
Climate Services 27 (2022) 100311

Available online 31 July 2022
2405-8807/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Review article 

Extreme climate events in sub-Saharan Africa: A call for improving 
agricultural technology transfer to enhance adaptive capacity 

Ayansina Ayanlade a,b,*, Abimbola Oluwaranti c, Oluwatoyin S. Ayanlade d, Marion Borderon a, 
Harald Sterly a, Patrick Sakdapolrak a, Margaret O. Jegede d, Lemlem F. Weldemariam a,f, 
Adefunke F.O. Ayinde e 

a Department of Geography and Regional Research, University of Vienna, Universitätsstraße 7/5, 1010 Vienna, Austria 
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A B S T R A C T   

This study seeks to provide a critical overview of the existing evidence on extreme climate events and the 
adaptation options of the affected population in order to help scholars navigate the field. The study examined the 
recent extreme climate events that occurred in Sub-Saharan Africa (SSA), the climate change adaptation options 
mentioned in the literature, and the need for international technological transfer in SSA. 181 peer-reviewed 
publications were evaluated on the following topics: 1) the impacts of climate extremes in SSA; 2) the adapta
tion options discussed in the literature for the region; 3) the analysis of the needs and the gaps of the interna
tional technology transfer in SSA, and 4) the various impact areas of the technology transfer on the adaptive 
capacity in SSA. The major finding from this study is that the impacts of climate change have been observed in 
the region, with many extreme events leading to reductions in crop yield qualities and quantities, with much 
greater impacts on the smallholder farmers’ livelihoods in SSA countries. Based on these findings climate change 
conceptual framework is proposed which summarises the observed impacts of climate change on agriculture and 
food systems in SSA countries. The study concluded that there are new adaptation options that SSA countries can 
adopt from developed countries, and that much greater agricultural technological transfer is needed to facilitate 
better adaptation to climate change in SSA.   

1. Introduction 

Climate change impacts are becoming more intense and frequent 
than ever, as the observed impacts of climate extremes on sub-Saharan 
Africa (SSA) have increased. This is reinforcing poverty, affecting 
more than 40 % of the region’s 360 million people (Trisos et al., 2022). 
Several studies have reported severe consequences of climate extreme 
events on the agricultural sector, which is the main source of livelihood 
for many people in SSA (Ajetomobi, 2016; Ficchi et al., 2021; Fuller 
et al., 2018; Humphries et al., 2020; Wainwright et al., 2021b). The 
observed impacts of climate change on yields of most widely produced 
crops in sub-Saharan Africa (millet, maize, sorghum, and rice) have been 
reported by many studies (Amouzou et al., 2019, FAO and UNICEF, 

2019, Atiah et al., 2022, Hadebe et al., 2017, Nyamekye et al., 2021, 
Oluwaranti et al., 2020). The observed impacts of extreme climate 
events have intensified in recent years, including prolonged dry spells, 
abnormal rainfall patterns, consequent shortage of water, and heat 
stress. (Chikoore and Jury, 2021, Thoithi et al., 2021, Wainwright et al., 
2021a). These are not only affecting human activities but also the 
livelihoods of many people, with SSA being regarded as the region most 
vulnerable to climate change (Cuthbert et al., 2019). This is because key 
livelihoods depend on rainfall, as nearly 80 % of the agricultural land 
and crop production in this part of the world is rain-fed (Gérardeaux 
et al., 2018, Sarr et al., 2021). From 1970 up until recent years, nearly 
14 % and 22 % of the East and West African populations respectively 
have been affected by extreme climate events such as windstorms, and 
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multiple effects of drought including extreme temperatures (Diakite 
et al., 2020, Ekwezuo and Ezeh, 2020, Gebrechorkos et al., 2020). Other 
recent studies have established a warming trend through extreme heat 
events, with changes in patterns and amounts of rainfall (Ongoma et al., 
2018, Rahimi et al., 2021, Marcotullio et al., 2021, Iyakaremye et al., 
2022). In many SSA regions, the number of warm days and nights, the 
length of warm spells, and maximum temperatures have all increased 
considerably in comparison to the last three decades of the twentieth 
century (Trisos et al., 2022). It is clear from the literature that climate 
change is likely to have both direct and indirect impacts on the socio- 
economic sectors of SSA. For example, Arndt and Thurlow (2015) esti
mated climate change impacts on Mozambique’s economy, with about 
13 % reduction in GDP by 2050. Similar results were obtained in three 
southern African countries such as Namibia, Angola, Malawi, 
Mozambique, and Zambia (Arndt et al., 2019, Manuel et al., 2021, 
Luetkemeier and Liehr, 2019). 

