properties of a formal space. It is here that the background of Carnap’s un-
derstanding, namely modern axiomatics in the spirit of Hilbert’s work, becomes 
most explicit. Compare the following remark on the role of axiomatic definitions:

Only relations among the elements . . . are specified by the axioms. . . . Theorems 
are then derived from the axioms with no regard whatever for the intuitive 
meaning of these elements and relations.  .  .  . If we think of all the theorems 
as put into this more general form, then instead of geometry proper (that of 
points, lines, and planes) we have a “pure theory of relations” or “theory of or-
ders,” i.e., a theory of indefinite objects and of the equally indefinite relations 
holding among them. (Carnap 1922, 7–​8)

An axiom system (such as Hilbert’s axiomatization of Euclidean geometry) is 
described here as a “pure theory of relations,” that is, roughly as a formal theory in 
the modern sense of the term. The primitive terms of a theory are not interpreted 
but understood schematically. Axioms and theorems derived from the former 
are, in turn, not assertoric statements about a concrete space, but reinterpretable 
relative to different systems of the specified structure.

Interestingly, formal space itself is identified by Carnap with this abstract 
structure shared by the different models of the theory in question. Compare 
again Carnap on this characterization of the subject matter of formal geomet-
rical theories:

The object of this discipline is not space, i.e., the system of points, lines, 
and planes determined by geometrical axioms (which we call “intuitive 
space” to distinguish it), but a “relational or order system” [Beziehungs-​ oder 
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Ordnungsgefüge] determined by the formal axioms. As this represents the 
formal design of the spatial system, and turns into the spatial system again 
when spatial elements are substituted for indeterminate relata, it too will be 
called “space”: “formal space.” (Carnap 1922, 8)

Notice that, in 1922, Carnap does not yet use the term “structure” to label such 
abstract forms or order systems. This use of terminology changes in the course 
of the 1920s, however, and Carnap eventually comes to introduce the notion of 
structure in his work on axiomatics. An early instance of this can be found in 
Carnap’s lecture notes for a course entitled “Philosophy of Space; Foundations 
of Geometry” held at the mathematical department of the University of Vienna 
in 1928 and 1930 as well as in Prague in 1932.15 The subject matter of a formal 
axiom system of pure geometry is sketched here as follows:

The AS [axiom system] is about undetermined objects. It determines only a re-
lational structure between them. . . .

Implicit definition: but more precisely: definition of a class of systems of 
objects, that is the shared “structure” of these systems. . . .

An AS determines (defines) one (or several) structure[s]‌ of a relational 
system, the “theorems” [Lehrsatze] determine structural properties of that 
system that follow from this definition, the AS; therefore analytic. (RC 
089-​62-​02)

These brief comments highlight Carnap’s general conception of axiomatics at the 
time: a theory can define one or several abstract structures shared by different re-
lational systems satisfying the axiom system in question. How is the notion of an 
axiomatically defined structure understood here?

This issue as well as the method of implicit definition is first addressed in 
closer detail in Carnap’s “Eigentliche und uneigentliche Begriffe” of 1927 as well 
as in his logic textbook Abriss der Logistik of 1929. The article contains a number 
of interesting observations regarding the axiomatic method, in particular on so-​
called definitions through axiom systems. Carnap illustrates this type of defini-
tion based on the example of a theory of basic arithmetic.16 According to him, 
this theory can either be understood as describing the properties of the intended 

	 15	 See documents RC 089-​62-​02 of the Rudolf Carnap Papers at the Archive of Scientific 
Philosophy (Hillman Library, University of Pittsburgh).
	 16	 The axiom system presented here is based on Russell’s theory of arithmetical progressions 
presented in Russell (1919). Compare section 15.3.3 for a more detailed discussion of the theory. 
A second paradigmatic example discussed in the text is again Hilbert’s axiomatization of Euclidean 
geometry in Hilbert (1899).
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or standard model of the natural numbers. Alternatively, it can also be viewed as 
a formal theory in the following sense:

We take the words “number” and “successor” as new terms that have not yet 
been given a meaning, and we stipulate that they are to refer to those concepts 
with the character specified by the AS. Thus here the AS makes no initial 
assumptions, but rather only through it is a class determined, which will then 
be called “the numbers,” and a relation, which will be called “successor.” In con-
trast to the determination of a concept by explicit definition, as discussed ear-
lier, here the new concepts are not connected to old ones, but are specified by 
the formal characteristics they inherently possess; hence the terminology “im-
plicit definition” for the determination of a concept by an AS. (Carnap 1927, 
360–​361)

As Carnap makes clear, this account of the implicit definition of primitive 
terms implies that theories so construed can be interpreted relative to different 
models. As will be shown in section 3.3, Carnap developed a detailed account of 
the model theory of axiomatic theories in his manuscript Untersuchungen zur 
allgemeinen Axiomatik, also written around the same time.

More important in the present context is how these models are related to the 
general structure defined by an axiom system. In the case of elementary arith-
metic, this relation between the possible interpretations of the axiom system (in-
cluding the standard or intended model) and their shared structure is described 
as follows:

The first model, the sequence of cardinal numbers, is that for the sake of which 
the AS was set up. As we see, however, the AS, and therefore the implicit defini-
tion it expresses, applies not only to that case, but also to infinitely many others, 
namely all those that agree with it with respect to the specified formal proper-
ties, i.e., the structure. In the theory of relations, the sequences with these prop-
erties are called “progressions.” . . . The implicit definition of the sequence of 
numbers therefore does not uniquely determine the number sequence, but only 
the unique class of all progressions. (Carnap 1927, 362)

Given this model-​theoretic account of axiom systems and their interpretations, 
what does Carnap mean by the structure of a theory? In addressing this issue, 
his distinction between “improper” and “proper” concepts plays a central role. 
Briefly put, an axiom system provides an implicit definition of several improper 
concepts whose meaning remains indeterminate. In the case of arithmetic, these 
are the concepts expressed by the primitive terms “natural number,” “zero,” and 
“successor” respectively. In addition, an axiom system can also be understood as 
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an explicit definition of a proper concept whose meaning is in turn fully deter-
mined by the definition.

According to Carnap, this “explicit concept” of an axiom system closely cor-
responds to the class of models or realizations satisfying the axioms in question. 
In fact, in the case of elementary arithmetic discussed in his 1927 article, the rel-
evant explicit concept (i.e., the “Peano number concept”) is simply defined as the 
“class” of all arithmetical progressions (see Carnap 1927, 368). This insight that 
an axiom system not only provides an implicit definition of its primitive terms, 
but also an explicit definition of a higher-​level mathematical concept, was not 
new at the time. In fact, it is likely that Carnap adopted the idea from his teacher 
Frege and the latter’s critical discussion of Hilbert’s work.17

Carnap’s reformulation of the Fregean understanding of axiom systems 
as definitions of higher-​level concepts is left informal in the 1927 article. This 
changes in Carnap’s Abriss der Logistik of 1929, where the topic is taken up again. 
In Part II of the book, titled “Applied Logistic,” Carnap gives a type-​theoretic 
explication of the notion of axiomatic theories and their content. Roughly put, 
axiom systems are formalized here in a language of simple type theory in the 
following way: the primitive terms of a theory are expressed by free variables (of 
a given order and type) X1, . . ., Xn. Axioms and theorems are expressed as prop-
ositional functions Φ(X1, . . . , Xn), that is, as open formulas in the modern sense 
of the term.18

Given this formalization of mathematical theories, Carnap reiterates the point 
that an axiom system not only provides an implicit definition of the primitive 
terms occurring in the axioms, but also an explicit definition of a higher-​order 
concept, the “explicit concept” of an axiom system. He gives the following formal 
account of the notion in the Abriss:

For instance, if x y P Q, ,... , ,... , ,...α β  are the primitive variables of the AS 
and if we name the conjunction of axioms (that is a propositional function)
AS(x,y, , , P,Q, )... ... ...α β  , then the definition of the explicit concept of this 
AS is

x̂, ̂y, ... ̂α,β, ... ̂P, ̂Q,{AS (x, y, ... α,β, ... P, Q, ... )}  (Carnap 1929, 72)

	 17	 Frege’s view of formal axiom systems as definitions of higher-​level concepts is first expressed 
in his famous exchange with Hilbert. It is also presented in Frege’s lecture “Logic in Mathematics” 
presented in Jena in 1914. Compare Carnap’s notes of the lecture as well as Gottfried Gabriel’s intro-
duction, both published in Awodey and Reck (2004).
	 18	 This convention to express primitive mathematical terms as variables and axioms as propo-
sitional functions has a rich mathematical prehistory and is discussed more extensively in Carnap 
(1927).
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The formula in this passage stands for a class of n-​tuples of possible interpret-
ations of the primitive variables of a given axiom system AS. Put in modern 
terms, an explicit concept is thus understood purely extensionally here, as deter-
mined by the class of models defined by the theory.19 Carnap’s notion of the ex-
plicit concept of an axiom system can thus be reconstructed in modern terms as 
a genuinely model-​theoretic notion, namely as the model class of a given theory. 
Regarding the previous example of elementary arithmetic, Carnap holds that

The explicit concept of Peano’s AS of the numbers, e.g., is the class of number 
sequences that satisfy the AS; this is the logical concept prog (class of the 
progressions). (Carnap 1929, 72)

The central point to note here is that this notion of explicit concepts can be un-
derstood as Carnap’s first attempt of a formal specification of the informal notion 
of “structure” (or “order system”) used previously to describe the subject matter 
of a theory. To put it in Howard Stein’s words, “A Fregean ‘second-​level concept’ 
simply is the concept of a species of structure” (1988, 254).

3.2.  Logical Construction

A significant part of Carnap’s pre-​Syntax work on the philosophy of mathematics 
was dedicated to foundational issues, in particular, to the further articulation of 
Frege’s and Russell’s logicist program. In the relevant publications on this topic, 
Carnap’s understanding of concept formation in mathematics seems to be at 
odds with his structuralist thesis.20 In particular, he states a strong preference 
here for the “logical construction” of mathematical concepts based on explicit 
definitions compared to the mere “postulation” of them in terms of axiomatic 
conditions. This clearly echoes Russell’s preceding discussion of the genetic and 
the axiomatic method and his well-​known remark on “theft over honest toil” in 
Russell (1919).

Logicism for Carnap too is based on a constructivist account of mathematics 
that distinguishes it from the axiomatic tradition of Hilbert and Dedekind. 
Compare Carnap on this general difference in his discussion of impredicative 
definitions:

	 19	 One should add here that, strictly speaking, the explicit concept of a theory cannot be identi-
fied with its class of models. Rather, what Carnap seems to suggest here is more of a “methodological 
identification” in the sense that one can study the one by studying the other. I would like to thank 
Erich Reck for emphasizing this point to me.
	 20	 See, e.g., Carnap (1930) and Carnap (1931).
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The essential point of this method of introducing the real numbers is that they 
are not postulated but constructed. The logicist does not establish the existence 
of structures that have the properties of the real numbers by laying down ax-
ioms or postulates; rather, through explicit definitions, he produces logical 
constructions that have, by virtue of these definitions, the usual properties of 
the real numbers. As there are no “creative definitions,” definition is not crea-
tion but only name-​giving to something whose existence has already been es-
tablished.  .  .  . This “constructivist method” forms part of the very texture of 
logicism. (Carnap 1931, 94)

The logicist approach to the formation of concepts in analysis (as well as in 
other mathematical fields) stated here is clearly incompatible with Hilbert’s un-
derstanding of axiom systems as implicit definitions of the primitive terms of a 
theory.21 How did Carnap address the apparent conflict between the two founda-
tional approaches, namely logicism and formal axiomatics?

Interestingly, the two traditions are usually not treated separately in his work. 
In fact, Carnap’s writings from the time have been described as a systematic at-
tempt to “reconcile” Frege’s logicist constructivism with Hilbert’s structuralist 
understanding of mathematics.22 One approach relevant here has to do with 
Carnap’s own characterization of the structuralist thesis. According to him, 
mathematical structures can be specified not only through axiomatic definitions, 
but also as those entities characterizable in purely logical terms. Thus, a princi-
pled way to think about mathematical structures for Carnap is to say that struc-
ture is what is logically definable in higher-​order logic (where higher-​order logic 
is usually taken to be a system of simple type theory).

A closer look at his writings from the 1920s helps to see how this “logicist” ac-
count of the structuralist thesis and its relation to the axiomatic approach were 
understood by him. A first formulation of the former approach can be found al-
ready in Der Raum. In the first chapter of the book and based on the discussion 
of Hilbert’s axiomatic approach, Carnap introduces a second way to specify a 
formal space (understood again as an abstract “order system”):

The construction of formal space can also be undertaken by a different path, 
however, not just by the above way of setting up certain axioms about classes 
and relations: by deriving (ordered) series and, as a special case, continuous 

	 21	 Compare again Carnap on the constructivism underlying Frege’s logicism: “A concept may not 
be introduced axiomatically but must be constructed from undefined, primitive concepts step by step 
through explicit definitions” (Carnap 1931, 105).
	 22	 Compare Awodey and Carus (2001), Reck (2004), and Schiemer (2012a) for more detailed 
discussions of this point.
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series from formal logic, the general theory of classes and relations. (Carnap 
1922, 8)

This logical construction of formal space is specified as follows: based on work by 
Russell (in particular Russell 1903), Carnap first introduces the notion of order 
relations and order systems, so-​called series. Special types of such order systems 
are series of the natural numbers, that is, arithmetical progressions in the sense 
specified in the previous section as well as continuous series of the real numbers. 
Given the latter, Carnap argues, one can set-​theoretically construct continuous 
series of higher levels, that is, sets of ordered tuples of real numbers. A formal 
space (of n dimensions) is then defined as a “continuous series of n-​th level (a 
series of series)” (Carnap 1922, 14). Put in modern terms, this is a manifold of 
n-​ary tuples of real numbers.

