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Abstract

Chinese hamster ovary (CHO) cells are the most popular mammalian cell factories

for the production of glycosylated biopharmaceuticals. To further increase titer and

productivity and ensure product quality, rational system-level engineering strategies

based on constraint-based metabolic modeling, such as flux balance analysis (FBA),

have gained strong interest. However, the quality of FBA predictions depends on the

accuracy of the experimental input data, especially on the exchange rates of extracel-

lular metabolites. Yet, it is not standard practice to devote sufficient attention to the

accurate determination of these rates. In this work, we investigated to what degree

the sampling frequency during a batch culture and themeasurement errors ofmetabo-

lite concentrations influence the accuracy of the calculated exchange rates and further,

how this error then propagates into FBA predictions of growth rates. We determined

that accurate measurements of essential amino acids with low uptake rates are crucial

for the accuracy of FBA predictions, followed by a sufficient number of analyzed time

points.We observed that themeasured difference in growth rates of two cell lines can

only be reliably predicted when both high measurement accuracy and sampling fre-

quency are ensured.

KEYWORDS

Chinese hamster ovary cells, error propagation, exchange rates, genome-scale metabolic model-
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1 INTRODUCTION

Chinese hamster ovary (CHO) cells are the primary host for the pro-

duction of biopharmaceuticals, particularly monoclonal antibodies and

Abbreviations: AA, amino acid; CHO, Chinese hamster ovary; FBA, flux balance analysis;

GSMM, genome-scale metabolic model; RSD, relative standard deviation; RSE, relative

standard error; SE, standard error
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other complex therapeutic proteins.[1] Their main advantages include

the ability to perform human-like post-translational modifications, in

particular glycosylation, suspension growth in serum-free chemically

defined media and a low risk of viral infections, which makes them a

safe host for the production of human therapeutic proteins.[2,3] How-

ever, the development of new producer cell lines is a time-consuming,

costly, and laborious process, basedmostly on laboratory evolution and
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high-throughput screening of thousands of clones. It often takes sev-

eral months to obtain a high producer and this trial-and-error process

must be repeated for each new product.[4] Furthermore, it is not clear

which factors limit product formation.[5]

As a result of the success of metabolic modeling in designing micro-

bial cell factories,[6] interest has grown in applying these methods to

CHO.[7] However, applications of modeling to CHO cells remain lim-

ited as key (bioinformatic) resources became available only recently.

The publication of CHO’s genome sequence[8] enabled the in silico

reconstruction of its metabolism.[9] Along with recent updates,[10,11]

these genome-scale metabolic models (GSMMs) sit at the heart of

constraint-based modeling approaches that allow to computationally

connect genotype and phenotype.[12] In fact, such a GSMM coupled

with a model of the secretory pathway[13] validated gene knockouts

that led to increasedproductivity andgrowth.[14] Hence, genome-scale

modeling has great potential to improve CHO cell line development

by identifying bottlenecks in productivity and designing engineering

strategies to resolve these.

Constraint-based modeling, such as FBA,[15] is a common approach

for the analysis of GSMMs.[16] The accuracy of FBA predictions

depends on the correct reconstruction of the metabolic pathways, the

biomass composition and the exchange rates of extracellular metabo-

lites which are used as constraints.[15] Previously we showed that the

quality of growth rate predictions by FBA depends on the accuracy of

the measured exchange rates.[17] While simple organisms such as bac-

teria or yeast can grow on a single carbon source (thereby simplify-

ing the analysis), mammalian cells grow in complex media containing

numerous essential metabolites and secrete several byproducts. Typi-

cally,more than20 exchange rates have to bemeasured in order to per-

form FBA, which makes the analysis much more challenging than for

simpler organisms on minimal media. Despite the importance and the

difficulty of determining accurate exchange rates for mammalian cells,

little attention has been paid to this topic so far.

To determine exchange rates accurately, it is necessary to measure

themetabolite concentration throughout the cultivation at a sufficient

sampling frequency. In the literature, the concentrations of extracellu-

lar metabolites are commonly measured once per day, typically result-

ing in four to six time points in total.[18–25] However, this might not be

enough to obtain accurate exchange rates.

Here we investigated the impact of sampling frequency and the

error of metabolite concentration measurements on the calculation of

exchange rates and subsequently on FBA predictions of growth rate.

We determined which exchange rates have the biggest impact on FBA

andwhat accuracy and sampling frequency is required todetect a given

difference between two cell lines.