Recurrent climate extremes are indicators of change in the patterns, 
timing, and amount of precipitation, and are major drivers of vulnera
bility in many agro-ecological zones of SSA, as these may lead to changes 
in crop yields and higher food prices. Numerous impacts of climate 
change on agro-ecological zones in SSA have been reported in many 
scientific studies. Such impacts include reductions in crop yields, quality 
of crops (Cohn et al., 2016, Mpakairi and Muvengwi, 2019, Apraku 
et al., 2021), and the drying up of some streams and rivers (Payne et al., 
2020, Jin et al., 2021), increases in urban temperature (Ayanlade, 2016, 
Ayanlade, 2017, Mpakairi and Muvengwi, 2019, Payne et al., 2020) and 
heat fluxes (Ayanlade and Howard, 2019, Adhikari et al., 2015), loss of 
pastureland (Ayanlade and Ojebisi, 2020, Thornton and Herrero, 2015); 
loss of vegetation and biodiversity, and destruction of wildlife ecosys
tems (Abrams et al., 2018, Mpakairi et al., 2020, Ayanlade et al., 2020); 
decreasing household incomes of farmers (Ayanlade et al., 2018a), and 
other societal impacts (Serdeczny et al., 2017). Agro-ecological zones in 
SSA are mainly determined by climatic elements that differ from one 
ecological system to the next. As a result, climate change has a signifi
cant impact on the region’s agroecological system. Moreover, the latest 
Intergovernmental Panel on Climate Change (IPCC) report further 
stated, with high levels of confidence, that extreme weather events 
resulting from climate change are likely to have negative impacts on 
yields of major cereal crops in the SSA region (IPCC, 2021). As agri
cultural livelihoods in the SSA region become riskier due to extreme 
events, the rate of rural–urban migration may be expected to grow, 
adding to the already significant urbanization trend in the region (Ser
deczny et al., 2017). This is because extreme events affect the rainfed 
agricultural systems on which the livelihoods of a large proportion of the 
region’s population currently depend (Araro et al., 2020, Kogo et al., 
2021). The mobility of people due to climate change, especially mobility 
to informal settlements, may expose them to a variety of risks with 
impacts which may be much more serious than those faced in their 
respective places of origin. Indirect impacts on people’s mobility due to 
climate change are likely to amplify the overall impacts across sectors, 
and there is little understanding of how severe such impacts may be in 
the future (Adger et al., 2015). These scientific pieces of evidence sug
gest that climate change has not only led to shifts in average climatic 
conditions but also to much more frequent extreme weather events, 
which pose threats to agricultural production in the SSA, as well as to 
urban settlements (Serdeczny et al., 2017, Stuch et al., 2021, Mulungu 
and Ng’ombe, 2019). Managing the multiple risks of extreme climatic 
events and disasters in different agro-ecological zones ought to be a 
research priority in SSA regions, because rural farmers already facing 
hunger and food insecurity (Mbatha et al., 2021) will be at even greater 
risk. Therefore, this study reviewed recent literature on extreme climate 
events and climate change adaptation options, and the need for inter
national technological transfer in sub-Saharan Africa (SSA) was exam
ined. The study is based on the justification that climate change now 
presents the most serious environmental challenge in many countries in 
SSA. This review is centred on articles on climate change impacts and 

adaptation, and is based on the IPCC conceptual framework of vulner
ability, exposure, and hazard in the agricultural sector. These aided the 
review process of this study, in explaining the spatial and temporal 
pattern of climate extremes and the keys risk in SSA countries. 

2. Methodology 

The systematic review methodology is based on three steps, namely 
searching, selecting and analysing scientific studies to provide evidence 
relating to extreme climate events, adaptation, and climate-change- 
related technological transfer, with a focus on the agricultural sector 
and food security. This method was adopted in order to minimize bias 
and maximize the practical relevance of the review across a broader 
spectrum of climate change and extreme-events implications in SSA 
countries, and the literature basis for the review was generated. The 
study followed the Preferred Reporting Items for Systematic Reviews 
and meta-Analyses (PRISMA) method. We started searching with the 
keywords “climate change”, “climate extremes”, and “technology 
transfer” in the three big databases: Web of Science (WoS), Scopus, and 
Google Scholar. A large number of results were identified based on the 
provided keywords, including substantial articles on climate change 
issues, including articles from other disciplines such as biology, medi
cine and medical technology transfer. To restrict the results, we add 
further keywords. In a subsequent phase of searching, we used 
“geographical keywords” (groups of names of regions and countries in 
SSA combined with OR) and “impacts keywords” (such as “climate 
change*” OR “climate extreme*” OR “extreme event*”) and “agricul
tural technology transfer keywords” (such as (“techn*” AND “transfer”) 
OR (“irrigat*” AND “improv*”) AND (“food” OR “agric*”), as shown in 
Table 1. This resulted in 626 publications: including 359 in Web of 
Science, 216 in Scopus, and 51 in Google Scholar, from which the 
relevant studies were selected for this review. 

The authors subsequently selected 209 published articles on the basis 
of their relevance to be the review and the time span/restriction of the 
study. Four articles were removed before the screening, as they over
lapped between subgroups of topics, and a total of 205 were screened 
(Fig. 1). The 205 papers were screened to select the primary studies that 
were directly related to the objective of this study and its regional focus 
on SSA countries. During the screening process, 20 publications of 

Table 1 
Selection of articles and their inclusion and exclusion criteria.  