Given this general notion of a formal space—​also called a topological space Rnt 
here—​one can construct other spaces such as projective space or different met-
rical spaces by imposing “more restrictive conditions on the order relations in 
these series” (Carnap 1922, 14). Now, Carnap does not specify in detail how these 
restrictive conditions are to be understood. It becomes clear from his remarks, 
however, that they should not be identified with axiomatic conditions.23 More 
important to note here is that each of the resulting spaces remain formal in the 
sense specified above. Compare again Carnap on this point:

We are here still dealing with merely formal relations, without any assumptions 
about what sort of objects have these relations to each other. The different R’s 
are therefore also called systems of order-​relations (systems of ordinal rela-
tions), briefly, order-​systems. (Carnap 1922, 17)

Given this set-​theoretical construction of formal spaces as manifolds of real 
numbers, two points of commentary are in order here. The first point concerns 
the relation between Carnap’s logicist account of geometrical structures and the 
axiomatic approach discussed in the previous section. How precisely does the 
specification of structure in terms of entities characterizable in purely logical 
terms correspond to the one in terms of axiomatic definitions?

	 23	 In fact, in an interesting passage, Carnap mentions the axiomatic method as an alternative ap-
proach to the specification of such a formal space: “Now, it has emerged that the resulting order-​
structures (e.g., R3p), if they are to be investigated on their own (i.e., without reference to R3t or Rnt), 
are simpler to construct if they are presented directly as structures of certain simple relations whose 
formal properties are given—​rather than taking the circuitous route by way of continuous series of 
the first, and then of the third level subject to certain limiting conditions” (Carnap 1922, 15). See 
Mormann (2007) and Carus (2007) for more detailed discussions of Carnap’s approach.
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Interestingly, we saw that at least in Carnap (1922), Carnap viewed the two 
approaches as essentially equivalent ways to think about formal space. More spe-
cifically, as pointed out by Friedman in his editorial notes in Carnap (2019), the 
axiomatic approach gives implicit definitions of the primitive terms of a theory, 
whereas the logicist approach consists in “explicitly defining a model for such an 
axiom system within . . . set theory.” One could therefore think of the connection 
between the axiomatic and the logicist approach in the following way: a formal 
space, conceived of as an “order system,” is treated here as a concrete model of an 
axiomatic theory that is representable in set theory.24 It thus forms a particular 
instance falling under the higher-​level “explicit concept” defined by the theory.

It should be noted however that, strictly speaking, Carnap does not iden-
tify the subject matter of a formal geometry with a particular order system 
(conceived as a set-​theoretic model of the theory) in 1922. Given the notion of 
number series, Carnap introduces the notion of a similarity between such sys-
tems. This corresponds roughly to the modern notion of an isomorphism be-
tween two ordered sets.25 An “order type” of a particular series is then defined 
as the concept holding of all series similar to it. In the case of progressions, this 
is the order type ω; in case of continuous number series, this is order type λ. 
Compare again Carnap on this point:

To express more briefly what holds for these mutually similar series, we assert it 
of a single formal representative of them that we construct for this purpose. . . . 
Strictly speaking, this representative of the progressions is nothing other than 
their concept (in our sense of the word). (Carnap 1922, 13)

Applied to Carnap’s account of formal spaces sketched previously, it follows that 
a (topological, projective, or metrical) space should not be understood as a par-
ticular order system. Rather, it presents an order type, that is, a higher-​level sim-
ilarity concept or, put in purely extensional terms, a similarity class of such a 
system. Thus, both in Carnap’s axiomatic approach and in the set-​theoretic ap-
proach, mathematical structures are identified with higher-​level concepts. We 
will return to his conception of structures as similarity (or isomorphism) types 
in the next section.

Turning to the second point, one immediate consequence of Carnap’s ap-
proach in 1922 is that formal geometry itself becomes a part of logic or set theory. 
This fact was clearly intended and led him to formulate a generalized logicism  

	 24	 The latter approach, to think about structure in terms of logically definable models, can be found 
also in subsequent work by Carnap, in particular in his Untersuchungen manuscript. See Schiemer 
(2012b) for a closer discussion of this point.
	 25	 Compare section 15.3.3 for a closer discussion of Russell’s notion of the similarity of relations 
and Carnap’s later generalization of it.
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not limited to number theory and analysis.26 The view that formal space (as the 
subject matter of pure geometry) is essentially a logical concept is expressed at 
different stages in his work on the foundations of geometry. An early formulation 
of the idea is contained in his dissertation manuscript of 1920, which formed the 
basis for Der Raum:

An [abstract space] is a logical system of relations among indefinite elements. It 
says: in case certain relations, specified purely formally, hold among the elem-
ents of a set, then certain theories hold for this system. (Unpublished manu-
script, Quoted from Carus 2007, 110)

Compare also a related remark concerning the status of pure geometry in 
Carnap’s lectures notes of 1928:

(Mathematical) geometry is essentially relation theory (theory of relations, of 
structures, of order systems) a branch of formal logic, therefore analytic. (RC 
089-​62-​02)27

Pure geometry forms a part of logic because its subject matter, namely abstract 
space, can be represented in terms of sets of real number tuples that, given 
Frege’s thesis, are effectively reducible to arithmetical and thus to purely logical 
notions.

A different but related account of the logical nature of geometry can be iden-
tified in Carnap’s subsequent work on axiomatics. Returning again to his Abriss 
der Logistik, we saw that an axiom system not only gives an implicit definition 
of its primitive terms, but also an explicit definition of a higher-​level concept 
applying to all models of the theory in question. Carnap discusses a number of 
mathematical examples to illustrate this Fregean account, including Peano arith-
metic, Zermelo-​Freankel set theory, projective geometry, and topology (among 
others).

For instance, Carnap presents the following formalization of Hausdorff ’s 
neighborhood axioms for topological spaces:  the theory describes one primi-
tive binary relation, namely {αUx} standing for “α is a neighborhood set of x.” 
The class of points is defined as the range of relation U, that is, as pu :=  Ran(U). 

	 26	 This geometrical logicism, i.e., the fact that pure space is constructable in pure logic, essentially 
goes back to Russell’s extensive discussion of different geometries in his Principles of Mathematics 
(1903). Carnap frequently refers to this book, as well as to Russell and Whitehead’s Principia 
Mathematica as the primary sources for his own discussion of formal space. See, in particular, 
Gandon (2009) and Gandon (2012) for further details on Russell’s approach.
	 27	 I leave open the issue here how the concept of analyticity used here was understood by Carnap 
in his pre-​syntactical work.
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The theory of neighborhoods is given by the following axioms (in slightly 
modernized form):

Ax1a: Dom( ) ( )U pu⊂℘  (Neighborhoods are classes of points.)
Ax1b: U ⊂ ∈Kon( )  (A point belongs to each of its neighborhoods.)

Ax2: ∀ ∧ → ∃ ∧ ⊂ ∩α β α β α β, , ( ( ))x x x y y x yU U U  (The intersection of two 
neighborhoods of a point contains a neighborhood.)

Ax3: ∀ ∈ ∧ ∈ → ∃ ∧ ⊂α α α γ γ γ α, ( ( ) ( ))y Dom y yU U  (For every point of a 
neighborhood α, a subclass of α is also a neighborhood.)

Ax4:  ∀ ∧ ≠ → ∃ ∧ ∧ ∩ = ∅x y x y y x y, ( , , ( ))∈pu U Ux α β α β α β  (For two 
distinct points, there exist two corresponding neighborhoods with no points 
in common.)

Given this axiomatization, it seems natural to say that the explicit concept 
“hausd” represents the structure defined by Axioms 1–​5, i.e., the structure 
shared by all concrete models satisfying the theory. Moreover, given the fact that 
in Carnap’s formalization of the theory, the only primitive term, U (standing for 
the neighborhood sets), is symbolized as a relation variable, it follows that the 
concept hausd turn out to be purely logical in character. Compare Carnap on 
this point:

The explicit concept of a geometrical AS . . . presents the logical concept of the 
relevant type of space (e.g., the concept “projective space”). In this sense geom-
etry can also be represented as a branch of logistic itself (as arithmetic) instead of 
being a case of application of logistics to a nonlogical domain. (Carnap 1929, 72)

Concerning the specific example of Hausdorff topology, he goes on to add:

The explicit concept of the AS is the class of the “Hausdorffian neighborhood 
systems” (hausd), a purely logical concept. (Carnap 1929, 76)

These passages illustrate Carnap’s attempt to reconcile the logicist’s emphasis on 
explicit definitions with structural axiomatics. The resulting version of the logi-
cist thesis does not amount to the claim that the individual models of an axi-
omatic theory are logically constructible. Rather, Carnap adopts the Fregean 
strategy to represent the structural content of a mathematical theory in terms of a 
higher-​level concept defined by the theory’s axioms. Since such explicit concepts 
of theories (such as hausd) are definable in a language of pure type theory, it 
follows that the represented mathematical content is also purely logical, and the 
axiomatic theory thus “a branch of logic.”
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3.3.  Model Structures

An important characteristic of modern axiomatics is the new focus on 
metatheoretic properties of theories and their interpretations. As a consequence 
of this “metatheoretic turn” at the end of the 19th and early 20th century, axiom 
systems themselves became an object of (meta)mathematical investigation. 
Moreover, mathematicians working in geometry, number theory, and other dis-
ciplines started to investigate systematically the content of theories in terms of 
structure-​preserving mappings between their models.28

This metatheoretic approach in modern axiomatics is usually characterized 
today in structuralist terms, that is, by referring to the structures or structural 
properties defined by an axiom system. More specifically, it is usually held that 
one can investigate the logical structure of a given theory not only by deriving 
theorems, but also by analyzing how particular axioms contribute to the spec-
ification of this content, how the structure is changed if particular axioms are 
added or omitted from the system, and so on.29

Interestingly, a similar approach to expressing the metatheoretic properties 
of theories in structuralist terms can be identified in Carnap’s work on general 
axiomatics from the late 1920s. We saw in section 3.1 that Carnap, from his Der 
Raum onward, defended the view that an axiom system defines a structure (or an 
“order system”) that in turn can be instantiated by different “formal models” or 
physical “realizations.” While he does not discuss models and their properties in 
published work in closer detail, the model-​theoretic account of theories is devel-
oped in his project on “general axiomatics,” in particular, in his Untersuchungen 
zur allgemeinen Axiomatik. The manuscript contains a detailed discussion of 
the logical formalization of axiomatic theories that is similar to the account 
presented in Abriss der Logistik (see again section 3.1 for details). In addition, 
Carnap’s manuscript also contains a logical explication of several genuinely 
metatheoretical concepts (such as the notions of logical consequence, truth in 

	 28	 This line of research includes Dedekind’s categoricity result for arithmetic in Was sind und was 
sollen die Zahlen (1888), Hilbert’s consistency and independence proofs in his Grundlagen (1899), 
as well as the formulation of different notions of completeness in subsequent work by the postu-
late theorists. See Awodey and Reck (2002) for a rich study of early metatheoretic work in modern 
axiomatics. Compare also the articles on Hilbert and Dedekind in the present volume for further 
details.
	 29	 Compare Hintikka for a characterization of this general approach: “An axiom system is also 
calculated to serve also as an object for a metatheoretical study. . . . For the purpose of reaching such 
a metatheoretical overview, it is crucial to grasp the logical structure of the theory in question, in 
the sense of seeing what the different independent assumptions of the theory are, of seeing which 
theorems depend on which of these basic assumptions and so on. For this purpose, the axiomatic 
method is eminently appropriate” (Hintikka 2011, 72–​73).
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a model, etc.), as well as several metatheorems on the relation between different 
notions of completeness.30

A central concept defined in this context is that of a “model isomorphism,” 
that is, a mapping between two models of a given theory that preserves their re-
lational structure. The isomorphism relation (or, in Carnap’s terms, the “isomor-
phism correlation”) between two models is defined roughly in the modern sense 
as a bijective function between the respective individual domains that induces 
correlations between the higher-​order domains and thus preserves the relations 
in the models.31 Based on this notion, Carnap specifies several completeness 
properties that turn out to be crucial for the understanding of the “logical struc-
ture” of theories, including the notions of non-​forkability and monomorphicity 
(or, in modern terminology, of semantic completeness and categoricity).32

How does Carnap specify the structural content of axiomatic theories in 
Untersuchungen? In contrast to previous work, he argues here that an axiom 
system does not only define an “explicit concept” (conceived of as the class of 
its models), but possibly also several more fine-​grained structures, so-​called 
model structures (conceived of as subclasses of its model class). Roughly put, a 
model structure is the structure shared by isomorphic models of a given theory. 
As Carnap points out, such structures are to be identified with the classes of iso-
morphic models:

In logistic, one tends to define structures, including also the cardinalities, in 
terms of isomorphism classes. (Carnap 2000, 72)

In the related article (Carnap and Bachmann 1936), a more detailed specification 
of model structures in terms of the notion of a “complete isomorphism” is given:

Since the complete isomorphism between n-​place models (i.e., sequences with 
n members) is a 2n-​ary equivalence relation, n-​place relations can be defined 
over the field of this relation . . . such that the n-​place relations have the fol-
lowing properties: for each model there exists exactly one such relation which is 
satisfied by the constituents of the model and is satisfied by the constituents of 
two different models if and only if the models are completely isomorphic. The 

	 30	 See Carnap (2000). Several of the concepts introduced here were published later on in Carnap 
and Bachmann (1936). Compare Awodey and Carus (2001), Reck (2004), and Schiemer, Zach, and 
Reck (2017) for further details on Carnap’s axiomatics project.
	 31	 Carnap’s definition of “model isomorphism” is actually more complex than this since it takes 
into account a mapping between “inhomogeneous models,” that is, models with relations of different 
types and orders. See Carnap (2000) and also Carnap and Bachmann (1936) for further details. See 
also Carnap (1929) for a simplified definition.
	 32	 Compare, in particular, Awodey and Carus (2001) and Schiemer, Zach, and Reck (2017) for 
assessments of Carnap’s early metatheory and of the limitations of his approach.
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relations so determined we will call structures and will say that model M1 has 
structure S1 if “S1(M1)” is analytic. (Carnap and Bachmann 1981, 74)

Structures are specified here as unary relations that hold between any two 
models of a given theory in case there exists an isomorphism between them. In 
an attached footnote to the passage, Carnap goes on to add that structures in this 
sense are relations introduced by a “definition through formation of abstraction 
classes” or simply by “definition through abstraction” (Carnap and Bachmann 
1936, 171).33