2 METHODS

The simulations, statistical analysis and visualization were done in R

version 4.0.3.[26] FBA[16] was performed in python 3.7.4 using package

COBRApy[27] with Gurobi solver. All data and scripts are available at

https://doi.org/10.17632/5vn5m33wpr.1.

2.1 Reference FBA

To generate a reference state, FBA was performed with the experi-

mental data and GSMMs from Széliová et al.[17] for 11 out of thir-

teen available datasets (two datasets (GScd4-8mMCD and DXepo-0mMCD)

were omitted from the analysis due to very inaccurate growth rate

predictions). The experimentally measured exchange rates of glu-

cose, amino acids (AAs), lactate and ammonium were used as con-

straints (see Table A1 for two example cell lines – K1par-8mMAP

and HYher-8mMCD; see link above for the full dataset). Cysteine

and tryptophan uptakes were left unconstrained due to the lack of

quantitative experimental data. Biomass production was maximized

(reaction “R_biomass_specific”). Then, growth rate was fixed to the

predicted value and the uptakes of cysteine and tryptophan were min-

imized to obtain estimates for their uptake rates. Lactate secretion

was left unconstrained for the cell line DGpar-8mMCD as in the original

paper (otherwise the predicted cysteine uptake ratewas unrealistically

high—higher than the glucose uptake rate). The predicted growth rates

were used as reference states in the subsequent analysis.

2.2 Simulation of concentration profiles

The experimental exchange rates from Széliová et al.,[17] the predicted

growth rates and the uptake rates of cysteine and tryptophan from the

reference FBA (see Section 2.1) were used to simulate concentration

profiles using Equation (1),

[î] = [î]0 +
q̂iB̂M0

𝜇̂

(
e𝜇̂t − 1

)
, (1)

where [î] is an ideal concentration of metabolite i during exponential

phase, [î]0 is the initial concentration ofmetabolite i in themedium, q̂i is

the reference exchange rate, 𝜇̂ is the growth rate, t is time of cultivation

and B̂M0 is the initial amount of biomass, calculated from an initial cell

concentration (1.6 × 105 viable cells per mL) and the experimentally

measureddrymass (K1par-8mMAP: 252.3 pg per cell, HYher-8mMCD: 279

pg per cell, see link above for the full dataset). The values for [î]0, q̂i,

cell dry mass and initial cell concentration were taken from Széliová

et al.[17] (Table A1). 𝜇̂ is the growth rate predicted by the reference

FBA. The time of cultivation was 90 h (the mean length of exponential

phases of the two example cell lines). Samples were generated at reg-

ular intervals of 6, 12, or 24 h or—to resemble typical working shifts—

at irregular intervals with four samples per day—every 4 h with a 12 h

gap or every 2.5 h with a 16.5 h gap (the gap was positioned either in

the beginning of each day or after the first four ”dense” sampling time

points, e.g., hours 0, 12, 16, 20, 24, 36 etc. or 0, 4, 8, 12, 24, 30 etc.).

To simulate experimental data, normally distributed noise was

added to the ideal concentrations

[i] = [î] + 𝜀c with 𝜀c ∼  (0,𝜎2c ) (2)

where 𝜀c is a standard normal random variable with relative standard

deviation (RSD) 𝜎c∕[î] chosen between 0.02 and 0.20. Note that the

https://doi.org/10.17632/5vn5m33wpr.1
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noise increases with the concentration level. The range of the RSDs

was chosen based on the data from Széliová et al.,[17] where median

RSDs of the concentration measurements from three to six replicates

were 1.7–7.1% (mean RSDs 5.3–19.8%). One thousand concentration

profiles were generated for each metabolite. Afterwards, an equation

of form (1) was fitted to each profile with R function nls, using qi and

[i]0 as the fitting parameters, thereby obtaining 1000 sets of exchange

rates. Standard errors (SEs) of the fitted rates were used as a measure

of accuracy. For a graphical representation of the workflow see Fig-

ure A1, Sim 1.