Selection Inclusion Exclusion 

Literature 
type 

Journal (research articles) 
Chapters in the book 

Book, book series, conference 
proceeding, Journals (review 
articles)  

Spatial 
resolution 

Sub-Saharan African. Any article 
relating to the objectives of this 
study from any country in sub- 
Saharan African  

Location outside sub-Saharan 
African 

Language English Non-English 
Keywords (“climate change*” OR “climate extreme*” OR “extreme event*”) 

AND ((“techn*” AND “transfer”) OR (“irrigat*” AND “improv*”)) 
AND (“sub-Saharan Africa” OR “Angola” OR “Benin” OR “ Botswana 
” OR “ Burkina Faso ” OR “ Burundi ” OR “South Africa” OR “Sudan” 
OR “ Sierra Leone” OR “Senegal” OR “Gambia” OR “ Cote d’Ivoire” 
OR “Togo” OR “Cameroon” OR “Congo” OR “Niger” OR “Gabon” OR 
“Zambia” OR “Namibia” OR “Mozambique” OR “ Eritrea” OR 
“Zimbabwe” OR “ Djibouti” OR “Rwanda” OR “ Ghana ” OR “ Cape 
Verde” OR “Liberia” OR “Guinea” OR “Chad” OR “Somali*” OR 
“Nigeria” OR “Madagascar” OR “ Ethiopia” OR “ Guinea-Bissau ” OR 
“ Kenya” OR “Equatorial Guinea ” OR “ Malawi ” OR “ Mali ” OR “ 
Mauritania ” OR “ Tanzania ” OR “ Uganda ” OR “ Mauritius ” OR “ 
Sao Tome and Principe ” OR “ Central African Republic ” OR 
“Seychelles” OR “Eswatini” OR “ Lesotho ”) AND (“food” OR 
“agric*”)   
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Fig. 1. The flow diagram of the study; the studies used for the systematic review process. (Developed from PRISMA 2020: https://www.prisma-statement.org/).  

Fig. 2. Literature citation with case studies on climate extremes events in SSA.  
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articles were excluded as they were duplicates. The remaining 185 
publications were sought for retrieval, out of which one was not 
retrieved. Of the remaining 184, 3 publications were excluded since they 
were not regionally focused on SSA countries. Thus, this study analyses 
the remaining 181 studies (Fig. 2). The systematic review processes are 
based on: (1) observed impacts of climate change on crop/livestock 
productivity in SSA; (2) The predicted behaviour of the climatic vari
ables such as precipitation and temperature; (3) The implications of 
climate change on agro-ecosystems and livelihoods of populations in 
SSA (Fig. 1). In general, only literature published from 2015 to April 
2022 was studied. This time frame was chosen because since 2015 there 
has been an increase in research output on the topic. Although some 
older articles and materials that were deemed important were also 
included, in order to explicitly highlight and supplement the literature 
on the impacts of climate change on the agriculture section in SSA. With 
these searching and selection processes (Table 1), the desired outcomes 
were found, since most studies focus on a single country, not on the 
whole SSA region (Fig. 2) and they matched the objective of this review. 

3. Results 

3.1. Observed indicators of climate change in SSA 

There has been growing concern about climate change, and the need 
arises to take a critical look at the changes in the trends of climatic 
parameters in SSA (Pironon et al., 2019, Stuch et al., 2021). Generally, 
drought is one of the observed extreme weather events that affect peo
ple’s livelihoods and socio-economic development in SSA (Horn and 
Shimelis, 2020). For example, drought disasters account for nearly 20 % 
of all disaster occurrences in all African regions, affecting a larger per
centage of people, especially in rural communities, and contribute to 
malnutrition, famine and loss of livestock (Nthambi and Ijioma, 2021, 
Orimoloye et al., 2022, Warsame et al., 2022). Even though the occur
rence and impacts of drought vary from one ecological zone of the SSA to 
others, a number of studies have shown that the most affected region is 
the Sudano-Sahelian part of SSA. Most recent studies on drought have 
revealed that its events and occurrence vary over different agro- 
ecological zones in SSA, but the Sahel and Savannah zones are highly 
vulnerable to severe droughts, and these have negative implications for 
water availability for agriculture and food security in the regions 
(Emmanuel, 2021, Ogolo and Matthew, 2022). It has been reported, for 
example, that a rainfall decrease of 29 %–49 % was observed between 

1968 and 1997 compared to the 1931–1960 baseline period within the 
Sahel region. Prolonged declines in rainfall intensity are indicators of 
the droughts in many parts of SSA, the impacts of which are much more 
observed in the drier part of the region, where the majority are primarily 

A B

Fig. 3. Seasonal prediction of drought for SSA countries. The map shows the drought probability – on a fractional scale between 0 and 1 – the SPI in future months 
(A) and drought intensity (B) in long-term categories. 

Table 2 
Notable extreme climate events in sub-Saharan Africa.  

Extreme 
events 

Observed 
impacts 

Recent 
patterns 

Most likely 
affected 
region of 
SSA 

References 

Drought Likely increase 
in agricultural 
drought 
occurrence 
over many 
regions of SSA 
with heat over 
land areas. 
Likelihood of 
associated risk 
of drought 
becoming 
noticeable. 