Translated into modern terminology, the idea expressed here is to treat 
structures as particular equivalence classes, namely as “isomorphism classes” 
of models. Let K  be the class of models defined by a theory T. Let K /≅ be the 
partition of class K  induced by a suitable isomorphism relation ≅ between the 
objects in this class. For a model M K∈ , the relevant model structure is simply 
the isomorphism class M N | N M[ ]≅ = ≅: { }. Each model structure of T is a cell 
of the partition of K  induced by ≅. Moreover, given that K/≅  forms a partition, 
for any two different model structures we have the following two results:  (i)
M N =[ ] [ ]≅ ≅ ∅∩  and (ii) ⋃ M∈K M K/[ ] =

≅ ≅ .34

Given this approach, two further points of commentary are in order here. 
First, it should be noted that Carnap’s approach to thinking about mathematical 
structures in terms of definitions by abstraction was not new, but fairly conven-
tional at the time. In fact, in his Abriss and in other publications, Carnap refers 
to Frege’s famous definition of cardinal numbers in terms of an abstraction prin-
ciple as well as to work by Couturat and Weyl for further details on the method. 
Concerning the notion of mathematical structure, Carnap’s central background 
is Russell’s logical work on the general theory of relations. In fact, the notion of 
“model structures” outlined in Untersuchungen present a straightforward gener-
alization of the notion of “relational structures” previously introduced by Russell 
in his Introduction to Mathematical Philosophy (Russell 1919).35

In chapter 6 of his book of 1919, Russell first defines what he calls a “similarity 
relation” between relations:  two n-​ary relations R, S are similar if there exists 
a monotone, that is, a structure-​preserving function f: R → S such that x1, . . ., 
xn ∈ R iff f(x1), . . ., f(xn) ∈ S (Russell 1919, 52–​55). The “relation-​number” of a 
given relation is then defined as “the class of all those relations that are similar to 
the given relation” (Russell 1919, 56). Based on this, Russell then introduces the 

	 33	 This notion of structure based on the method of definition by abstraction but restricted to a 
single relation is discussed also in Carnap’s Abriss. See section 15.4.1 for further details.
	 34	 A natural way to think about the kind of structural abstraction from isomorphic models under-
lying this approach is in terms of abstraction principles. I will return to this point in section 15.4.1.
	 35	 See the article by Heis in the present volume for a more detailed study of Russell’s 
structuralist views.



Carnap’s Structuralist Thesis  403

notion of “structure” in the sense that two similar relations “have the same struc-
ture.” More explicitly, he holds that

two relations have the same structure when they have likeness, i.e. when they 
have the same relation-​number. Thus what we defined as the “relation-​number” 
is the very same thing as is obscurely intended by the word “structure”—​a word 
which, important as it is, is never (so far as we know) defined in precise terms 
by those who use it. (Russell 1919, 61)

This passage shows how strongly Carnap’s account of structures in his general 
axiomatics project is influenced by Russell’s preceding ideas. In particular, in 
Untersuchungen and also in Carnap and Bachmann (1936), Russell’s notion of 
similarity is generalized to apply also to “non-​homogenous” relations as well 
as to models understood as ordered sequences of such relations. Similarly, the 
Russellian account of structures as “relation numbers,” that is, as similarity 
classes of relations, is adopted in Carnap’s work to apply also to formal models of 
different arities and of more complex type levels.

The second point to emphasize here is that Carnap’s motivation for the in-
troduction of model structures was clearly metatheoretic in spirit. Talk of such 
structures allowed him to develop a more refined account of the subject matter 
of axiomatic theories than in previous work. More specifically, instead of iden-
tifying the structural content of a theory with a single “explicit concept,” Carnap 
proposes a classification of axiomatic theories here based on the number and type 
of model structures they describe. In the completed first part of Untersuchungen 
(published as Carnap 2000), he introduces the notion of the “structure number” 
of theories as the number of isomorphism classes they describe. Categorical 
theories such as second-​order Peano arithmetic have number 1; noncategorical 
theories such as group theory or Hausdorff topology have structure numbers 
greater than 1.

In the projected but unfinished second part of the manuscript (RC 081-​01-​01 
to 081-​0133) as well as in Carnap and Bachmann (1936), a further specification 
of the structural content of theories is given based on the notion of so-​called 
extremal structures.36 The fundamental idea here is that the content of a theory 
is not only determined by the number of its isomorphism classes of models, 
but also by possible relations between them. A  central notion introduced by 
Carnap for the study of such interrelations between structures is that of a “proper 

	 36	 In the following, I refer mainly to the published results in Carnap and Bachmann (1936). For 
a closer discussion of the differences between the 1936 paper and the existing notes on Part 2 of 
Untersuchungen see Schiemer (2013).
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structure extension” (or “proper substructure”). Carnap proposes the following 
definition of this notion in his article with Friedrich Bachmann of 1936:

We call a structure S a proper substructure of a second structure T, if S and T 
are distinct and every model having the structure S is isomorphic to a proper 
part of every model having the structure T. (Carnap and Bachmann 1936, 175)

Put differently, given a theory T and two model structures S, T  described by 
it, we say that S is a proper substructure of T , in symbols S ⊏ T, if and only if  
(i) S T≠  and (ii) for every model M  with structure S and for every model N with 
structure T , there exists a mapping that embeds (in the model-​theoretic sense of 
the term) M into N. Notice that the relata of this substructure-​relation are the 
structures (conceived as isomorphism classes) themselves and not the models 
instantiating them.

Based on this notion of substructure, defined in terms of isomorphisms and 
embeddings between models, Carnap suggests an ordering of the class of model 
structures of a given axiomatic theory in terms of their extremal structures. The 
extremal structures consist of “initial structures,” “end structures,” and “isolated 
structures,” defined in the following way. Given the class of structures defined by 
a theory T, we say that

	 1.	 S is an “initial structure” iff there exists no T  of theory T such that T ⊏ S;
	 2.	 S is an “end structure” iff there is no T  of theory T such that S ⊏ T;
	 3.	 S is an “isolated structure” iff there is no T  of theory T such that S ⊏ T or  

S ⊏ T.37

Put less formally, the initial structures (taken together with the isolated 
structures) represent the structures of minimal models of the theory in ques-
tion, that is, of models that do not contain isomorphic copies of other models as 
submodels. Similarly, end structures (taken together with the isolated structures) 
represent structures of maximal models, that is, models not embeddable in other 
models. Isolated structures stand for models without any embeddings to other, 
non-​isomorphic models.

This framework of extremal structures was explicitly introduced by Carnap 
to further analyze the structural content of axiomatic theories.38 In particular, 
according to him, each theory can be assigned a “structure diagram,” that is, a 

	 37	 Compare Carnap’s slightly different definition of these extremal structures in terms of the do-
main and range of the substructure relation (Carnap and Bachmann 1936, 176).
	 38	 We refer the reader to Schiemer (2012a) for a closer discussion of this theory of extremal 
structures and the limitations of Carnap’s approach.
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(possibly infinite) directed graph where the nodes represent model structures 
defined by the theory and the edges represent the proper substructure relation 
(and thus the embedding properties between models of different structures). 
Such a structure diagram of a theory can thus be viewed as a graphical represen-
tation of its structural content.

To see how Carnap thought about this structural content in terms of his newly 
introduced terminology, let us briefly look at one of his mathematical examples 
discussed in this context, namely the theory of elementary arithmetic. This is 
essentially a version of Russell’s theory of arithmetical progressions with a single 
primitive relation R(x,y) (standing for a successor relation) and based on four 
axioms:

b1  ∀ ∀ → ∃( )x y R x y z R y z( , ) ( ( , ))

b2  ∀ ∀ ∀ ∧ → =( ) ∧ ∧ → =( )( )x y z R x y R x z y z R x y R z y x z( , ) ( , ) ( , ) ( , )

b3  ∃ ∈ ∧ ∉( )! ( ) ( )x x Dom R x Ran R

b4  MinS b b ;R1 3−( )  (Carnap and Bachmann 1936, 179)

Axiom b1 states that relation R is endless. Axiom b2 states that R is an injec-
tive function. Axiom b3 states that there exists a base element in the progres-
sion. Axiom 4 is a so-​called minimal axiom similar in effect to an induction 
axiom. It effectively imposes that all models satisfying axioms b1−b3 belong to 
minimal structures in the sense specified. What is particularly interesting about 
Carnap’s discussion of this mathematical axiom system is the way in which he 
characterizes its structural content by analyzing the corresponding structure 
diagrams of its subtheories. Consider the two graphs in Figure 1, presenting 
the possible structures of models satisfying axiom systems b1−b2 and b1−b3 
respectively.

The structures described by subtheory b1−b2(R) include the intended natural 
number structure, i.e., all isomorphic models of the form of a “progression” as 
well as infinitely many cycles of order 1 up to infinity. These structures, as well as 
the possible combinations of them, are presented by the nodes in the diagram on 
the right-​hand side.

By adding axiom b3 to the system, the structural content is significantly re-
stricted. In particular, as is illustrated in the diagram on the left-​hand side, 
adding b3 to the base theory will have the effect that all structures of isolated 
cycles will be eliminated. The model class of the theory now contains the 
models of the intended structure P (i.e., progressions) as well as unintended 
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models consisting of combinations of progressions and cycles. Adding the 
minimal axiom b4 finally has the effect that all further unintended models are 
ruled out and the only remaining structure defined by the theory is that of 
an arithmetical progression P. In other words, adding axiom b4 to the system 
b1−b3 will render the resulting theory categorical or, in Carnap’s own termi-
nology, monomorphic.

4.  Points of Contact with Modern Structuralism

The previous section has shown that one can identify several proposals in 
Carnap’s early philosophy of mathematics on how to characterize the struc-
turalist thesis. Interestingly, not only does his general structuralism connect 
his work with that of several of his contemporaries, including Russell, Husserl, 
Cassirer, and Quine, but one can also find several parallels between Carnap’s 
early views on the structural nature of mathematical theories and contemporary 
structuralism. In this section, we will focus on two specific points of contact with 
the present philosophical debate.
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Figure 1.  Structure diagrams of theories b1-​b3(R) and b1-​b2(R).
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4.1.  Structural Abstraction

Carnap’s treatment of model structures in his work on general axiomatics is based 
on the notion of abstraction. Specifically, we saw that the structure of a model of 
a given theory was identified with its isomorphism type, that is, with the class of 
models isomorphic to it. The main philosophical background for his approach 
was clearly Russell’s work, in particular, the extensive treatment of abstraction 
principles in Russell (1903) and the subsequent discussion in Russell (1919). 
Interestingly, Carnap’s abstraction-​based approach is also closely connected to 
much more recent debates on mathematical structuralism.

Present research on the topic is based on a general distinction between 
two ways to think about the nature of mathematical structures. According to 
“eliminativist” structuralists, the mathematicians’ talk about abstract structures 
should be understood merely as an abbreviation for generalizing over all models 
of a given theory. In contrast, “non-​eliminative” structuralists such as Parsons, 
Shapiro, and others are realists about mathematical structures. For them, ab-
stract entities such as the structure of the natural numbers exist in addition to the 
particular (set-​theoretic) systems satisfying a theory.39

In the literature on non-​eliminative structuralism, a further distinction is 
usually made between forms of ante rem and in re structuralism.40 Briefly put, 
ante rem structuralists hold that abstract structures are bona fide objects that 
exist independently of their instantiating systems. Thus, the structure of the nat-
ural numbers exists irrespectively of whether there are particular number sys-
tems satisfying the axioms of Peano arithmetic. In contrast, in re structuralists 
usually argue that such higher-​order entities are conceptually or ontologically 
dependent on their instantiating systems. Thus, according to this position, the 
natural number structure shared by all models of second-​order Peano arithmetic 
exists only insofar as there are concrete models of the theory that instantiate the 
structure.

Carnap’s own account of model structures outlined in Untersuchungen can be 
understood as an early formulation of in re structuralism about mathematics. In 
particular, his method of introducing structures by definitions by abstraction, 
i.e., by taking equivalence classes of isomorphic models, can be considered as 
one way to specify the conceptual dependency between structures and particular 
systems. Structures—​conceived of as isomorphism types or classes—​exist only 
if there are models of the axiomatic theory in question.41 Comparable accounts 

	 39	 See Reck and Price (2000) for an overview of the different accounts of mathematical 
structuralism.
	 40	 See, in particular, Shapiro (1997) on this distinction.
	 41	 One should add here that in Carnap’s understanding of structures as isomorphism classes, the 
conceptual dependency between structures and systems is only given under the assumption that the 
classes in question are non-​empty.
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of such an abstraction-​based structuralism can also be found in the current 
literature on the topic. Linnebo and Pettigrew have recently introduced a ver-
sion of non-​eliminative structuralism based on Fregean abstraction principles 
that determines this kind of abstraction from concrete systems to pure abstract 
structures (Linnebo and Pettigrew 2014).42 The motivating idea underlying their 
approach is described as follows:

A pure structure is the result of some operation of abstraction on a class of sys-
tems that are pairwise isomorphic. (Linnebo and Pettigrew 2014, 270)

Pure structures such as the structure of the natural numbers or of complete or-
dered fields can be introduced by abstracting away all nonessential or nonstruc-
tural properties of the objects in such systems. Such properties are identified here 
with properties not shared by isomorphic systems. The corresponding principle 
of structural abstraction has the form

	 S S S[ ] = ′[ ] ⇔ ≅ ′S � (SA)

where S,S′  represent relational systems of the same signature, ≅ symbolizes the 
isomorphism relation between such systems, and S , S[ ] ′[ ] express the structures 
of S and ′S  respectively. The principle (SA) specifies an identity condition for ab-
stract structures: for any two systems of a given signature, one can say that they 
share the same abstract structure just in case they are isomorphic.43

From a methodological point of view, this abstraction-​based account of struc-
turalism (as developed by Linnebo, Pettigrew, and Reck) is clearly similar to 
Carnap’s position from the late 1920s. Mathematical structures are specified here 
and there as general forms shared by isomorphic models or systems. Moreover, 
even though Carnap does not explicitly introduce a structural abstraction prin-
ciple of the form of (SA) in his work on axiomatics, a similar principle can be 
found in his Abriss der Logistik of 1929. In §22, in the context of his discussion 
of relations, the structure (or relation number) of a relation is identified with the 
“class of its isomorphic relations.” Theorem L 22-​24 then states an abstraction 
principle very similar to the one given above (Carnap 1929, 90):

	 P Smor Q . ≡ . Nr′ P = Nr′Q	

	 42	 A related account of mathematical structuralism based on a notion of “Dedekind-​Cantor ab-
straction” has recently been developed in Reck (2018).
	 43	 Linnebo and Pettigrew also formulate structural abstraction principles for positions and rela-
tions in such abstract structures. See Linnebo and Pettigrew (2014) for further details.
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where P,Q are relations of a given type and order, Smor stands for the isomor-
phism relation between them and Nr′P, Nr′Q stand for the structure of P and Q 
respectively.44

Despite the obvious similarity between Carnap’s and the contemporary ac-
counts, there are also important differences concerning the very notion of 
structural abstraction. With respect to abstraction principles such as (SA), this 
relates to the question how the abstraction operator used on the left-​hand side 
of the equivalence statement is understood. Such operators are usually treated 
as functions from a domain consisting of relational systems to a codomain of 
abstract structures. How can the codomain of the structural abstraction operator 
be understood?