In the second version of the simulations, biomass concentrations

were perturbed, in addition to concentration profiles. Cell concentra-

tion data BMwas simulated with Equation (3),

BM = B̂M0 e𝜇̂t + 𝜀B with 𝜀B ∼ 

(
0,𝜎2B

)
(3)

where t is time of cultivation (0–90 h), B̂M0 is the initial biomass (the

same as in Equation (1)) and 𝜇̂ is the growth rate from the reference

FBA. Normally distributed noise of 2–20% (𝜎B∕B̂M0 e𝜇̂t = 0.02–0.2)

was added in the same way as described above for the concentra-

tion profiles. The parameters 𝜇 and BM0 were estimated by fitting the

simulated biomass concentrations with an exponential growth func-

tion using R function nls. Note that the estimated growth rate (𝜇) was

used for the simulationsofmetabolite concentrationswithEquation (1)

(instead of the growth rate predicted by the reference FBA) (FigureA1,

Sim 2).

2.3 FBAs with simulated exchange rates

The simulated exchange rates (qi) and the standard errors (SEs) were

used as constraints for FBA. The lower and upper bounds of the

exchange reactionswere set to qi - SEi and qi + SEi, respectively. In rare

cases when it was not possible to fit Equation (1) to the concentration

profiles due to high noise, the exchange rates were left unconstrained.

Biomass production wasmaximized.

3 RESULTS

First, we defined a reference state for further simulations. We used

experimental data and GSMMs of 11 CHO cell lines/conditions[17]

in the exponential phase of a batch culture and performed FBA as

described in Methods. Uptakes of cysteine and tryptophan were com-

putationally estimated due to the lack of quantitative data. We maxi-

mized biomass production and obtained growth rates (𝜇̂) in the range

0.0263–0.046 h-1. These were considered as “true” values for the sub-

sequent simulations. Except for DXB11 models, the predicted uptake

rates of cysteine and tryptophan exactly corresponded to the require-

ments for the biomass synthesis andwere used for further simulations.

(In the DXB11 models cysteine is not essential and the predicted cys-

teine uptakes were lower than the biomass requirement.)

3.1 Low exchange rates are highly inaccurate

First, 1000 sets of concentration profiles of 23 extracellular metabo-

lites (AAs, ammonium, glucose, and lactate) were simulated by adding

normally distributed, independent random errors with a mean of zero

and a RSD ranging from 2% to 20% to all reference distributions.

Three replicates were simulated (representing three independent

experiments) and the distributions were sampled at three regular

intervals—every 6, 12, or 24 h (corresponding to 16, 8, or 4 time

points throughout the batch, respectively). Figure 1 exemplarily shows

simulated histidine concentration profiles for sampling intervals of 6,

12, and 24 h and RSDs of 2%, 10%, and 20%.

Next, we calculated exchange rates by fitting Equation (1) to the

simulated concentration profiles and analytically evaluating its deriva-

tive. Low sampling frequency and high error can result in bad fits

that in some cases may even predict secretion instead of consumption

(Figure 1, panel I).

We used the SEs to assess the accuracy of the calculated exchange

rates (qi). Although the simulated concentration data has the sameRSD

for all metabolite concentrations, the relative standard errors (RSEs)

of the calculated exchange rates (SEs divided by the absolute value of

the exchange rates, qi) markedly vary. More specifically, the closer the

exchange rate is to zero, the higher the RSE and the wider the dis-

tribution (Figure 2, Figure A2). Figure 2a shows examples for a sam-

pling frequency of 6 h (purple colors), where the simulated RSD of the

concentrations is 2% and the medians of the RSEs of the rates are

1% for glutamine (high uptake), 2% for asparagine (medium uptake)

and 6% for histidine (low uptake). 10% RSD of concentration measure-

ments leads to median RSEs of the rates of 5%, 10%, and 29% for glu-

tamine, asparagine, and histidine, respectively. If the sampling inter-

val is increased from 6 to 24 h (green colors), the resulting RSEs of

the exchange rates triplicate. For instance, with a 10% concentration

error, the median RSE of the uptake of histidine increases up to 86%

and the distribution has a very long tail. Figure A3 shows the relation-

ship between RSDs of the metabolite concentrations and RSEs of the

calculated exchange rates at different sampling frequencies for cell line

K1par-8mMCD.