Likely to 
increase in 
many 
countries in 
SSA. Drought 
is likely to 
drive 
agrarian 
crises in 
many SSA 
countries.  

Sudan, 
Sahel, 
Savanna, 
Eastern 
and 
Southern 
African 
highlands 

Elagib (2015), 
Dossou-Yovo 
et al. (2019), 
Ahmed (2020), 
Ahmadalipour 
et al. (2019), 
Anderson et al. 
(2021) 

Prolonged 
dry spell 

Higher 
maximum 
temperatures 
are becoming 
very likely; 
high likelihood 
of increasing 
number of hot 
days.  

Very likely to 
be intensified 
in many 
regions of 
SSA. In West 
Africa, there 
is a 
probability 
that dry-spell 
lengths 
exceed the 
normal limit.  

Sudan, 
Sahel, both 
Northern 
and 
Southern 
Guinea, 

Bako et al. 
(2020), 
Ayanlade et al. 
(2018b), Ojara 
et al. (2020) 

Extreme 
rainfall 

Increase in 
tropical 
cyclone peak- 
wind 
intensities. Rise 
in the seasonal 
cycle of 
extreme 
rainfall 

Likely to 
increase in 
many areas in 
SSA. Sahelian 
regions are 
highly 
vulnerable to 
extreme 
rainfall 
Events 

Southern 
Guinea 
Savanna, 
Sahel and 
forest: 
coastal 
West Africa 
and Central 
Africa 

Wainwright 
et al. (2021b), 
Fotso-Nguemo 
et al. (2019)  
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smallholder pastoral groups. 
Increase in agricultural drought (Fig. 3B and Table 2) is likely to 

occur in almost all the regions of SSA, but much more so in East Africa, 
Central Africa and some parts of Southern Africa due to slow progress in 
drought-risk management. Fig. 3 presents the seasonal prediction of 
drought for SSA countries, using the standardized precipitation index 
(SPI) by International Research Institute for Climate and Society (IRI), 
which has worked in collaboration with the NOAA Climate Prediction 
Centre (CPC) to provide an accessible source of drought prediction at all 
regional scales. The SPI has been an effective method used for easy 
analysis of meteorological drought indicators. Many studies on the 
Sudano-Sahelian ecological zone, for example, have established that 
many wet regions are tending towards aridity (Jellason et al., 2021, 
Abrha and Hagos, 2019). Annual rainfall over the Sahel exhibited 
remarkable variation between 1970 and 2000 s, with a strong tendency 
toward drier conditions compared with earlier in the twentieth century 
(Biasutti, 2019). In West Africa for example, several studies have 
observed reductions in both annual precipitation during the last three 
decades. The minority of these studies concluded that recovery of pre
cipitation in the 21st century has not been sufficient to return to pre- 
drought levels (Amanambu et al., 2019, Oguntunde et al., 2017, Pie
montese et al., 2019). A nearly 10 % decline in mean annual rainfall has 
been observed in the wet tropical zone, while about a 30 % reduction 
was noted in Subtropical southern Africa. This has resulted in around a 
40 % drop in the average discharge of major rivers in the region, leading 
to a sharp decrease in water availability. (Godfrey and Tunhuma, 2020, 
Coulibaly et al., 2018, Gebere et al., 2021). 

3.2. Projected trends of precipitation, temperature and weather extremes 

Future projections indicated that about 5 % to 8 % of the SSA, cor
responding to nearly 60 to 90 million hectares (Trisos et al., 2022), 
particularly in the arid and semi-arid regions, will experience increasing 
drought conditions in the coming decades (Fig. 3). About 43.5 % of the 
agricultural land area will be characterized by dry conditions, in 
contrast to the world figure of 29 % (Osman, 2015). Although global 
climate models predict increasing temperatures and decreasing precip
itation in many parts of SSA, it has been reported that the Sudano- 
Sahelian agro-ecological zone is already most affected by droughts, as 
the region is experiencing higher temperatures and lower precipitation. 
There are more uncertainties, though, in the spatial and temporal dis
tribution of rainfall and surface water resources due to a significant 
increase in the trends of temperatures and potential evapotranspiration 
(Khelifa et al., 2021). 

Recent projected spatial and temporal changes in precipitation and 
temperature will shift current agro-ecological zones (high confidence) in 
both East Africa and West Africa (Trisos et al., 2022, Sylla et al., 2016). 
Several other studies have projected an increase in temperature and 
warming trends, and an increasing number of extreme rainfall events in 
many parts of Western Africa (Bichet and Diedhiou, 2018, Akinsanola 
and Zhou, 2019, Salack et al., 2018). It has been projected that several 
million people in SSA are likely to be exposed to increased water stress 
due to climate change. As this is contributing to food insecurity and 
malnutrition, it is also likely to result in increased mobility of people in 
the region (Hadebe et al., 2017, Emeribe et al., 2021). Generally, recent 
projections have shown a decrease in precipitation frequency in many 
parts of SSA, especially over the West Sahel, East Africa, southern cen
tral Africa, and southern Africa, with the length of dry spells projected to 
increase over the Atlas region, over southern Africa, and the Ethiopian 
highlands (Dosio et al., 2021). Besides general increasing aridity has 
been projected over, central equatorial Africa with several implications 
on the Congo Basin’s Cuvette Centrale peatlands (Dargie et al., 2019, 
Dosio et al., 2021, Tamoffo et al., 2022, Trisos et al., 2022). Spatial and 
temporal changes in the amount of rainfall have socio-economic impli
cations which are associated with impacts on agriculture, human 
mobility and settlements, and water availability (Descheemaeker et al., 