In addressing this question, it is interesting to compare recent contributions 
to abstraction-​based structuralism with different uses of abstraction principles 
(and definitions by abstraction) in 19th-​ and early 20th-​century mathematics. 
In his recent study of this topic, Mancosu has shown that one can distinguish be-
tween at least three ways in which the operator in abstraction principles was un-
derstood in mathematics (Mancosu 2016). The values of abstraction functions 
were either taken to be (i) (canonical) representatives of the equivalence cells 
determined by an equivalence relation between mathematical objects or (ii) the 
equivalence classes themselves. Alternatively, the values of a given abstraction 
operator were also sometimes thought of (iii) as newly introduced abstracta, that 
is, as a type of “new object not coinciding with the equivalence class or one of its 
representatives” (Mancosu 2016, 87).

Mancosu’s taxonomy of the possible values of abstraction functions corres-
ponds closely to the different ways in which structural abstraction is described 
in the literature on structuralism. We saw that in Carnap’s case, structures of 
models are identified with their isomorphism types.45 Similar versions of this 
understanding of mathematical structures as equivalence classes can also be 
found in the more recent literature. Compare, for instance, how the nature of ab-
stract structures in the case of basic arithmetic is described by Benacerraf in his 
influential article of 1965:

	 44	 Carnap refers to Russell (1919) for further discussion of the notion of structure in this section. 
Compare Heis’s article in the present volume for a detailed discussion of similar structural abstrac-
tion principles in Russell’s work.
	 45	 It should be noted here that a corresponding structural abstraction principle of the form (SA) 
can lead to inconsistency in case the structures on the right-​hand side of the biconditional can also be 
inserted as models on the left-​hand side. This fact is related to the Burali-​Forti Paradox and has been 
discussed in the (neo-​)logicist literature and in philosophy of mathematics more generally. See, in 
particular, Linnebo and Pettigrew (2014) on this point. Notice that this danger of yielding an incon-
sistent account of structural abstraction is excluded in Carnap’s type-​theoretic framework given the 
fact that model structures are required to be of a higher type than their instantiating models.
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If we identify an abstract structure with a system of relations (in intension, of 
course, or else with the set of all relations in extension isomorphic to a given 
system of relations), we get arithmetic elaborating the properties of . . . all sys-
tems of objects (that is, concrete structures) exhibiting that abstract structure. 
(Benacerraf 1965, 70)

While Benacerraf does not address the issue of structural abstraction from sys-
tems to abstract structures here, he explicitly mentions the possibility of identi-
fying such structures as isomorphism classes of a given system.46

A different view of structural abstraction is presented in a recent paper 
by Leach-​Krouse (2017). Leach-​Krouse discusses different “structural” ab-
straction principles for models of axiomatic theories in the context of a neo-​
logicist approach to mathematics. The principles introduced here are similar 
in logical form to the structural abstraction principles already mentioned. 
However, the abstraction operators are understood neither in Carnap’s nor 
in Linnebo and Pettigrew’s sense.47 Instead, Leach-​Krouse’s account follows 
an “approach to abstraction favored by Georg Cantor and Richard Dedekind, 
on which abstraction serves to introduce the isomorphism type of a mathe-
matical structure as a first-​class citizen of the mathematical universe” (Leach-​
Krouse 2017, 3).

More specifically, given a finitely axiomatizable theory T expressed in a 
second-​order language with signature Σ = { }R , ,Rn1 ... , a structural abstrac-
tion principle AT for T is characterized here as a second-​order sentence of 
the form

	 ( )( )[ ( ) ( ) ]§ §∀ ∀ = ↔X Y X Y X E Yn n T n T n n T n � ( )AT

The (sequences of) variables Xn  and Yn  present model variables in Carnap’s 
understanding of the term, that is, ordered sequences of relation or function 
variables substituted for the primitive terms of the theory. The binary relation 
ET presents an isomorphism relation between models of theory T. The terms  
§T(Xn ) and §T(Yn ) present the structures of models Xn  and Yn  respectively. Thus, 
in a sense comparable to (SA), this principle states that any two models of T 

	 46	 In his 1965 article, Benacerraf does not mention Carnap as an early proponent of such an ac-
count of mathematical structures.
	 47	 Leach-​Krouse explicitly mentions the possibility of identifying mathematical structures with 
isomorphism classes (Leach-​Krouse 2017, 5–​6).



Carnap’s Structuralist Thesis  411

that are isomorphic also share the same structure and vice versa (Leach-​Krouse 
2017, 9–​10).

In contrast to Carnap’s account of structural abstraction, the abstraction op-
erator §T does not give isomorphism classes as values here. Rather, §T expresses a 
type-​lowering function just as in the case of Hume’s principle in the neo-​logicist 
project. More precisely, it presents a function that assigns an object of the indi-
vidual domain dom of the object language to each model of the theory T. The 
only constraint on the interpretation of §T determined by the principle (AT) is 
that the function will assign the same individual to isomorphic systems. Thus, 
unlike in Carnap’s account, the structure of a given model is specified here in 
terms of “first-​order representatives” from the domain of the object language.48

A third possible approach to structural abstraction is presented in Linnebo 
and Pettigrew (2014) as well as in Reck (2018). In both accounts, the abstraction 
operator in (SA) gives as values pure structures of relational systems (of a given 
mathematical signature) that are thought of neither as equivalence classes nor 
as first-​order representatives, but rather as newly introduced abstracta or “sui 
generis objects” (Linnebo and Pettigrew 2014, 274). More specifically, structures 
are themselves structured systems consisting of a domain of pure positions (or 
placeholders) and pure relations that can be exemplified by concrete set-​theoretic 
systems. I cannot enter here into a closer discussion of the different approaches 
to structural abstraction or their philosophical implications.49 Instead, let us 
turn to a second point of contact between Carnap’s early structuralism and the 
modern debate.

4.2.  Invariance and Definability

The notion of structural properties of (objects in) mathematical systems plays a 
central role in modern structuralism. In fact, structuralism is often characterized 
by reference to this notion:  it is the thesis that mathematical theories investi-
gate only the structural or relational properties of the objects in their respective 
domains.50 According to this view, mathematical systems such as groups or 

	 48	 Leach-​Krouse’s approach to structural abstraction seems similar to Mancosu’s first strategy 
of thinking of the values of a mathematical abstraction operator in terms of representatives of a 
given equivalence class. Notice, however, that in Leach-​Krause’s account it is not required that the 
structures conceived of as first-​order representatives form elements of the relevant isomorphism 
classes they stand for.
	 49	 In this respect, it might be interesting to give a closer discussion of possible connections be-
tween an abstraction-​based structuralism and debates on the metaontology and logic of abstraction 
principles in neo-​logicism. See, e.g., Linnebo (2018).
	 50	 Compare, for instance, Hellman on this point: “On a structuralist view, . . . the mathematician 
claims knowledge of structural relationships on the basis of proofs from assumptions that are fre-
quently taken as stipulative of the sort of structure(s) one means to be investigating” (Hellman 1989, 5).
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number systems are usually specified axiomatically, that is, in terms of implicit 
definitions. The task of the mathematician is then to investigate the “structural 
relationships” between the objects in such systems based on deductive proofs.

As we saw, this account of modern axiomatics closely corresponds to Carnap’s 
view. Compare again the passage from his lecture notes on geometry (already 
quoted in section 3.1):

An AS determines (defines) one (or several) structure[s]‌ of a relational system, 
the “theorems” [Lehrsätze] determine structural properties of that system that 
follow from this definition, the AS; therefore analytic. (RC 089-​62-​02)

In his work on type theory and general axiomatics, Carnap proposes two ways in 
which this notion of structural properties can be made logically precise. The first 
approach—​ presented in Carnap (1929) and Carnap (2000)—​ is to specify struc-
tural properties of relations (and henceforth also of models of axiomatics the-
ories) in terms of the notion of invariance under isomorphic transformations. 
Carnap gives the following definition in his Untersuchungen manuscript:

Definition 1.7.1. The property f P of relations is called a “structural property” if, in 
case it applies to a relation P, it also applies to any other relation isomorphic to P. . . .

	 P Q fP Ism Q P fQ, & ,( ) ( )( ) → 	

The structural properties are so to speak the invariants under isomorphic trans-
formation. They are of central importance for axiomatics. (Carnap 2000, 74)

The structural properties of a relation are thus those properties left invariant or pre-
served under suitable isomorphisms. Typical examples of such properties mentioned 
by him concern the arity and type of relations, the cardinality of their fields, as well 
as properties such as the reflexivity, symmetry, and transitivity of a binary relation.

In addition to this invariance-​based account, Carnap proposed a second way 
to think about structural or “formal” properties in his monograph Der Logische 
Aufbau der Welt of 1928. In the first section of the book, the notion of a relational 
structure is characterized in terms of “the totality [Inbegriff] of its formal prop-
erties” (Carnap 1928, 13). Put differently, the structure of a given relation can be 
determined by considering all formal properties that apply to it. Formal proper-
ties, in turn, are specified in the Aufbau as follows:

By formal properties of a relation, we mean those that can be formulated 
without reference to the meaning of the relation and the type of objects be-
tween which it holds. They are the subject of the theory of relations. The 
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formal properties of relations can be defined exclusively with the aid of logistic 
symbols, i.e., ultimately with the aid of the few fundamental symbols which 
form the basis of logistics (symbolic logic). (Carnap 1928, 21)

Such properties are thus determined by means of the notion of logical 
definability: a property of a relation is formal just in case it is definable in a pure 
type-​theoretic language.

Given Carnap’s suggestions on how to explicate the notion of structural prop-
erties, two further remarks should be made here. First, Carnap was clearly one 
of the first philosophers to reflect on a general duality between two conceptually 
distinct ways to specify the structural content of mathematics. This is the use of 
invariance criteria on the one hand and the method of logical definability on the 
other hand. This duality has also been discussed in more recent work on logic 
and model theory. Compare, for instance, Hodges’s characterization:

In a sense, structure is whatever is preserved by automorphisms. One conse-
quence . . . is that a model-​theoretic structure implicitly carries with it all the 
features which are set-​theoretically definable in terms of it, since these features 
are preserved under all automorphisms of the structure. There is a rival model-​
theoretic slogan:  structure is whatever is definable. Surprisingly, this slogan 
points in the same direction as the previous one. (Hodges 1997, 93)

The general observation stated here is clearly in line with Carnap’s two attempts 
to specify the structural properties of mathematical relations.51

Second, Carnap’s approach to structural properties is also closely related to re-
cent work on mathematical structuralism. In particular, one can find both ways 
to think about such properties, namely in terms of isomorphism invariance and 
logical definability, also in the present literature. For instance, a definability-​
based account of structural properties of positions in abstract structures is 
discussed in detail in work on non-​eliminative structuralism, e.g., in Keränen 
(2001) and Shapiro (2008). An invariance-​based account of structural properties 
of such positions is presented in Linnebo and Pettigrew’s (2014) work on struc-
tural abstraction.52

Moreover, the notion also plays a crucial role in several of the systematic 
debates in these fields, for instance, on identity criteria for positions in abstract 
structures (e.g., in work by Shapiro, Keränen, and Leitgeb). The central bone 

	 51	 An important difference from Hodges’s account concerns the logical framework in which struc-
tural properties are specified. Whereas Hodges’s book is about first-​order model theory, Carnap’s 
focus is on the definability of properties in a higher-​order language of logical type theory.
	 52	 See Korbmacher and Schiemer (2018) for a more systematic comparison of the two definitions 
of structural properties.