3.2 Growth predictions are strongly sensitive to
small metabolite concentration errors

We constrained the GSMM iCHO1766 with the computed exchange

rates [qi − SEi , qi + SEi] and maximized growth with FBA. Figure 3

shows the ratios between predicted and reference growth rates

for two selected cell lines in different media (K1par-8mMAP and

HYher-8mMCD). The distribution of growth rates gets wider with the

increasing RSD in the metabolite concentrations and decreasing sam-

pling frequency. At RSD of 20% and sampling frequency of 24 h, the

predicted growth rate varies between zero and three times the true

value. The distribution gets skewed because the growth rates cannot

be negative. Figure A4 displays the RSDs of the predicted growth rates
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F IGURE 1 Simulated reference profiles (solid lines) and sampled perturbed concentrations (points) of histidine during the exponential phase
of a batch cultivation at a sampling frequency of 6 h (panels A, B, C), 12 h (panels D, E, F) or 24 h (panels G, H, I) with 2% (panels A, D, G), 10% (panels
B, E, H) or 20% (panels C, F, I) RSD of the replicate concentrationmeasurements. Dashed lines represent fits to the data using Equation (1). Data
are shown for cell line K1par-8mMAP.

as a function of concentration RSDs, showing that the data follows a

square root law. That means that even small concentration errors lead

to significant deviations of the predicted growth rate.However, growth

rate RSD for concentration RSD of 20% is expected to be only twice

higher than the one for concentration RSD of 5%.

With increasing RSD and decreasing sampling frequency we

observe a growing number of infeasible FBA problems (indicated by

the bars on top in Figure 3). At RSD of 20% and sampling frequency

of 24 h, more than half of the associated linear problems are infeasi-

ble. The predictions for the slower cell line (HYher-8mMCD, blue colors)

are consistentlyworse, which can be explained by the on average lower

uptake rates, which increases the RSEs of the calculated uptake rates

(Figure A2).

Apart from the metabolite concentrations, the calculation of

exchange rates takes the growth rate 𝜇 as an input (Equation (1)). To

check the impact of the error of the cell concentration measurements

on the calculations of the exchange rates and the FBA predictions, we

added noise not only to the metabolite concentrations but also to the

cell concentrations, where we introduced 6% RSD (the accuracy of Vi-

CELL XR (Beckman Coulter), an automated cell counting device com-

monly used to quantify cell concentration). Figure A5d shows that the

predictions are practically indistinguishable from the results in Fig-

ure 3. Growth rates are typically high enough (0.02–0.04 h-1)[17] and

thus can be determined with high accuracy. To verify this, we analyzed

the variation in the estimated growth rates at 2–20% measurement

RSDs (Figure A5a and A5b). Even if the measurement error is 20% and

sampling only once per day, the RSDs calculated from 1000 estimated

growth rates were below 15%. At the selected measurement RSD of

6%, the RSDs of the estimates were only 2–3%. Furthermore, we com-

pared the RSDs of the estimated exchange rates with or without per-

turbing the cell concentration by 6%. Figure A5c shows the maximum

observed differences between exchange rate RSDs estimated with or

without perturbing the cell concentration. Based on these results, we

concluded that measurement errors of the growth rate have only a

small effect on our simulations and need not be considered further.

Another variable in Equation (1) is the cell dry mass (contained in

BM0). This parameter is commonly determined only once for each par-

ticular cell line and reused for all further experiments, so the error in

this parameter was not considered and the value was fixed to the pre-

viously measured cell line/condition specific values.[17]

3.3 Essential amino acids determine the growth
rate predictions

Next, we determined which exchange rates have the largest influence

on growth rate predictions with FBA. Based on Figure A3, we hypoth-

esized that the metabolites with largest relative error have the largest
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F IGURE 2 Panel a: distribution of the RSEs of three example uptake rates (for cell line K1par-8mMAP). The bars on the right side indicate the
magnitudes of the uptake rates (top, glutamine; middle, asparagine; bottom, histidine). Purple colors show the distributions for sampling frequency
of every 6 h, green colors for frequency of every 24 h, each for 2% and 10%RSD of the concentrationmeasurements. Bottom: RSEs of the
exchange rates as a function of the absolute values of exchange rates shown for 2% (panel b) and 10% (panel c) RSD of the concentration data.

impact. Thus, if those were measured accurately, it would improve the

prediction accuracy. To test this,we constrained theRSDof the concen-

trations to 2% for the top seven metabolites with highest RSEs of the

rates. This strongly improves the prediction accuracy as measured by

a decrease in the interquartile ranges for K1par-8mMAP (before/after):

0.13/0.09, 0.25/0.12, 0.37/0.16, and 0.47/0.2 for 5–20%RSDs, respec-

tively (Figure A6a). Note that for 2% RSD, the results are the same,

because in both cases all metabolites have 2% RSD. The seven most

error-prone exchange rateswere uptakes for proline, tryptophan, thre-

onine, valine, methionine, leucine and histidine, the last 6 of which are

essential components. The results for the cell line HYher-8mMCD show a

similar trend (Figure A7).