2016, Abrha and Hagos, 2019, Ayanlade et al., 2022). These have been 
projected to affect the livelihoods of many rural communities in the SSA, 
many of whom are already threatened with absolute poverty (Selormey 
et al., 2019, Ayanlade et al., 2018c). 

The potential future impacts of changes in precipitation, temperature 
and weather extremes have been projected to include reductions in 
rangeland net primary production, a projected loss of between 42 % and 
46 % for many SSA countries by 2050, under RCP 4.5 and RCP8.5 
respectively (IPCC, 2021). There is a high probability of a pronounced 
decline in rainfall in southern Africa and an increase in East Africa 
(Serdeczny et al., 2017, Nicholson, 2017, Humphries et al., 2019, 
Humphries et al., 2020). The IPCC reports further revealed that by the 
end of this century, in a 4 ◦C warming scenario, Sub-Saharan African 
countries will face many challenges to their food systems (IPCC, 2021, 
Trisos et al., 2022). The future impact of climate change on SSA coun
tries is predicted to differ by region, but the particular characteristics of 
the changes are yet unknown, and region-specific frequency and in
tensity estimates have a low degree of confidence (Trisos et al., 2022). 
Precisely because there are uncertainties in many modelling projections 
(Gummadi et al., 2018), therefore, lack of agreement among different 
climate models makes it difficult to project the future impacts and 
possible adaptation options in the SSA region (Vaghefi et al., 2019, 
Xiong et al., 2020). For example, the outputs from the Coupled Model 
Intercomparison Project (CMIP5) and Africa CORDEX models suggest 
that climate warming over North Africa is likely to be stronger in sum
mer than winter, using the RCP4.5 and RCP8.5 scenarios, with an in
crease reaching up to 6 ◦C under RCP8.5 (Lelieveld et al., 2016, Dosio, 
2017). The regional precipitation in the context of future climate change 
varies across CMIP5 models in both sign and magnitude of change, 
ranging from − 9% to + 27 % %. There is high confidence that the yields 
of many rainfed crops are likely to fall sharply by up to 30 % over the 
next decade in many SSA countries (Fuller et al., 2018, Pickson and 
Boateng, 2022, Atiah et al., 2022) whilst for the majority of people living 
in climate-change-prone areas, there is a lack of alternative livelihoods 
other than engaging in farming activities. 

1.3. Implications for agro-ecosystems and livelihoods: A conceptual 
framework 

The SSA is ranked the second-most likely region in the world to be 
affected by the impacts of drought after Asia, with over 18 million sub- 
Sahara Africans being confronted with the challenge of insufficient food, 
with children being the group most vulnerable to hunger and malnu
trition. Some crop failures have been observed in recent literature; this 
might lead to decreases in annual yields; reductions in the production of 
maize (− 7%), millet (− 9%), sorghum (− 3%) and wheat (− 12 %) have 
been projected for the regions (Parkes et al., 2018). The summary of the 
observed impacts of climate change on agriculture and food systems in 
SSA countries is presented in a conceptual framework (Fig. 4). This 
conceptual framework is centred on the IPCC conceptual framework of 
vulnerability, exposure, hazard and risk in the agricultural sector. The 
numbers in Fig. 4 denote the number of publications that addressed a 
certain issue, and the lengths of the bars are equivalent to these 
numbers. The conceptual framework was developed to classify the 
vulnerability, exposure, and hazard in the agricultural sector of SSA 
countries, as covered in the reviewed publications. 

The observed changes in rainfall and temperature intensity and 
drought in most parts of SSA are hazards which potentially affect agri
cultural production (Fig. 4). Thus, drought conditions in this region are 
likely to be further intensified with several dry years and are likely to 
affect the countries in this region to repeated crises of famine and food 
insecurity, although there are uncertainties in rainfall projections over 
the Sahel (Klutse et al., 2018, IPCC, 2021, Trisos et al., 2022). The im
pacts of drought have been evidenced by increasing loss of cultivable 
land, socio-economic disparities, famine as well as limited capacity for 
infrastructural development (Serele et al., 2020). Studies have reported 
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that droughts have both direct and indirect consequences on human 
livelihoods. Crop loss and low yield for both crops and livestock are 
direct consequences that may lead to food insecurity and starvation, 
while water shortage increases the spread of disease due to lack of water 
for basic hygiene. (Lottering et al., 2021, Glantz, 2019, Fava and Vri
eling, 2021, Hyland and Russ, 2019, Anthonj et al., 2018). In recent 
years, some farmers have been able to survive by selecting seed varieties 
based on changing conditions, but poorer farmers have not been able to 
adapt (Ayanlade et al., 2017). 