414  Georg Schiemer

of contention here concerns the question whether structurally indiscernible 
positions in a given structure—​that is, positions that share the same structural 
properties—​should be identified. A related Leibnizian principle of structural in-
discernibility is usually formulated as follows:

For all structural properties P and all objects a,b in the domain of a structure S:

	 ( ( ) ( ))P a P b a bS⇔ ⇔ = 	

The objects (conceived of as pure positions) in a structure are thus identified if 
there exists no structural property that allows one to discriminate between them. 
In this case, the objects can be said to play the same role in a given structure.53

Interestingly, Carnap developed a similar account of structuralist identity 
conditions in his work from the late 1920s. In the Aufbau, he first states the idea 
of a purely “structural description” of an object in a domain in terms of its formal 
properties. His example of the graphical representation of the European-​Asian 
railway network is used as an illustration of how one can, in principle, discrim-
inate between different objects (that is, train stations) by considering only such 
properties (Carnap 1928, 17–​19).54 Carnap adds that in the hypothetical case 
that two objects share exactly the same formal properties, they have to be “treated 
as identical in the strict sense” of the term (Carnap 1928, 19). A similar account 
of structural identity is expressed in his work on general axiomatics. The notes 
of the fragmented second part of the Untersuchungen contain a section titled 
“Reduction of the Primitive Concepts” (RC 081-​01-​12). Here Carnap addresses 
the question which objects of a given relation are identifiable purely in terms 
of the relation. He holds that “an R-​element x is describable through R if there 
exists a formal property with respect to R that only applies to x and to no other 
R-​element” (RC 081-​01-​12/​1). Carnap’s specification of this approach is based 
on the further distinction between two properties of pairs of elements of a rela-
tion, which he calls “homotopical” and “heterotopical.” Roughly put, two objects 
x, x ′ are homotopical with respect to a relation R if there exists an automorphism 
f : R R≅  such that f x x( ) = ′ . Objects that are not homotopical with any other 
object in R are called heterotopical R-​elements.55

	 53	 See Keränen (2001) and Shapiro (2008). Compare also Leitgeb and Ladyman (2008) for a crit-
ical discussion of such a “structuralist” identity criterion.
	 54	 In his concrete example, these are graph-​theoretic properties of the nodes in the unlabeled 
graph representing the structure of the railway system.
	 55	 According to Carnap, systems consisting only of heterotopical objects are called heterotopical 
systems. This concept corresponds closely to the modern notion of rigid systems, i.e., systems like 
the natural number systems whose automorphism class contains only the trivial automorphism. 
Compare Leitgeb and Ladyman (2008).
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The relevant result stated in Carnap’s Untersuchungen is that it is precisely the 
heterotopical objects in a relation (or a model) that can be identified in terms of 
formal properties. In contrast, in models consisting only of pairwise homotopical 
objects, such a discrimination of individuals is not possible given that there are 
often infinitely many non-​trivial automorphisms of the model. Carnap’s obser-
vation is obviously connected to the modern debate on the principle of iden-
tity of structurally indiscernible objects. In particular, it has been pointed out by 
Keränen (among others) that adopting such a principle will force structuralists 
to identify objects in nonrigid structures that can be mapped to each other by 
nontrivial automorphisms.

The second point to be mentioned here concerns the notion of the structural 
identity of relations or relational systems. In Untersuchungen, structural prop-
erties are defined for models of a given axiomatic theory in terms of the notion 
of isomorphisms. As Carnap points out in the passage cited earlier, such prop-
erties present the “invariants” under isomorphic transformations. A point not 
discussed in his 1928 manuscript, but briefly addressed in the Abriss, is whether 
one can formulate a structural property for a given relation (or a system of rela-
tions) that allows one to discriminate it from all other non-​isomorphic relations.

This directly relates to the question whether, for a given system, one can iden-
tify a complete invariant or, in Carnap’s terminology, a complete “structure char-
acteristic” of it. Put in modern terms, an invariant is simply a function f that 
assigns the same value to isomorphic systems, that is, for any two systems R, S, 
one has f(R) = f(S) ⇔ R ≅ S. An invariant for a given type of systems is complete 
if it also allows one to discriminate between any two non-​isomorphic systems.56 
Compare Carnap’s characterization of such complete invariants in his Abriss:

The task of presenting a “structure characteristic” . . . is to present a procedure 
by which one can assign a formula expression (for instance one consisting of 
numbers) to the given relations . . . in a way that two relations are assigned the 
same characteristic if and only if they are isomorphic. (Carnap 1929, 55)

Carnap made a rough suggestion in Abriss on how to formulate such a complete 
invariant for finite relations based on their graph-​theoretical representations and 
the corresponding adjacency matrices. Unfortunately, he did not further develop 
the ideas sketched there (see Carnap 1929, §22e). The relevant point for us to 

	 56	 Notice that the operators in the structural abstraction principle (SA) discussed in the previous 
section present complete invariants in this sense.
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note is that Carnap’s work already contains several of the key ideas—​particularly, 
on the identity criteria for objects and systems—​that are prominently discussed 
in contemporary debates on structuralism.

5.   Conclusion

This chapter surveyed Carnap’s contributions to a structuralist account of math-
ematics from the 1920s and early 1930s. As several other chapters in the pre-
sent volume show, his early structuralism was by no means an isolated position 
but shared by several other philosophers working at the time. Carnap’s con-
temporaries Ernst Cassirer, Bertrand Russell, and also Edmund Husserl can 
be mentioned in this respect. Characteristic of their respective work is the fact 
that it is based on a close philosophical reflection of several methodological 
developments in 19th-​ and early 20th-​century mathematics.

As we saw, this also holds of Carnap’s pre-​Syntax philosophy of mathematics. 
In his contributions from the period in question, one can identify three ways to 
characterize the thesis that mathematical theories are about abstract structures. 
The first method concerns axiomatic definitions which, according to Carnap, 
can be both understood as implicit definitions of the primitive terms of a given 
theory as well as explicit definitions of its class of models. The second method is 
based on the notion of logical constructions, specified by him in terms of explicit 
definitions in a logical type theory. Finally, Carnap’s work on general axiomatics 
depends crucially on the notion of model structures, characterized as isomor-
phism classes of models, specifiable in terms of definitions by abstraction.

The study of Carnap’s logical analysis of these different approaches allowed us 
to highlight several aspects of his early structuralism. First, Carnap took the dif-
ferent ways to characterize structures to be essentially equivalent. In particular, 
it is clear from the discussion given in Der Raum and in later writings that he 
understood Hilbert’s axiomatic approach and Russell’s genetic approach as two 
alternative ways to characterize the structural content of a theory. Second, it was 
shown that there are close connections in Carnap’s work between a structuralist 
account of mathematics and his understanding of the logicist thesis. More spe-
cifically, his proposal to treat the content of mathematical theories in terms of ex-
plicit concepts has direct ramifications for a generalized logicism: it allows one to 
treat also non-​arithmetical theories as reducible to logic and directly motivates 
an “if-​thenist” reconstruction of mathematical theorems.

Finally, I presented two points of contact between Carnap’s early philosophy 
of mathematics and recent debates on structuralism. The first concerns the role 
of structural abstraction principles in the formulation of versions of in re struc-
turalism. Carnap, closely following Russell in this respect, proposed to think of 
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structures of relational systems in terms of equivalence classes. Alternative ways 
to treat the operators in structural abstraction principles have been developed in 
work by Linnebo, Pettigrew, Reck, and Leach-​Krouse. The second point of con-
tact with modern work concerns Carnap’s suggestions on how to explicate the 
notion of structural properties, namely in terms of the notions of definability and 
invariance. As we saw, this proposal connects his early contributions to structur-
alism with debates on adequate structuralist identity conditions for positions in 
mathematical structures.

The focus of this chapter was on Carnap’s early contributions to the philos-
ophy of mathematics. It would be interesting to give a comparison between the 
structuralist thesis concerning mathematical knowledge developed there and 
Carnap’s more general scientific structuralism in his later work on the logic of 
science. Specifically, the present literature on Carnap still lacks a closer analysis 
of how his early contributions to general axiomatics are related to his mature 
work on logical theory reconstruction, for instance, on the ramsification of theo-
ries. A comparative study of Carnap’s structuralist ideas from different periods of 
his intellectual career will have to be developed elsewhere.
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16
 Explication as Elimination: W. V. Quine 

and Mathematical Structuralism
Sean Morris

W. V. Quine has long been recognized as an important influence on the develop-
ment of mathematical structuralism. Stewart Shapiro, for instance, uses the fol-
lowing remark from Quine’s “Ontological Relativity” as the epigraph to his own 
structuralist treatise, Philosophy of Mathematics: Structure and Ontology (1997):1

Expressions are known only by their laws, the laws of concatenation theory, so 
that any constructs obeying those laws . . . are ipso facto eligible as explications 
of expression. Numbers in turn are known only by their laws, the laws of arith-
metic, so that any constructs obeying those laws—​certain sets, for instance—​
are eligible in turn as explications of number. Sets in turn are known only by 
their laws, the laws of set theory. (Russell 1919, 44)

This statement is certainly clear in its structuralist commitments, but, taken out of 
context, its overall philosophical aims are far less clear. Many commentators have 
simply taken Quine to be part of that tradition of mathematical structuralism as-
sociated with Paul Benacerraf, stemming from his classic article “What Numbers 
Could Not Be” ([1965] 1983).2 Here, Benacerraf argues that since structuralism 
about the natural numbers opens the way to a variety of mutually incompatible 
theories of what the numbers are, the conclusion to draw is the numbers are not 
objects at all. In one way or another, modern structuralists typically aim to re-
spond to Benacerraf ’s challenge, to in some sense answer the question, what 
then are the numbers? We might also take Quine to be attempting to answer this 
question, but this seems potentially contrary to his naturalism if the question 
and answer are construed in a robustly metaphysical way. Furthermore, assim-
ilating Quine to this tradition ignores that the beginnings of his structuralism 

	 1	 In addition to Shapiro’s work, see Parsons (1990, 2004); and Resnik (1997).
	 2	 Quine cites Benacerraf ’s paper in “Ontological Relativity,” agreeing with the idea that arithmetic 
is all there is to the numbers, but also remarking that Benacerraf ’s “conclusions differ in some ways 
from those I shall come to” (1969b, 45 n. 9).

Sean Morris, Explication as Elimination In: The Prehistory of Mathematical Structuralism. Edited by: Erich H. Reck and 
Georg Schiemer, Oxford University Press (2020). © Oxford University Press.
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can be found already in his earliest work, his 1932 dissertation, “The Logic of 
Sequences,” some 30 years before Benacerraf ’s article. I will argue instead then 
that Quine’s structuralism is much better situated and understood within the 
context of an early form of structuralism, specifically the structuralism Russell 
put forward as part of his program for scientific philosophy. While there is much 
diversity among the views of the early structuralists (as there is also among con-
temporary structuralists), which include also Dedekind and Carnap, one thing 
that unites them is the rejection of a more metaphysical view of mathematics and 
of structures more generally. They all put forward views of mathematics that, in a 
sense, answer only to mathematics itself. The basic idea here is that all an account 
of mathematical objects requires is that the entities—​whatever they are—​that 
serve as these objects satisfy the relevant postulates and theorems. Here we can 
see how Quine’s early work in the foundations of mathematics leads in a natural 
way to the more general naturalism of his later philosophy.

In what follows, I will look at the development and motives for Quine’s par-
ticular brand of mathematical structuralism. I  will argue that Quine, unlike 
many contemporary mathematical structuralists, does not appeal to structur-
alism as a way of accounting for what the numbers really are. Instead, he denies 
the very conception of analysis that gives rise to such philosophical projects, 
that is, a conception of analysis that aims to divulge some deeper hidden extra-​
scientific metaphysical reality.3 In this way, I see Quine’s philosophy as firmly 
rooted in the tradition of scientific philosophy and its critical attitude toward 
more metaphysical varieties of philosophizing. The tendency to treat Quine’s 
philosophy as part of the contemporary analytic scene, I think, misconstrues the 
radical nature of his views and its deep connections to the tradition of scien-
tific philosophy, starting with Russell and running through to Carnap and, then, 
culminating in Quine. The structure of this chapter is as follows. In section 1, 
I provide a brief account of Russell’s structuralism with a particular emphasis on 
its anti-​metaphysical motivations. Here, I focus on Russell’s work of the 1910s as 
this is where his own particular version of scientific philosophy emerges most 
clearly.4 It is also the period in which he wrote his Introduction to Mathematical 
Philosophy, probably the text that Quine most often cites as inspiring his own 
commitment to structuralism. In section 2, I present the beginnings of Quine’s 
structuralism, arguing that it emerged from his early and careful engagement 
with Russell’s work in the foundations of mathematics. In section 3, I move to 
Quine’s mature view. As we saw already, Quine’s structuralism is often traced to 
his 1969 “Ontological Relativity.” But I turn instead to his 1960 Word and Object, 

	 3	 Where science, for Quine especially, includes mathematics.
	 4	 I think there are also structuralist aspects in Russell’s earlier work as well, though they may differ 
in key ways from the view put forward in the 1910s.
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as it is here that we find his most detailed discussion of his structuralism during 
this period. To use the taxonomy of Reck and Price, Quine’s structuralism here 
is of the relativist variety: there are many models that satisfy the structural prop-
erties of mathematical objects, and the relativist structuralist simply chooses one 
of these models as, for example, the natural numbers. A different model could 
have been chosen, but so long as the choice is a consistent one, no conflict arises. 
For most relativist structuralists, Quine included, set theory provides the model 
(Reck and Price 2000, sec. 4).5 Finally, in section 4, I argue that Quine’s appeal to 
structuralism largely stands apart from the concerns of contemporary structur-
alism stemming from Benacerraf and his challenge that numbers are not objects.

1.  Scientific Philosophy and the Russellian Background

Since I aim to situate Quine’s structuralism in the context of Russell’s program 
for scientific philosophy, let me begin by very briefly characterizing the tra-
dition of scientific philosophy as it began to emerge in the second half of the 
19th century.6 The terminology “scientific philosophy” began to appear in the 
literature in the mid-​1800s in reaction to the very speculative metaphysics of 
post-​Kantian idealism and its attempts to distinguish the methods and aims of 
philosophy from those of the sciences. Alan Richardson emphasizes two aspects, 
in particular, to characterize this movement: first, a critical attitude toward met-
aphysics, sometimes extending to philosophy as a whole; and second, a coop-
erative spirit between philosophy and the sciences (1997, 426–​427). This latter 
feature arose largely in reaction to philosophy’s attempts during the 19th century 
to distinguish itself from the sciences by following artistic or religious models 
for philosophizing. This latter aspect is apparent from the start in Russell’s 
work in the philosophy of mathematics. He frequently appeals to the results of 
mathematicians such as Peano and Cantor and urges that philosophers engaging 
in the philosophy of mathematics study the most up-​to-​date foundational work 
on the subject. Similarly, I think this characterization would be uncontroversial 
for Quine’s work as well, taking naturalism as the central tenet of his philosophy. 
Indeed, I think most contemporary analytic philosophers would grant that phi-
losophy should be done in cooperation with the latest results of science. The 

	 5	 I  think this is the best characterization of Quine’s position, and I  think it is also how Quine 
understands Russell’s position in the 1910s. Reck and Price do point out a problem for relativist 
structuralism in that it seems that the objects of the basic theory, in most cases sets, are treated differ-
ently than the other objects of mathematics. Unlike, say, the numbers, the sets are not eliminated in 
favor of some other structure. I am not sure that Quine would feel the force of this objection. As we 
will see in section 16.4, Quine thinks that all objects—​sets, numbers, atoms, tables, chairs, etc.—​are 
given only by their structural properties.
	 6	 On the tradition of scientific philosophy, Friedman (2012) and Richardson (1997).
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former characterization, however, is one that distinguishes the earlier tradition 
of scientific philosophy from much of contemporary analytic philosophy. And so 
it is this one that I will focus on throughout this chapter.