As the uptake of essential AAs cannot be compensated by the

uptake of other AAs, we next tested whether growth rate is limited

mainly by the uptake rates of essential AAs. Therefore, we split the

exchange rates into two groups - group 1: uptake rates of essential
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F IGURE 3 FBA predictions at different concentration RSDs for
two cell lines (purple: K1par-8mMAP, blue: HYher-8mMCD). The left side
of the violin plots corresponds to sampling every 6 h, the right side to
every 24 h. The barplots above the plots indicate the fraction of
feasible FBA solutions. The apparent cutoffs on the top at lower RSDs
are artifacts due to the visualization.

AAs (histidine, isoleucine, leucine, lysine, methionine, phenylalanine,

threonine, tryptophan, valine, cysteine, arginine) and group 2: all other

exchange rates. We varied the RSD of the concentration data for one

group, while keeping the RSD of the second group constant. When the

error of the essential AA concentrations is kept constant (group 1),

varying the error of the nonessential AAs has no effect on the FBA

predictions (FigureA6c and FigureA7c, left halves). On the other hand,

increasing the error of the essential AA concentrations leads to a large

increase in the variability of the FBA solutions (Figure A6c and Fig-

ure A7c, right halves) and also has a minor effect on the number of

infeasible FBA problems.

The uptake rates and biological functions of the essential AAs vary.

Some are used only for the generation of biomass (see next para-

graph), while others are also metabolized for other purposes (e.g., gen-

eration of energy), so we expected that their impact on the FBA pre-

dictions might differ. Therefore, the next grouping was based on the

biomass requirements of the essential AAs, which can be calculated

as growth rate × AA coefficient in the biomass equation. Again, the

exchange rates were divided into two groups: group 1: essential AAs

with uptake rates smaller than 1.5× their biomass requirement (for

cell line K1par-8mMAP: arginine, lysine, phenylalanine, threonine, tryp-

tophan, cysteine; for cell line HYher-8mMCD: arginine, leucine, lysine,

methionine, phenylalanine, tryptophan, cysteine); group 2: all other

exchange rates. Figure A6d and Figure A7d show that varying the con-

centration errors of AAs in group 1 (right halves), which are used only

for biomass formation, has a much bigger impact on FBA predictions

than varying the errors of metabolites in group 2 (left halves). Con-

versely, itmakesonly a tinydifferencewhetherornotwekeep theerror

of group 2 at 2% or leave the exchanges unconstrained (right halves

of Figures A6d and A7d vs. Figure A8). Finally, no such effects were

apparent when we repeated the same procedure with random group-

ings (Figure A9).

Together these data demonstrate that the quality of FBA predicted

growth rates is (primarily) determined by the uptake rates of essential

AAs, which are used mostly for generation of biomass. The set of the

relevant AAs is cell line-specific (according to the interquartile ranges,

Figure 4a). However, measuring them accurately leads to a larger

improvement than accurate measurements of the high-error AAs (Fig-

ures A6,A7). Note that only two out of six AAs for K1par-8mMCD (thre-

onine, tryptophan) and three out of seven for HYher-8mMCD (leucine,

methionine, tryptophan) from the ”low uptake” group are also in the

”top 7 high errors” group.

Because the most important AAs are cell line specific, we extended

the analysis to 11 datasets from Széliová et al.[17] which include nine

different cell lines, some of them in various media compositions (CD-

CHO or ActiPro, 8 or 0 mM glutamine). We calculated normalized

uptake rates for all datasets (for each specific biomass composition)

and compared the lists of AAs with uptakes smaller than 1.5× of the

biomass requirements. For all cell lines/conditions the list included

lysine, phenylalanine and arginine, except for DXB11 datasets, where

arginine was predicted to be nonessential (this is because no cell line

specific model for DXB11 was available[9] and arginine is not essential

in the genericmodel). Isoleucinewasnot part of the lowessential group

in any of the datasets. For the remaining essential AAs, the normalized

uptake rates varied among cell lines and conditions, but no consistent

pattern was observed.

We ran FBAs for all the datasets, where we varied the RSDs of

all metabolites (2–20% RSD) or kept the RSDs of low uptake essen-

tial AAs at 2% (and varied the rest). Figure 4b shows that in all

cases measuring the low uptake AAs accurately improves predictions.