Extreme climate events have been projected to lead to changes in 
various crop yields and grassland species, thus leading to a different 
composition of animal diets, and changing herders’ capacity to manage 
fodder deficits, especially during prolonged dry spells and drought (Kew 
et al., 2021, Napogbong et al., 2021, Ayanlade and Ojebisi, 2019). 
Prolonged drought has also led to crop loss and the death of livestock, 
especially in Sudan-Sahel Zone (Ahmed, 2020, Dossou-Yovo et al., 
2019), resulting in reductions in agricultural outputs and increased 
exposure of rural farmers, as the majority are poor and vulnerable. Re
ductions in agricultural outputs have triggered increases in food prices 
and imports, coupled with an overdependence on food aid, as well as 
threatened food security in the region (Ahmed, 2020, Ekpa et al., 2018). 
Furthermore, extreme climate events may have adverse impacts on an
imal health (Magiri et al., 2020) by increasing the disease burden and 
disease-vector capacity: rising temperatures for example contributed to 
the spread of tick-borne livestock diseases into high altitudes. The 
herders who live in remote areas with constant migration have less ca
pacity to access veterinary services; therefore, diseases in livestock 
break out, increasing the mortality rate of their livestock. In addition, 
extreme events due to climate change may lead to a reduction in the food 
intake of cattle because they affect the availability of water and pasture, 
leading to the decline of grazing land and reduced access to water for 
pastoral systems (Stanzel et al., 2018, Sidibe et al., 2020) which is the 
major economic activity in semi-arid SSA. The majority of the pastoral 
people engage in transnational migration in search of water and new 
seasonal grazing (Bukari et al., 2019, Descheemaeker et al., 2016). In 
recent years, there are reported cases of conflict between pastoralists 
and farmers due to extreme drought conditions. Especially in West and 
East Africa such conflicts seem to have increased recently (Adaawen 
et al., 2019, Bukari et al., 2019). These may consequently affect the scale 
of production and diversified livestock levels (Descheemaeker et al., 
2016, Rahimi et al., 2021, Bosire et al., 2022). The main findings from 
studies are that the multiple effects of climate change are likely to be 

much greater in SSA (Fig. 4), as the rainfall increases in some areas and 
decreases in other parts within the same region or country (Dunning 
et al., 2018, Barry et al., 2018, Tegegne et al., 2021, Nangombe et al., 
2018). 

4. Discussion 

There are recent improvements in responses to the challenges of 
changing climate in many SSA countries. The synopses of this study are 
discussed in terms of three categories. (1) The response to climate 
change is gradually gaining momentum among people in political 
power, as the impacts of climate change on agriculture, water avail
ability for humans and livestock, and the ecosystem become more 
evident. (2) Current and future adaptations to climate change in SSA 
denote all those responses that may be adopted by people to reduce risk. 
(3) There is a need, still, for better responses to climate change impacts 
in different agro-ecological zones of SSA, and the need for adaptation 
technology transfer is the necessary priority. 

4.1. Current and future adaptation responses: Case studies in SSA 

The necessity for adaptation to climate change and climate-related 
hazards has attracted the attention of researchers across different dis
ciplines in SSA. The majority of research on climate change has focused 
on climate change impacts/risks and their effects on natural and human 
systems, mainly from a sectoral perspective (Leal Filho et al., 2021, 
Nyiwul, 2021, Carnohan et al., 2021, Oluwatimilehin and Ayanlade, 
2021). Contemporary studies have reported that the reoccurrence of 
extreme events currently outweighs the adaptive options available in 
SSA. Many of these studies reported significant relationships between 
level of education, financial capabilities and incomes, and years of 
farming experience as the major drivers of adaptation options adopted 
by rural farmers in the SSA (see Table 3). These factors not only control 
the adoption of adaptation in agriculture but also in other sectors such as 
water resources and energy (Schilling et al., 2020). The major evidence 
from the literature is that research efforts are very much needed to 
develop adaptation strategies and methods that are suitable for small
holder farmers in SSA (Mashizha, 2019, Ayanlade et al., 2017), partic
ularly in the dry zone where livestock are the predominant basis of 
livelihood. To achieve sustainable growth in the agricultural sector, 
concentrated efforts are essential to mainstream climate change adap
tation into national development policies and ensure that they are 