In the mid-​1910s Russell explicitly put forward his program for scientific phi-
losophy, urging that philosophy take up a scientific methodology so as to yield 
to philosophy that kind of progress already found in the sciences. He envisioned 
groups of independent researchers, each focusing on their own specialized re-
search so that philosophy might proceed piecemeal. He diagnosed philosophy’s 
floundering as rooted in its striving for a single grand system of the world. Russell 
proposed instead that

The essence of philosophy . . . is analysis, not synthesis. To build up systems of 
the world, like Heine’s German professor who knit together fragments of life 
and made an intelligible system out of them, is not, I believe, any more fea-
sible than the discovery of the philosopher’s stone. What is feasible is the un-
derstanding of general forms, and the division of traditional problems into a 
number of separate and less baffling questions. “Divide and conquer” is the 
maxim of success here as elsewhere. (2004b, 87)

Along with the rejection of such grand systematizing came also a skepticism 
toward more metaphysical approaches to philosophy.7 For example, Russell 
considers the common-​sense belief in the existence of permanent, rigid bodies 
such as tables, chairs, stones, and such as “a piece of audacious metaphysical the-
orizing; objects are not continually present to sensation, and it may be doubted 
whether they are there when they are not seen or felt” (1993, 107).8 Elsewhere, 
he compares this assumption as akin to a Kantian Ding an sich.9 He thinks 
such assumptions introduce unnecessary doubt into philosophy10 and instead, 

	 7	 This emerges as a definite theme in Russell’s work of the 1910s. Russell’s desire to empha-
size this new focus perhaps also explains his retitling of his 1901 “Recent Work on the Principles 
of Mathematics” to “Mathematics and the Metaphysicians” (2004a) for its 1918 reprinting. There 
are many ways that metaphysics might be characterized. In this chapter I will focus on the idea 
that metaphysics divulges some sort of hidden reality that is in some way more real than the re-
ality described by the natural sciences or, in this case, mathematics. I should add that Russell himself 
leaves open the possibility of metaphysics from within scientific philosophy (see, for example, 2004c, 
127). I am emphasizing the strand of his thought that rejects what he refers to as “traditional meta-
physics.” Similarly, I am emphasizing the anti-​metaphysical strand of Quine’s thought. But Quine’s 
view parallels Russell in also leaving open a scientifically acceptable metaphysics. Certainly, his aim 
of “limning the most general traits of reality” (1960, 161) has a metaphysical ring to it. Indeed, I think 
Quine’s philosophy could be accurately described as the naturalizing of metaphysics. But we might 
then wonder whether this is metaphysics in any sense that a more traditional metaphysical philoso-
pher would accept.
	 8	 Our Knowledge of the External World is scattered with remarks such as this, as are his other 
works from this period. For other examples see pp. 111–​12, 134.
	 9	 See, for example, Russell 1993, 92. We will later see that Quine follows Russell in his motivations 
for structuralism here.
	 10	 See for example, Russell 1993, 134.
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recommends trying to find constructions out of less dubious entities. He sums 
up this view as his “supreme maxim in scientific philosophizing”: “Wherever pos-
sible, logical constructions are to be substituted for inferred entities” (2004c, 121).

Still, we might wonder how we can be assured that we have given an appro-
priate logical construction to serve the role of the desired object. To this point, 
Russell responds,

Given a set of propositions nominally dealing with the supposed inferred enti-
ties, we observe the properties which are required of the supposed entities in 
order to make these propositions true. By dint of a little logical ingenuity, we 
then construct some logical function of less hypothetical entities which has the 
requisite properties. This constructed function we substitute for the supposed 
inferred entities, and thereby obtain a new and less doubtful interpretation of 
the body of propositions in question. (2004c, 122)

This is just the sort of structuralism about mathematics that he would go on to 
describe in his 1919 Introduction to Mathematical Philosophy, a text Quine read 
and often cites as inspiring his own structuralism.11 In this later work, Russell 
presents Peano’s axioms (this is “the body of propositions in question,” in this 
case) for arithmetic and observes that any progression will satisfy them and also 
that any series satisfying the axioms is a progression. In this way, these axioms 
define the class of progressions.12 Hence, any progression can be taken to do the 
work of the natural numbers in pure mathematics.13 We simply identify the first 
object of the progression with zero, the second with one, the third with two, and 
so on. But since any progression will do, the members of the progression will not 
necessarily be the numbers as we ordinarily think of them. Russell says that they 
may be points in space, moments in time, or any other such infinite collection of 
objects: “Each different progression will give rise to a different interpretation of 
all the propositions of traditional pure mathematics; all of these possible inter-
pretations will be equally true” (1919, 8–​9). Russell later makes clear the phil-
osophical import of this structuralism in explaining that similar constructions 
can also be carried out for geometry. He observes here that from a mathematical 
standpoint all questions about the “intrinsic nature” of geometric objects, such 

	 11	 Quine cites this as one of the books that most influenced his philosophical direction (2008a, 
328). Russell also makes this point with regard to mathematics in (1993, 209–​210), another text that 
Quine read.
	 12	 Throughout this chapter, I use “class” and “set” interchangeably since this fits with Russell’s and 
Quine’s typical usage. I am not drawing the common distinction between sets and (proper) classes. 
Nor are Russell and Quine.
	 13	 Russell adds the condition that any such a progression should also be suited to applications of 
mathematics (1919, 9). Quine shows how this condition can easily be met by any progression (1960, 
262–​263).
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as points, lines, and planes, can be put aside. Since points need be nothing more 
than what makes their axioms true, there is nothing further that needs to be said 
about them. All that a point requires is that “it has to be something that as nearly 
as possible satisfies our axioms, but it does not have to be ‘very small’ or ‘without 
parts.’ Whether or not it is those things is a matter of indifference, so long as it 
satisfies the axioms” (1919, 59).

Russell concludes his discussion by generalizing this account not only to the 
rest of mathematics but also to the rest of science, remarking: “This is only an 
illustration of the general principle that what matters in mathematics, and to a 
very great extent in physical science, is not the intrinsic nature of our terms, but 
the logical nature of their interrelations” (1919, 59).14 By emphasizing the im-
portance of structure here, Russell makes clear the form that his critical attitude 
toward more metaphysical approaches to philosophy takes. From his scientific 
standpoint, questions about the intrinsic nature of objects are dismissed. All that 
science demands of an object is that it satisfy the axioms or postulates of the rel-
evant science. There is no deeper, mysterious essence about objects to be discov-
ered; their structural properties are enough to meet the demands of scientific 
philosophizing.

2.  The Beginnings of Quine’s Structuralism

In his autobiography, Quine makes explicit Russell’s influence, stating that he 
inspired Quine to philosophy and referring to Principia Mathematica as “the 
crowning glory” of his undergraduate honors reading (1985, 59). Quine’s own 
1932 dissertation, “The Logic of Sequences,” was a reworking of roughly the first 
400 pages of Principia and was written under the direction of Russell’s coauthor, 
Alfred North Whitehead.15 Here, too, Quine draws a further important connec-
tion to Russell, remarking on the philosophical significance of their respective 
works: “Outwardly my dissertation was mathematical, but it was philosophical 
in conception; for it aspired, like Principia, to comprehend the foundations of 
logic and mathematics and hence the abstract structure of all science” (1985, 85). 
Here we see already that Quine had absorbed Russell’s point that what mattered 
most in mathematics and science was structure. In this section, I will sketch out 

	 14	 Similarly, he makes this point concluding the previously quoted passage from “The Relation of 
Sense Data to Physics, remarking of his logical constructions: “This method, so fruitful in the phi-
losophy of mathematics, will be found equally applicable in the philosophy of physics, where, I do 
not doubt, it would have been applied long ago but for the fact that all who have studied this subject 
hitherto have been completely ignorant of mathematical logic” (Russell 2004c, 122). As we will see in 
the final section, Quine, too, extends his structuralism to all of science.
	 15	 For background on the dissertation see Quine (1985, 84–​86), as well as his preface to the version 
of the dissertation published in 1990 and also Dreben (1990).
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the beginnings of Quine’s structuralism and argue that it was motivated by the 
same critical attitude toward metaphysics that we saw in Russell. In this early 
period, however, Quine’s views develop not with a focus on numbers but more 
generally on the nature of propositions.

Explicit philosophical discussions are largely absent from Quine’s disserta-
tion, but we do get some sense of the purpose that Quine’s structuralism would 
later serve.16 In particular, he places little weight on the intuitiveness of his 
system; there is no attempt to discover what the entities of mathematics really 
are. What matters is that the system be convenient for the mathematical work at 
hand. This emerges immediately in Quine’s own account of propositions. To this 
end, he introduces the primitive operation of predication, which he describes as 
the binary operation upon function and sequence, yielding what he calls a prop-
osition, expressed notationally by juxtaposing the two operands, φ and X, to get 
φX. This, Quine says, is all there is to a proposition: “Such is the manner in which 
propositions emerge in the present system. A proposition is for us a construct, a 
complex, wrought from a function and a sequence by the undefined operation of 
predication” (1990, 38).

Still, Quine recognizes that we might ask for more; we might reasonably think 
that a proposition is not just a formal construct:

But, it may be asked, what sort of thing is this product of predication? From 
the official standpoint of our system, it is to be answered only that it is what-
ever predication yields; and predication is primitive. Unofficially, we may say 
that by a proposition we mean exactly what one ordinarily means by the term; 
and, from this standpoint, we may describe predication as that operation upon 
function and sequence which renders that latter argumental to the former and 
produces a proposition. In the terms of the present system, thus, the proposi-
tion is logically subsequent to the function and argument sequence which enter 
it. This treatment, however, is quite independent of metaphysical and episte-
mological considerations. It is altogether indifferent to the present system if 
function and argument be construed as abstractions which are, in some philo-
sophical sense, subsequent to the proposition from which they are abstracted; 
just as it is irrelevant that, from a psychological standpoint, propositions are 
pretty certainly prior chronologically to function and sequences. Nor, indeed, 
are we even concerned with maintaining that propositions are, in any absolute 
sense, logically subsequent to functions and sequences—​mainly, perhaps, because 
we have little conception of what possible meaning such a statement might have. 
The point is merely that is has proved convenient in the present system to frame 

	 16	 Still, much Quinean philosophy can be pulled from the dissertation. For more on this topic, see 
Dreben (1990); and Morris (2015).
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our primitives in such a way that, for us, the proposition emerges as complex. 
(1990, 38–​39; my emphasis).

Here we see again Quine’s technical approach to more traditionally philosoph-
ical concerns, but he also highlights that there may be a number of philosophical 
concerns about propositions that he does not address. Quine, however, does not 
see this as a deficiency but rather as a benefit. Philosophical controversies over 
propositions, such as the ones he points out, are irrelevant to the technical de-
velopment of propositions in his system. Engaging in these controversies, then, 
would only lead to the kind of stagnation that scientific philosophy had sought to 
avoid. Indeed, Quine’s remark that his account is “independent of metaphysical 
and epistemological considerations” might be aimed at Russell himself. It is just 
these sorts of concerns—​about the function-​argument analysis of propositions, 
whether to take the components or the propositions as prior, and most generally, 
how to account for the very unity of a proposition at all—​that leave much unre-
solved on the philosophical side of Russell’s account.17 Quine’s conclusion, un-
like Russell’s, is simply that we have no firm ground to stand upon to even know 
exactly what question we are asking in these cases. As we see in the italicized sen-
tence, Quine simply rejects that there is any absolute sense of what a proposition 
is; there is no question to ask about what propositions really are, aside from the 
account that Quine’s logical system provides.

There is one further remark to note in this passage. He observes, “Unofficially, 
we may say that by a proposition we mean exactly what one ordinarily means by 
the term.” Here, I think Quine gives the first hint that something like the structur-
alism we saw already in Russell will be conducive to Quine’s own philosophical 
position. Indeed, in recognizing the difficulties Russell had with propositions, 
Quine sees structuralism as a solution, or better, a dissolution of the whole 
problem. Exactly what we mean ordinarily by a proposition is far from clear, but 
what is important in understanding Quine’s view here is that he thinks there is 
some agreed-​upon meaning or role that we ascribe to propositions.18 And any 
technical entity that satisfies this role has equal claim to being a proposition.

Despite the apparent success of his account of propositions over previous ac-
counts, we might still wonder why we should take them to be sequences. Here 
Quine brings us back to his emerging structuralism. In his 1934 A System of 
Logistic, the published version of his dissertation, he observes that Whitehead 
had emphasized the non-​assertiveness of propositions, meaning that only in 

	 17	 See in particular secs. 480–​483 of Principles of Mathematics (1937), Russell’s appendix on Frege’s 
views. For useful commentary see also Hylton (1990, 336–​338, 342–​350), also his (2005); as well as 
Ricketts (2001), along with his (2002).
	 18	 This seems to be precisely what he later rejects about them, or more specifically, about the no-
tion of analyticity, in his “Two Dogmas of Empiricism” (1980, 25), first published in 1951.
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making a judgment does the proposition assert something true or false. For ex-
ample, the proposition that this book is red does not assert that the book is in 
fact red. This only comes when a judgment is made. Quine then adds of his own 
account of propositions that “the doctrine of propositions as sequences stands 
in striking agreement with Whitehead’s point of view; it presents a definite tech-
nical entity fulfilling just the demands which he makes of a proposition” (1934, 
33). Significant here is not so much Quine’s agreement with Whitehead but 
rather Quine’s remark that he has provided a definite technical entity that fulfills 
the role that we expect propositions to play. The kind of ordinary meaning of 
propositions that he had in mind earlier is now made somewhat more precise. 
Propositions are those sorts of things that are potentially true or false, that serve 
as the postulates and theorems of a logical system, that can be manipulated in 
accordance with the rules of the system, etc. Again, we see Quine already in his 
earliest philosophy leaning toward the sort of structuralism found in Russell’s 
Introduction to Mathematical Philosophy. Quine is not merely adopting the sort 
of formalistic or technical approach characteristic of much mathematical work. 
Rather, he takes such an approach to have philosophical consequences when 
embodied in a kind of structuralism. Here he eliminates traditional philosoph-
ical worries specifically over the true nature, or essence of, propositions. There 
is no deeper question to be asked about them than what role it is that they or-
dinarily play. If we can find a sufficiently clear technical entity that satisfies this 
role, there can be no further demand to make, aside from pragmatic concerns 
over whether that particular entity best suits the particular task at hand. While 
the paradigm case for such an account is no doubt the sort that Russell intro-
duced with the numbers, Quine’s account of propositions is very much in this 
same spirit. As we will see, this is the kind of clarificatory work that he would 
later identify as a paradigm of philosophical analysis (1960, sec. 53).