No cell line or condition specific effect was observed. However, we

found a dependence on growth rate—the lower the reference growth

rate, the worse the quality of the predicted growth rates. This is

likely due to the fact that slower cells also have lower uptake rates,

which in turn have bigger relative errors (as shown in the previous

section).

3.4 Accurate concentrations and high sampling
frequency are needed for growth comparisons

Often, the goal of FBA is to compare (predicted) growth rates between

different cell lines or conditions.[16,28,29] Therefore, we wanted to

determine how often we are able to correctly identify the growth rate

differencebetween two selected cell lines at thedifferent sampling fre-

quencies or RSDs of the concentration measurements. Again the dif-

ference from the reference FBAs was regarded as a ”true” difference

in the growth rates (0.0384 h-1 for K1par-8mMAP vs. 0.0321 h-1 for

HYher-8mMCD, resulting in a0.0063h-1 or16%difference). Asdescribed

earlier (Section 3.2), we ran 1000 FBAs for the two cell lines at fixed

sampling frequencies andconcentrationRSDs (Figure3).Wecompared

the predicted growth rates of the two cell lines for all possible pairs

(106 pairs for each sampling frequency and each RSD). In some cases

the FBAs for one or both cell lines had no feasible solution, so the total

number of comparisons was lower (Figure A10).

In Figure A10 we normalized the predicted differences by the

expected difference in growth rate (0.0063 h-1) and plotted them as
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F IGURE 4 Panel a: themost important exchange rates for FBA predictions are cell line specific—the left halves show the predictions when the
AAswith low normalized uptakes are chosen according to the cell line specific data; in the right halves they are chosen based on the data of the
other cell line. In both cases, the RSDs of the chosen AAs are set to 2%, the remaining RSDs are varied. Purple: K1par-8mMAP, blue: HYher-8mMCD.
The barplots above the plot indicate the fraction of feasible FBA solutions. The apparent cutoffs on the top are artifacts due to the visualization.
Panel b: Prediction accuracy as a function of growth rate for three cases—the RSDs of metabolite concentrations were all set to 20% (”All 20%
RSD”), 2% (”All 2% RSD”) or the low uptake AAswere set to 2% and the rest to 20% (”Low ess. 2%/other 20%RSD”). The lines represent linear fits.
Data are shown for the sampling frequency of every 6 h.

F IGURE 5 Percentage of FBAswhere faster-growing cell line is correctly identified at different concentration RSDs and sampling frequencies.
In panel a, concentration RSDs of all metabolites are varied between 2% and 20%. In panel b, the RSDs of low uptake essential AAs are kept at 2%
(as in Figures A6d and A7d), while the RSDs of the remainingmetabolites are varied between 2% and 20%. The shaded area in panel a represents
results with irregular sampling schedules with 4 samples per day (seeMethods for details) or sampling every 12 hwith six instead of three
replicates.

cumulative distributions. As expected,with increasingRSDsof the con-

centration data and decreasing sampling frequency, there is a grow-

ing number of solutions that incorrectly identify the faster-growing cell

line and the distributions get broader. For example at a daily sampling

frequency and 20% RSD (Figure A10, right plot, green line), there are

around 20% caseswhere the predicted difference is 5× higher than the

”true” difference and almost 50% caseswhere the predicted difference

is in the opposite direction.

Figure 5a shows the (cumulative) probability of correctly predict-

ing the faster-growing cell line. It can be used to determine the mea-

surement accuracy and sampling frequency that are needed to identify

the faster cell line in at least 80% of cases. If the concentration mea-

surements are accurate enough, sampling frequencies of 6 h and 12

h lead to correct identification in at least 80% of cases. This probabil-

ity quickly decreases with larger RSDs in the concentration measure-

ments. In the worst case, less than 60% FBAs correctly predict which

cell line grows faster, which is only slightly better than chance.

We also checked whether it is necessary that the time points are

equally spaced, as sampling every6h is impractical todo in a laboratory.