Fig. 4. Observed climate change impacts and vulnerability of agriculture and food systems in SSA countries.  
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implemented at national, regional and local levels. 
In SSA, the seasonal calendar of crop systems depends on many 

factors, of which the climatic dynamic is the most important for iden
tifying appropriate sowing and harvesting dates (Mugiyo et al., 2021). 
Farmers have experienced a long period of adjustment to farm- 
management practices, including changing cropping calendars to opti
mize the use of available water for crop growth as well as adaptation 
measures to climate changes, especially increasing temperatures 
(Mugiyo et al., 2021). Using seasonal climate forecasts farmers in many 
parts of SSA could adjust their seasonal calendar to suit these changes. 
Changes in the seasonal calendar take account of some seasonal farming 
operations such as planting and harvesting time (Table 3). Arranging the 
seasonal calendar and crop-planting dates for better crop productivity 
based on information from the climate-warning system is a pressing 
necessity for SSA. Several climate-warning systems have been developed 
and used across the whole of Africa for 30 years, but linking traditional 
and local knowledge of climate change is crucial to maximizing optimal 
conditions, especially temperature and precipitation, for crop and live
stock production. However, there are gaps between the information 
needed by farmers and that provided by the meteorological service 
(Nyamekye et al., 2021, Kuhl, 2021). Though various adaptation options 
are currently feasible in SSA to reduce climate change impacts on 
agricultural systems, several of the available options need significant 
institutional support. There is a need for policies and programmes 
appraisal of adaptation options in SSA, and such policies should use 
inclusive rights-based approaches to help to minimize maladaptation 
(Kuhl, 2021, Simpson et al., 2021). 

4.2. A call for technological transfer – From developed nations to SSA 

In recent years, many innovative climate-modelling tools and tech
nologies have emerged, especially in developed countries. Many tech
nological approaches, including Global Climate Modeling (GCM) and 
regional climate modelling tools, have been adopted in SSA countries 
(Kisembe et al., 2019, Shen et al., 2018, Dosio et al., 2021). Such in
ternational diffusion of technologies also includes the transfer of climate 

change adaptation technologies from the North to the Southern part of 
the globe, especially to the SSA countries. Technology transfers, North- 
to-South, are of particular interest in climate change discourse, as their 
promotion encompasses extensive policy and economic challenges 
because of the reluctance of industrialized countries to give away stra
tegic intellectual assets and the difficulties developing countries may 
face in bearing the financial costs of developing technologies on their 
own (Dechezleprêtre et al., 2020). The review of the literature revealed 
differences in adaptation-technology options between developed na
tions and SSA, implying that technology transfer is required to overcome 
climate-related technology gaps in SSA (Olawuyi, 2018, Makate et al., 
2019). This is because the developed countries have access to more 
sophisticated technology, while the developing countries are more 
vulnerable to climate change. 

Despite the need for more technology transfer to SSA, the way for
ward should not only include policy prescriptions by African leaders; 
SSA countries can also proactively address current technology gaps by 
strengthening their domestic capacities to integrate foreign climate- 
related technologies (Olawuyi, 2018). The high rate of poverty in the 
SSA countries acts as a catalyst to increase vulnerability to climate 
change and the inability to generate adaptation strategies. Recently, the 
need for adaptation has been given more extensive recognition and has 
gained importance in the sixth assessment report of the IPCC (2021), in 
which the need for technological transfer has also been explained. 
Although agricultural innovation systems are spread across Africa, the 
IPCC report concluded that there are many more climate change adap
tation options which SSA countries can adopt from developed countries, 
and much more work is needed with regard to technological transfer for 
better adaptation to climate change in SSA. Such innovation systems 
should include sets of actors, institutions and skills that function and 
interact to create conditions and mediums for innovative social, envi
ronmental and economic solutions (technologies, ideas etc.) to emerge 
and successfully thrive in a climate change context (Adenuga et al., 
2021, Ekpa et al., 2018, Zhou, 2019). 

In this study, we argue that technology transfer should entail more 
than just the transfer of equipment and machinery; it also requires the 

Table 3 
Major determinants of adoption of climate change adaptation options in SSA, using IPCC conceptual framework of vulnerability, exposure, hazard and risk in the 
agricultural sector. The different colours denote percentage of use of adaptation methods and major factors determining the adoption of adaptation methods in SSA, 
with confidence level based on IPCC 2022 report (Trisos et al., 2022).  
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transfer of knowledge and skills and the development of the capacity to 
use and adapt the technology. Some international initiatives aim to 
support climate change adaptation through sustainable climate-related 
technology transfer in SSA. The majority of these initiatives focused 
on solar energy, wind energy, and bio-fuel technology. Only a few are 
used in agricultural and food systems technology in SSA, thus much 
more technology-transfer initiatives are needed in the agricultural 
sector. For example, Renewable Energy and Adapting to Climate Tech
nologies Window in Africa (REACT) is one of the EU-supported projects 
that seek to alleviate the burden of climate change in Africa through 
climate-change-related technology. But REACT is part of the Africa 
Enterprise Challenge Fund, which funds mostly clean energy and 
climate-adaptation technologies through the stimulation of private- 
sector investments. While the focus is not solely on the agricultural 
sector, the fund specifically aims to support small-scale farmers with 
new technology in the agricultural sector. Another stakeholder in the 
area of climate-related technology transfer in SSA is the African Devel
opment Bank (ADB). One of ADB’s projects enhances fertilizer accessi
bility in Tanzania. This initiative by ADB uses a credit guarantee scheme 
to provide farmers with access to quality fertilizer and other agricultural 
technologies. 