After the mid-​1930s all positive talk of propositions drops out of Quine’s 
work.19 Perhaps foreshadowing his later attack on the analytic/​synthetic distinc-
tion, he came to realize that talk of propositions lacked contexts that were “clear 
and precise enough to be useful” (1980, 25). Furthermore, he may have come 
to see that his technical replacements could be rendered less controversial by 
simply calling them what they were—​sequences, sentences, or what have you. 
Still, this early work on propositions is important in setting up Quine for the sort 
of structuralism he would adopt in his mature philosophy. After all, there are 
many entities—​numbers among them—​crucial to science and in need of very 
much the kind of analysis Quine had offered for propositions in this early period.

	 19	 Quine’s other significant work on propositions, also from 1934, is his “Ontological Remarks on 
the Propositional Calculus” (1976b). The discussion here is complimentary to both the dissertation 
and A System of Logistic.
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3.  Quine’s Mature View

In light of more recent structuralist approaches to mathematics, which tend to 
respond directly in one way or another to Benacerraf ’s challenge, I hope in this 
and the next section to give us a better sense of what Quine’s structuralism is both 
meant and not meant to do. From the perspective of contemporary structur-
alism, Quine’s discussion may perhaps appear simplistic or inadequate. He never 
addresses many of the worries that we see in current discussions. I take it that 
this is intentional on his part as his structuralism is largely meant to deny certain 
kinds of philosophical worries. Quine is not, for example, trying to answer the 
question of what the numbers really are or more generally, what structures really 
are.20 Rather, as we will see, he aims to dissolve rather than solve philosophical 
puzzles such as this one.

While Quine’s claim in “Ontological Relativity” that the numbers are known 
only by their laws is perhaps his most explicit statement of a kind of mathemat-
ical structuralism, his most sustained discussion of his view occurs in Word and 
Object. We saw in section 1 that Russell’s structuralism arose out of his urging 
of the analytic method as the right way to pursue scientific philosophy. Quine 
continues with this approach, adopting in section 53, “The Ordered Pair as a 
Philosophical Paradigm,” a kind of structuralism as a general method for phil-
osophical analysis. Here he describes a common situation where we have a term 
that is in some sense defective but that is also very useful to our theorizing. We 
must then somehow make sense of it, preserving its utility while removing its 
defectiveness. Quine looks to the ordered pair as a particularly clear case of just 
this phenomenon. Typically, we find this device in mathematics where it allows 
us to assimilate relations to classes by treating the relations as classes of ordered 
pairs (1960, 257). Its defectiveness readily appears when we try to give an ac-
count of what an ordered pair is. Referring to Peirce’s nearly impenetrable ac-
count in terms of a mental diagram, Quine recommends instead, “We do better 
to face the fact that ‘ordered pair’ is (pending added conventions) a defective 
noun, not at home in all the questions and answers in which we are accustomed 
to imbed terms at their full-​fledged best” (WO, 257–​258). He then explains that 
mathematicians take the single postulate

(1)	 If x y z w, ,=  then x z=  and y w= ,

	 20	 I take it that many contemporary structuralists would agree on the first question, but it does 
seem that the discussion then just shifts the worries that arose around numbers to worries about the 
structures themselves.
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to govern all uses required of the ordered pair. So we want a single object that 
will do the work of two and that satisfies this condition. The solutions, Quine 
observes, are many, with Kuratowski’s rendering of x y,  as { ,{ , }x x y}{ } being 
among the most common. But Norbert Wiener’s {{ },{ , }}x y ∅  serves the purpose 
equally well. It is straightforward to show that either of these classes satisfies pos-
tulate (1) (1960, 258–​259).21 This, Quine declares, is precisely what a philosoph-
ical analysis should do:

This construction is paradigmatic of what we are most typically up to when in 
a philosophical spirit we offer an “analysis” or “explication” of some hitherto 
inadequately formulated “idea” or expression. We do not claim synonymy. We 
do not claim to make clear and explicit what the user of the unclear expression 
had unconsciously in mind all along. We do not expose hidden meanings, as 
the words ‘analysis’ and ‘explication’ would suggest; we supply lacks. We fix on 
the particular functions of the unclear expression that make it worth troubling 
about, and then devise a substitute, clear and couched in terms to our liking, 
that fills those functions. Beyond those conditions of partial agreement, dic-
tated by our interests and purposes, any traits of the explicans come under the 
head of “don’t-​cares.” (1960, 258–​259)22

The analysis of the ordered pair is unusual only in that the condition of partial 
agreement can be made so explicitly and simply. Other cases of analysis will not 
be so straightforward, but on Quine’s account, this is still ultimately what any 
such analysis is meant to accomplish.23

There is then no answer to which of these analyses of the ordered pair is the 
correct one. Any object satisfying (1) has equal right to being the ordered pair, 
and this, Quine says, is the general situation with any analysis, or explication. For

explication is elimination. We have, to begin with, an expression or form of ex-
pression that is somehow troublesome. It behaves partly like a term but not 
enough so, or it is vague in ways that bother us, or it puts kinks in a theory 
or encourages one or another confusion. But it also serves certain purposes 

	 21	 See, for example, Enderton (1977, 35–​36). There are plenty of other equally good analyses of the 
ordered pair; Quine (1960) gives further examples on p. 260.
	 22	 “Explication” is of course Carnap’s terminology; see, for example, Meaning and Necessity (1956, 
7–​8). Part of what I hoped to have shown in section 16.2 was that Quine had this notion already in 
place prior to any serious engagement with Carnap’s work. A more general conclusion, which I have 
not argued for in this chapter, is that Quine’s and Carnap’s shared philosophical aims can be traced 
back to the common influence of Russell.
	 23	 Here is at least part of his rejection of the analytic-​synthetic distinction. Quine just does not 
think that we have any idea of what the conditions of partial agreement should be for the analysis of 
analyticity.
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that are not to be abandoned. Then we find a way of accomplishing those same 
purposes through other channels, using other and less troublesome forms of 
expression. The old perplexities are resolved. (1960, 260)

In the end, the question of what an ordered pair is is dissolved when this trou-
blesome notion is replaced by some clearer notion. And now to bring us more 
directly back to structuralism about the numbers, Quine goes on to say ex-
actly this of Frege’s analysis of numbers as well, citing Russell’s Principles of 
Mathematics as his source. Here Quine presents the more typically philosophical 
question “What is a number?” and—​just as Wiener and Kuratowski did for or-
dered pairs—​we have Frege replacing these somewhat mysterious entities with 
the better-​understood classes. On this account, for each number n, we identify 
it with the class of all n-​membered classes (the seeming circularity here can be 
paraphrased away). Quine then observes that to object that classes have different 
properties from numbers is to make no objection at all. It is just to misunder-
stand the point of explication:24

Nothing needs be said in rebuttal of those critics, from Peano onward, who 
have rejected Frege’s version because there are things about classes of classes 
that we have not been prone to say about numbers. Nothing, indeed, is more 
logical than to say that if numbers and classes of classes have different proper-
ties then numbers are not classes of classes; but what is overlooked is the point 
of explication. (1960, 262, footnote omitted).

Furthermore, again like the ordered pair, this is just one of many ways of expli-
cating numbers. Von Neumann and Zermelo offered other analyses. None are 
equivalent but all serve perfectly well as the numbers. Quine concludes that, as 
with the ordered pair, we can provide a condition that any explication of number 
must satisfy. Such a condition is provided by the notion of a progression, and any 
objects satisfying it will serve perfectly well as the numbers.

4.  Quine and Modern Structuralism

I have been describing the development of Quine’s structuralism, but let me now 
come back to the more general point I wanted to make about Quine’s place in 
the history of analytic philosophy. I began with Russell so as to emphasize his 
influence on Quine’s structuralism, and in particular, the critical attitude toward 

	 24	 Russell does this as well (1919, 18–​19).
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metaphysics, characteristic of the scientific tradition of philosophy. We saw this 
with regard to propositions, where Quine showed how propositions could be 
rendered in terms of the sequences of his logical system. There was no worry here 
about whether these are really what propositions are. Sequences of a certain sort 
turned out to fulfill just the role required of propositions in his system. Quine’s 
point was that there was no further demand to be made of them. Here, I stressed 
that this was a decidedly philosophical view on Quine’s part. We see it now fully 
developed in his later work. What is to be emphasized here is again his rejection 
of certain philosophical questions—​by eliminating problematic entities in favor 
of some that are better understood, Quine not so much solves as dissolves phil-
osophical questions (1960, 260). The importance of elimination here cannot be 
stressed enough for properly understanding the significance and purpose of the 
remark with which we began this chapter, that “numbers . . . are known only by 
their laws, the laws of arithmetic” (1969b, 44). It is precisely on this point that 
I think Quine’s position can be distinguished from much of what goes on in con-
temporary mathematical structuralism. Let me try to explain why.

Most of the contemporary discussion of mathematical structuralism has 
been set by Benacerraf ’s “What Numbers Could Not Be” ([1965] 1983). In it, 
Benacerraf famously concludes that the numbers cannot be objects (290). Since 
numbers, unlike other sorts of objects, have their requisite properties only in re-
lation to the other numbers, we cannot give an account of any particular number 
short of characterizing the entire abstract structure of arithmetic. As he explains:

The pointlessness of trying to determine which objects the numbers are thus 
derives directly from the pointlessness of asking the question of any individual 
number. For arithmetical purposes the properties of numbers which do not 
stem from the relations they bear to one another in virtue of being arranged in a 
progression are of no consequence whatsoever. But it would be only these prop-
erties that would single out a number as this object or that.

Therefore, numbers are not objects at all, because in giving the proper-
ties . . . of numbers you merely characterize an abstract structure—​and the dis-
tinction lies in the fact that the “elements” of the structure have no properties 
other than those relating them to other “elements” of the same structure. . . .

Arithmetic is therefore the science that elaborates the abstract structure 
that all progressions have in common merely in virtue of being progressions. 
It is not a science concerned with particular objects—​the numbers. The search 
for which independently identifiable particular objects the numbers really are 
(sets? Julius Caesars?) is a misguided one. ([1965] 1983, 291)

Benacerraf ’s remarks here illustrate how far Quine’s view is from the concerns 
of much of contemporary structuralism. The discussion here tends to attempt 
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a direct response to Benacerraf ’s conclusion. Participants in the dialogue either 
accept it and try to work out more precisely what it means for the numbers to not 
be objects; or they reject it and try to show how despite being recognized only by 
their structural properties, numbers still have a claim to being objects of a rather 
special sort.25 For Quine, this entire discussion assumes too much from the start, 
resting on the uncritical assumption that we have some conception of an object 
ready to hand within which we can make sense of these two options. I will not be 
able to treat fully Quine’s views on ontology and objecthood here, but let me try 
to give some better indication of how I think Quine sees the matter.26

Whereas Benacerraf assumes at the outset that the notion of an object is well 
understood and that the numbers are not instances of it, Quine does not. For 
Quine, we cannot assume as given that we know what will be among the objects 
and what will not. He takes ontology itself as a theoretical undertaking, one to be 
worked out in accord with the best science of our day. So as to where to draw the 
boundary between object and non-​object, Quine responds,

It is a wrong question; there is no limit to draw. Bodies are assumed, yes; they 
are the things, first and foremost. Beyond them there is a succession of dwin-
dling analogies. Various expressions come to be used in ways more or less par-
allel to the use of the terms for bodies, and it is felt that corresponding objects 
are more or less posited, pari passu; but there is no purpose in trying to mark an 
ontological limit to the dwindling parallelism. (1981b, 9)

So our paradigm for an object might be bodies, that is, ordinary physical objects, 
but beyond this, there are just “dwindling analogies.” We cannot simply rely on 
the notion of an object as given to us as fully understood. But then what are we 
to do about ontological questions? Should they just be rejected wholesale in the 
spirit of Carnap? No, as Quine continues:

	 25	 For the former view, I have in mind an eliminative structuralist such as Geoffrey Hellman. For 
his view see, for example, his (1989). I will not discuss his views further as, with their reliance on 
modal notions, I think they are far from anything that Quine would be willing to accept. For the latter 
view, I have in mind philosophers such as Michael Resnik or Stewart Shapiro. Reck and Price identify 
Resnik and Shapiro as both being “pattern structuralists”; that is, they are both committed to some 
version of the view that mathematics investigates patterns, and these are in themselves real objects. 
Shapiro’s pattern structuralism is the more robust of the two, identifying the numbers with a sort of 
universal pattern (he calls his own view ante rem structuralism). Resnik also claims that numbers are 
patterns, but takes Quine’s doctrine of ontological relativity more seriously and so does not identify 
the numbers with any one pattern. I am brushing over many subtleties in their views, but see Reck 
and Price (2000, sec. 7) for a more detailed summary.
	 26	 For a more detailed account of Quine’s views, see Hylton (2004) and on abstract objects specifi-
cally see his (2007, 258–​259).
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My point is not that ordinary language is slipshod, slipshod though it be. We 
must recognize this grading off for what it is, and recognize that a fenced on-
tology is just not implicit in ordinary language. The idea of a boundary between 
being and nonbeing is a philosophical idea, an idea of technical science in a 
broad sense. Scientists and philosophers seek a comprehensive system of the 
world, and one that is oriented to reference even more squarely and utterly than 
ordinary language. Ontological concern is not a correction of a lay thought and 
practice; it is foreign to the lay culture, though an outgrowth of it. (1981b, 9)

Contrary to Benacerraf, then, Quine thinks that the notion of an object itself and 
what it is to be ontologically committed to it stands in need of philosophical ex-
plication. Without providing some explicit criteria here, we cannot say whether 
or not numbers are to be counted among the objects. First of all, Quine tells us 
that for something to count as an object, we must have identity criteria for it, as 
summed up in his oft-​quoted slogan, “No entity without identity” (1969c, 23; 
1981a, 102). This tells what might be acceptable as an object, but it does not yet 
tell us if we are in fact committed to the existence of some particular object.27 
For example, surely we know the identity criteria for numbers, but the ques-
tion here is whether we are in fact committed to the existence of numbers as 
objects. Clearly, we do talk of numbers as if they are objects, making claims such 
as “There is a number that is the successor of zero.” But as we saw Quine point 
out, ordinary language is not a sure guide to ontological commitment.