Therefore, we simulated data with different sampling schedules where

the sampling time points are close together during the (working) day

(every 4 or 2.5 h), followed by a longer interval without sampling (12
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F IGURE 6 Probability to identify faster cell line as a function of
growth rate difference at sampling frequency of every 6 h for two
cases: ”All 20%RSD”—RSDs of concentrationmeasurements of all
metabolites are 20%; ”Low ess. 2%/other 20%RSD”—RSDs of low
essential AA concentrations are 2%, the rest 20%.

or 16.5 h). In addition, we simulated sampling every 12 h, but with six

rather then three replicates. The results for these alternative sampling

schedules lie within the shaded area in Figure 5a.

All previous simulations were done with three replicates at each

time point (as illustrated in Figure 1). We wanted to test whether dou-

bling the replicate number leads to a considerable improvement in

the predictions of growth rate. Figure A11a shows the probability of

identifying the faster-growing cell linewith six replicates. The improve-

ment compared to three replicates is very small. For comparison, we

increased the number of replicates to 100 (Figure A11b), although this

is usually not feasible in a laboratory. The improvement is only modest,

especially for the higher concentration RSDs. If the RSD is 15% or big-

ger and sampling is done on a daily frequency, there is still a more than

20% chance to incorrectly identify the faster-growing cell line.

Finally, Figure 5b shows the probability of correctly predicting the

faster-growing cell line when the RSDs of essential AAs with low

uptakes are kept at 2% and the RSDs of the remaining AAs are varied

(as in Figure A6d and Figure A7d, left halves). For the highest sampling

frequency (every 6 h), the faster cell line is identified in at least 80%

cases for all RSDs.

In the previous paragraphs we showed comparisons between the

two selected datasets with 16% difference in growth rate. However,

the size of the difference also affects the prediction accuracy. We

expected that the bigger the growth rate difference, the easier it is

to detect it. To verify this, we compared all possible pairs of the 11

datasets,[17] resulting in 55 comparisons, and plotted the probability

to detect the faster cell line as a function of the growth rate difference.

Twocases are shownasexamples–1.RSDsof allmetabolite concentra-

tions are 20% and 2. the low uptake AAs are measured accurately with

2% RSD and the rest with 20% RSD (Figure 6). Generally, the higher

the growth rate difference, the easier it is to detect the faster cell line.

However, for the case with 20% RSD of all the measurements, the dif-

ference cannot be reliably detected for most of the tested combina-

tions, even at the biggest growth rate differences. Reducing the mea-

surement error of the low uptake AAs leads to an improvement in the

predictions and the faster cell line can be reliably detected if the differ-

ence is at least 20%. Small growth rate differences (0.4–10%) could not

be reliably detected in any of the cases.

4 DISCUSSION

Systems level analysis of CHO cells is needed to design rational engi-

neering and optimization strategies to streamline cell line and process

development. The GSMM of CHO [9] provides a basis for constraint-

based metabolic modeling methods such as FBA. To obtain useful pre-

dictions, it is necessary to feed the model with accurate data, mainly

exchange rates of extracellularmetabolites. CHOcells are cultivated in

complex media and consume or secrete numerous metabolites, includ-

ing glucose, lactate, ammonium, and all AAs.

Previously, we showed that accurate quantification of exchange

rates is essential for good predictions of CHO growth rates by FBA;

to achieve the required accuracy it is necessary to analyze a sufficient

number of time points throughout the relevant culture phases.[17]

However, we did not systematically analyze the effect ofmeasurement

error and sampling frequency on the rate calculations and growth rate

predictions, nor did we identify which metabolites have the biggest

impact. These points are addressed here.

InFigure2,we showed that the smaller theexchange rate, thehigher

the relative error of the rate,whichwas already pointed out byHädicke

et al.[30]. The analysis also shows the importance of a sufficiently high

sampling density throughout the culture. Figures 2 demonstrates that

sampling only once per day (or four time points during the exponential

phase, as is standard practice) leads to errors in the rates that are sev-

eral times larger than the errors of the concentration data. There are

also more extreme values which are basically unusable for any mean-

ingful analysis with FBA. This is demonstrated in Figure 3 by the big

variance and the high number of infeasible solutions. Consequently,

insufficient measurement accuracy and sampling frequency also make

it almost impossible to reliably compare the predicted growth rates of

two cell lines (Figure 5).