Accepting that we cannot just read off of our everyday language what objects 
there are, Quine proposes a technical substitute. Using first-​order quantifica-
tion theory, Quine recommends that we regiment our scientific theory and then 
simply read off its ontological commitments by way of the universal and exis-
tential quantifiers, understood respectively as “for all objects x” and “there exists 
an object x.” His solution to this quandary about objects is nicely summed up in 
another of his familiar slogans: “To be is to be the value of a variable” (1939, 708). 
Given this account, we now have a clear sense of what it means for an object to 
exist or not. So, for Quine, unlike Benacerraf, the numbers have every right to 
be considered objects alongside our ordinary physical objects so long as we are 
willing to countenance both as values of variables. Of course, we might reject 
Quine’s criterion for ontological commitment, a possibility that he is well aware 
of. He welcomes other proposals, but to the extent that they do not capture the 
locution “there exists an object x,” he sees them as giving no intelligible account 
of ontological commitment.28

	 27	 This criterion is closely tied into how Quine sees reification setting in. For a much more com-
plete account of Quine’s views here, again see Hylton (2004).
	 28	 See, for example, Quine’s “Existence and Quantification,” where he compares his objectual 
quantification with substitutional quantification (1969a, 103–​108).
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Benacerraf was driven to reject numbers as objects because of what he saw 
as some of their rather odd characteristics, chief among them that many dif-
ferent structures would do the work of the numbers. Again, this is clearly some-
thing that Quine is well aware of, noting many times, following Russell, that 
any progression will do. And here we see also the importance of elimination in 
Quine’s account. To say that the numbers are some progression, for example, 
von Neumann’s set-​theoretic account, raises the question of why the numbers 
are this progression and not, for example, the one given by Frege or by Zermelo. 
On Quine’s account of explication, we do not make such an identity. We have 
eliminated some apparent objects, not well understood, and replaced them with 
objects that are in some sense better understood. Out of habit or convenience, 
we refer to these sets as the numbers, but they are in the end just sets. These 
sets preserve whatever we found useful about numbers while pushing off any 
other features of the old numbers as “don’t cares.” There were of course other 
options for our explication, but as Quine observes, “Any progression will serve 
as a version of number so long as and only so long as we stick to one and the 
same progression. Arithmetic is, in this sense, all there is to number: there is 
no saying absolutely what the numbers are; there is only arithmetic” (1969b, 
45).29 The choice may be guided by certain pragmatic concerns. So in some other 
context we are equally free to choose a different analysis or explication, better 
suited to whatever that particular context requires (1960, 263). Here again we 
see the importance of not losing sight of Quine’s point about explication being 
elimination. Whatever explication, or analysis, of numbers we opt for is all that 
is left of the numbers. There is no further independent question about whether 
we have correctly identified the numbers. The numbers have been eliminated in 
favor of some progression that has whatever features made the numbers worth 
explicating in the first place.30 A failure to appreciate this aspect of Quine’s ac-
count leads to the sort of worry Benacerraf identifies—​which of the various 
progressions are the numbers really? For Quine, we might say, this is just a meta-
physical pseudo-​question (2008b, 401, 405).

	 29	 Note that the wording here is very much like the wording in the passage from The Logic of 
Sequences saying that there is no absolute sense of propositions short of some particular system 
(1990, 39).
	 30	 Again, Reck and Price place Quine’s structuralism under the heading of relativist structuralism. 
The idea here is that there may be many structures that will serve as the natural numbers, and what 
we do is just pick one of them and stick with it. Reck and Price raise as a central question for relativist 
structuralism what we are to do about the basic level, the sets. Should not these also be treated in 
some structuralist way? It seems to me that Quine does have in mind also treating sets along struc-
turalist lines. For example, in the quotation with which we began this chapter he remarks that it is not 
just numbers that are known by their laws but also sets. Indeed, as we will see, Quine thinks that in 
a sense all there is to any sort of object is its place in a theory. In this sense, I think Resnik correctly 
identifies Quine’s position as “structuralism all the way down” (1997, 266).
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So, on Quine’s account the numbers are objects, but there is another line of 
thought that also treats the numbers as objects but that still seems at odds with 
Quine’s account. Many prominent contemporary mathematical structuralists, 
chief among them Michael Resnik and Stewart Shapiro, agree with Quine that 
numbers are objects, but they also think there is something to what motivates 
Benacerraf to his conclusion:  the numbers do somehow seem different from 
other sorts of objects; they do not seem to be objects in any ordinary sense. With 
this thought in mind, each in his own way tries to work out how the numbers 
might still be objects of a sort. Putting aside much detail, both embrace what 
Charles Parsons has identified as the incompleteness of mathematical objects.31 
In short, mathematical objects are incomplete in the sense that there are certain 
questions that we cannot answer about them since, as Benacerraf observed, they 
are given only by their relations within the entire structure of mathematics. So 
we seem to be at a loss about what the intrinsic nature of each number is; again, 
whether the numbers are in fact these sets or those.32 Whereas Benacerraf indi-
cated this as a problem for treating numbers as objects, Resnik and Shapiro just 
take this as characteristic of the particular kind of objects that the numbers are.33

We have already had a hint of Quine’s response to this sort of worry about 
mathematical objects. His appeal to the quantifiers not only tells us what objects 
there are but is also univocal—​Quine has no modes of being; there is only a single 
all-​purpose notion of existence, applying to all objects indiscriminately.34 This 
could be taken as a weakness of Quine’s account; perhaps we would be better off 
recognizing somehow that the numbers, while still objects (contra Benacerraf), 
are unique in being identifiable only by their role in the structure of arithmetic 
as a whole. Quine surely recognizes differences among abstract objects, such as 
numbers, and the more ordinary concrete objects. In particular, he notes that we 
can learn terms for visible concrete objects by ostension, whereas this is not pos-
sible for terms for abstract objects (though more accurately he says that this dif-
ference is better reflected in the distinction between observation and theoretical 
terms). This, however, is an epistemological difference, rather than one reflecting 
a difference in kind among the objects themselves (1998, 402; 1981b, 16).

	 31	 Resnik explicitly adopts Parsons’s terminology. Shapiro does not but attributes the appropriate 
characteristics to the numbers for them to be incomplete in Parsons’s sense. See MacBride (2005) for 
a much fuller elaboration of this issue. While generally against, as we will see, characterizing mathe-
matical objects, and abstract objects generally, as existing in some way differently from how concrete 
objects exist, Quine does not object to Parsons’s technical work on incomplete existence. He just 
thinks the resulting theory not open to ontological assessment (1998, 400).
	 32	 See MacBride for this characterization (2005, 564).
	 33	 It should be noted that both Resnik and Shapiro describe themselves as Quineans of a sort. It 
may be that in light of their attempts to respond more directly to Benacerraf ’s challenge, Quine might 
have re-​evaluated his own view on the matter. I will not undertake this task here on Quine’s behalf, 
though I think it a worthwhile undertaking on the whole.
	 34	 Hylton emphasizes this point; see his (2007, 258; see also 303).
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But still, what about the seemingly unique structural aspect of numbers? Here, 
too, Quine would be unconvinced, for this does not seem to be a unique fea-
ture of numbers after all, as shown by his doctrine of ontological relativity. He 
illustrates this most straightforwardly with what he calls proxy functions, where 
such a function maps our old objects onto some new objects (1969b, 55–​61; 
1981b, 19). For example, we might have the function f taking each object to its 
spatiotemporal complement f(x). With the predicates and terms appropriately 
adjusted, evidential support for the old and new theories remains the same, and 
so they are empirically indistinguishable. Here we have a version of what Quine 
calls his “global ontological structuralism” (2008b, 405):

Structure is what matters to a theory, and not the choice of its objects. F.P. 
Ramsey urged this point fifty years ago, arguing along other lines, and in a 
vague way it had been a persistent theme also in Russell’s Analysis of Mind. But 
Ramsey and Russell were talking only of what they called theoretical objects, as 
opposed to observable objects.

I extend the doctrine to objects generally, for I see all objects as theoretical. 
(1981b, 20)

As he sums up his point, “Save the structure and you save all” (2008b, 405).
The point I wish to draw from this last discussion is that Quine will not be 

tempted to describe mathematical objects as incomplete. His global structur-
alism shows that there is nothing unique about the structural aspects of math-
ematical objects; much the same can be said of concrete objects. For Quine, in a 
sense, either all objects are incomplete or none are. No special trait of mathemat-
ical objects is picked out by their apparent incompleteness. As Quine describes 
his own view: “My own line is a yet more sweeping structuralism, applying to 
concrete and abstract objects indiscriminately” (2008b, 402). Resnik is, I think, 
then correct in describing Quine’s view as “structuralism all the way down” 
(1997, 266). Resnik, however, wishes to contain his own structuralism so that it 
applies only to mathematical objects:

By contrast, mathematical structuralism, including my own, finds its roots in 
the philosophical remarks of Dedekind, Hilbert, Poincaré, and Russell, and Paul 
Benacerraf ’s provocative thoughts on the multiple reduction of arithmetic to 
set theory. It takes the thesis that mathematical objects are incomplete (“known 
only by their laws”) as a datum and tries to explain it, and consequently it does 
not go as far as Quine’s. (1997, 267)

Shapiro, in his own way, joins Resnik in this view. Now, I am not claiming that 
Quine would reject any of the technical work that Resnik and Shapiro have 
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contributed toward a mathematical theory of structures. What worries Quine 
are the motivations—​that there is a desire on the part of structuralists such as 
Resnik and Shapiro to preserve some special status for mathematics (not unlike 
Carnap’s attempt to declare mathematics analytic).35 We see this here in Resnik’s 
remark that he takes the incompleteness of mathematical objects as a datum to be 
explained by structuralism. This is precisely the kind of assumption that Quine’s 
doctrine of ontological relativity, and his associated structuralism, denies. He 
describes his own global structuralism as coming from his naturalism—​that 
is, from science itself—​and its rejection of “the transcendental question of the 
reality of the external world—​the question whether or in how far our science 
measures up to the Ding an sich” (1981b, 22).36 He does not begin by assuming 
that mathematical objects are unique in some way. Ontological relativity shows 
mathematical objects no more, and no less, incomplete than ordinary concrete 
objects are.

We might, however, think such an unorthodox view to be in tension with 
Quine’s professed realism.37 He thinks not:

Naturalism itself is what saves the situation. Naturalism looks only to natural 
science, however fallible, for an account of what there is and what what there is 
does. Science ventures its tentative answers in man-​made language, but we can 
ask no better. The very notion of object . . . is indeed as parochially human as the 
parts of speech; to ask what reality is really like, however, apart from human cat-
egories, is self-​stultifying. It is like asking how long the Nile really is, apart from 
parochial matters of miles or meters. Positivists were right in branding such 
metaphysics as meaningless. (2008b, 405)

Naturalism allows no deeper insight into reality than what will tolerate Quine’s 
doctrine of ontological relativity. His global structuralism, then, just tells us 
what can be coherently said of objects unless we allow for some form of mystical 

	 35	 The situation is much like that with regard to the analytic/​synthetic distinction. Quine saw 
no flaws in Carnap’s technical work. It was the underlying philosophical motivations that worried 
him: “In recent classical philosophy the usual gesture toward explaining ‘analytic’ amounts to some-
thing like this: a statement is analytic if it is true by virtue solely of the meanings of words and inde-
pendently of matters of fact. It can be objected, in a somewhat formalistic and unsympathetic spirit, 
that the boundary which this definition draws is vague or that the definiens is as much in need of 
clarification as the definiendum. This is an easy level of polemic in philosophy, and no serious philo-
sophical effort is proof against it. But misgivings over the notion of analyticity are warranted also at 
a deeper level, where a sincere attempt has been made to guess the unspoken Weltanschauung from 
which the motivation and plausibility of a division of statements into analytic and synthetic arise” 
(1976a, 138).
	 36	 Recall this is one of the ways that Russell described the aim of his structuralism.
	 37	 For more on the radical nature of Quine’s views here, see again Hylton (2004, especially sections 
IV and V).
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insight into the true nature of reality. Here, I have been describing Quine in terms 
that may seem more appropriate to a discussion of Carnap, and in this passage, 
we see Quine himself doing so. While I do want to stress, much more than is 
usually done, the significant continuities between Quine and Carnap, especially 
as part of a tradition of scientific philosophy stemming from Russell, I do not 
want to abolish the differences. And nor does Quine, as he then explains. Where 
the positivists went wrong was in trying to deny ontological questions altogether 
(2008b, 405). Still, Quine’s own countenancing of such ontological questions, 
and in particular, his structuralism, is not a return to a more traditional brand of 
metaphysical theorizing, as he concludes:

My global structuralism should not  .  .  .  be seen as a structuralist ontology. 
To see it thus would be to rise above naturalism and revert to the sin of tran-
scendental metaphysics. My tentative ontology continues to consist of quarks 
and their compounds, also classes of such things, classes of such classes, and 
so on, pending evidence to the contrary. My global structuralism is a natural-
istic thesis about the mundane human activity, within our world of quarks, of 
devising theories of quarks and the like in the light of physical impacts on our 
physical surfaces. (2008b, 406)

And here Quine brings us back to Russell. What matters most in the ontology of 
mathematics, and in the sciences more generally, is not the intrinsic nature of the 
objects but rather their structural relations to one another.
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