More than 20 exchange rates are used as inputs for FBA and their

impacts on the predictions of growth rates are vastly different. We

expected that the prediction accuracy might improve if we measure

those metabolites accurately that have the biggest relative errors of

the rates. Although this approach led to a big improvement in the pre-

dictions, further improvement was observed when we considered the

biological roles of the metabolites. All AAs are used as building blocks

for the biomass, but there are big differences in their exchange rates

and metabolism. Some can be synthesized in CHO, while others need

to be taken up from the medium. Most of the essential AAs are con-

sumed at very low rates and are predominantly used for the synthesis

of the biomass but some can also be partially catabolized.We expected

that the AAs which are solely used for the biomass synthesis would

have the biggest impact on the growth rate predictions, whichwas con-

firmed by our analysis in Figures A6 and A7. Interestingly, the uptake
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rates of glucose and glutamine, which are the main energy sources for

CHO,[31] have no impact on the growth rate predictions, suggesting

that energy provision is not the limiting factor for the predicted growth

rates. However, this only applies to the cultures supplemented with

an excess of energy sources, which was the case for all the batch cul-

tivations in Széliová et al.[17]. If energy sources in the medium were

insufficient, their uptake rateswould likely becomemore important for

predictions of growth rate.

In a similar analysis by Goudar et al.,[32] error propagation from

metabolite concentrations to rates and then to metabolic fluxes was

analyzed and revealed that lesser metabolic fluxes (AA metabolism)

were strongly influenced by the errors in the greater exchange rates

(e.g., glucose, lactate), but not by the lesser exchange rates (AAs).

In contrast, our analysis showed that low exchange rates of essen-

tial AAs had the biggest impact on the predictions of growth rate

(which was not analyzed in Goudar et al.[32]). Among other differ-

ences between the studies is that in Goudar et al. a small metabolic

network was used and not all relevant nutrient exchange rates were

considered (e.g., all AAs). Furthermore, the experiments were done in

perfusion cultures, where the procedure for determination of rates is

different from batch cultivation, since they are in steady state. Nev-

ertheless, both of these studies complement each other by show-

ing the importance of the accurate rate determination for metabolic

modeling.

Bayer et al.[33] point out that the choice of the rate calculation

method largely impacts the accuracy of the calculated rates. They

concluded that fitting a cubic smoothing spline function is better

than a step-wise integration. As here we analyzed data from the

exponential phase, an exponential function was more appropriate

than a spline function. Similar to the spline function, an exponential

function is fitted to the data from the whole process and therefore

should not be influenced by experimental noise as much as step-wise

integration.

Our analysis showed that to obtain accurate FBA predictions of

growth rates, essential AAs with low uptake rates should be quan-

tified with the highest possible accuracy and at a sufficient sam-

pling frequency. These aspects should be considered when planning

experiments. The RSDs simulated here represent the overall varia-

tion among replicates. This can be divided into biological variation

and the variation stemming from the measurement errors. Hädicke

et al.[30] show how the contributions of these errors to the total vari-

ance can be analyzed. Generally, the biological variance is bigger than

the measurement variance and cannot be influenced, but it can be

estimated from historical data, if available. On the other hand, mea-

surement variance can be reduced by choosing an appropriate method

that can accurately quantify the AAs that have the biggest impact

on predictions and considering all other aspects that could impact

the data quality (e.g., storage at -80 ◦C immediately after sampling,

avoiding freeze-thawing). The measurement accuracy of six example

AAs (important for K1par-8mMAP) is discussed in the supplementary

Section A1.

When planning experiments, simulations similar to the ones pre-

sented here can be performed to determine whether a certain accu-

racy and sampling frequency are sufficient to answer the research

questions. Although the growth rate difference between two condi-

tions/cell lines is not known beforehand, researchers can define what

difference they want to be able to detect and adjust the experimen-

tal design accordingly. Realistically, growth rate differences below15%

areunlikely tobedetectedbyFBAeven if higheffort goes intoperform-

ing an experiment.

This work showed the effect of measurement error and sampling

frequency on growth rate predictions and highlighted the difficulty of

obtaining accurate uptake rates of theAAswith lowuptakes evenwhen

the experimental errors are low. These results are specific to the use of

biomass objective function. Schinn et al.[34] reported that the objective

function has a big impact on the prediction accuracy and the biomass

objective function was correlated with poor predictions. A suggested

alternative was minimization of cytosolic NADPH regeneration, which

was correlated with good predictions. In another work, Chen et al.[35]

proposed using minimization of the uptake of a nonessential metabo-

lite (e.g., glucose) as the objective function. The authors fix the growth

rate to the experimental value and predict the uptake rates of essential

AAs. As a result, the experimental error of these AAs would not affect

the FBA solution.
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