In the past decades, farmers in Africa have been adopting adaptation 
strategies such as irrigating with traditional technologies, but what they 
need now is to improve water efficiency. For example, farmers in the 
arid region of SSA urgently need techniques, technologies and in
vestments that will increase water-management efficiency and access to 
irrigation, or find ways to increase their incomes in the face of less 
secure and more variable water availability. This is because Africa only 
irrigates 6 % (13.6 million hectares) of its arable land, in contrast to 20 
% worldwide (Trisos et al., 2022). Water availability is projected to 
decline steeply given the rate of population growth in the next several 
decades across Eat Africa, Central and southern Africa (Mashizha, 2019, 
Godfrey and Tunhuma, 2020, Trisos et al., 2022). Thus, studies have 
reported that irrigation expansion through efficient water-resource 
management is a key ingredient for reaching the agricultural growth 
targets of many SSA countries (Ahmed, 2020, Mashizha, 2019, Higgin
bottom et al., 2021). Improved irrigated production can buffer the im
pacts of drought and lead to enhanced crop production (Higginbottom 
et al., 2021). These kinds of coping strategies should be determined by 
the rural farmers’ preferences and what best suits the rural farming 
communities. Despite these efforts, the need for improvement in various 
aspects of climate action in SSA should be a priority deliberation, to aid 
strong technological innovations, institutional innovations and policy 
innovations for successful climate action for better agricultural pro
duction (Higginbottom et al., 2021, Ahmed, 2020, Stenzel et al., 2021). 

5. Conclusion 

The key findings from the literature reviewed in this study are that 
extreme weather events resulting from climate change have a direct 
impact on agricultural production (Mashizha, 2019), because of the 
climate-dependent nature of agricultural systems. Agriculture is the 
major occupation in SSA countries; this makes them more vulnerable to 
climate change, especially so with regard to the livelihoods of both 
farmers and herders (Apraku et al., 2021, Eleblu et al., 2020). The im
pacts of drought are particularly significant in many SSA countries, 
where agriculture constitutes employment and the main source of in
come for the majority of the population. Extreme events pose a danger to 
people’s lives, livestock and the ecosystem. Such events may perhaps 
trigger more of the already high rates of under-nutrition and infectious 
disease in the region. Assessment of relevant literature and climate 
change projections for SSA countries points to warmer temperature 
trends with frequent occurrence of extreme heat events, decline in 
rainfall, and increased aridity in the southern and eastern regions. A 
reduction of land suitable for agriculture has been projected in the next 
few decades, as many lands with high agricultural potential in SSA are 

becoming arid. Extreme events have been predicted to occur more often 
in Africa in the next century as a result of climate change. Drought is a 
major extreme weather event which threatens livestock sustainability in 
SSA, as climate determines the composition of pasture which in turn 
determines the level of fodder self-sufficiency and its sustainability. 
What is obvious from the literature is that the analysis of climate ex
tremes such as drought is complex and is affected strongly by the bal
ance between precipitation and evapotranspiration and the concomitant 
effect on soil moisture. The regional drought record has been observed 
to be driven by increased temperatures combined with low precipitation 
and reduced soil moisture. Studies have reported the impacts of drought 
on both crop and livestock production in many parts of SSA. The ma
jority of these studies have noted ways by which extreme climatic events 
can affect agricultural productivity, but patterns of vulnerability, 
exposure, hazard and risk vary among countries and within different 
agro-ecological zones of SSA. With the increase in temperature and 
precipitation erratically distributed across sub-Saharan Africa, agricul
tural production has been declining within recent decades, particularly 
wherever drought events are frequent. There is a high likelihood that the 
hydro-climatological patterns of different ecological zones in SSA would 
be altered as a result of climate change, with consequences for the 
availability of water resources for the agricultural sector (The Ministry 
of Environment of the Federal Republic of Nigeria, 2003). All of these 
combine to affect water resources, including groundwater and surface 
water, in specific ways (Carrière et al., 2021, Ayanlade et al., 2022). It is 
clear from the present study that SSA is one of the most vulnerable re
gions to extreme climate events, as the livelihoods of the majority of the 
population depend on rainfed agriculture, yet many smallholder farmers 
lack adequate technology to adapt to extreme climate events. Thus, the 
vulnerability of SSA countries to climate change is high, because of their 
low capacity to adapt to climate change. Adaptive capacities of farmers 
to climatic change are higher in the developed countries than the 
developing countries because of their access to more technology. There 
is a need for effective technology transfer from the Global North to the 
South, to encourage building resilience and enhance adaptive capacity 
in SSA countries. 

Technological transfer is a fundamental process to facilitate access to 
adaptation and mitigation technologies in SSA. The distribution of these 
technologies from Global North to South will be necessary for the 
mitigation of and adaptation to climate change. Climate-change-related 
technology should be made available to developing countries through 
technological transfer guided by patents and licensing (Zhou, 2019, 
Olawuyi, 2018). Such technology transfer from developed countries to 
SSA countries is vital for the attainment of sustainable development in 
the latter. There is an urgent need for policy interventions to increase the 
adaptive capacities of the farmers and herders (Cuni-Sanchez et al., 
2018). Another approach that can be recommended for decision-makers 
and partners to adopt as policy strategy is “putting the vulnerable first”. 
This has to do with recognition of the need for adaptation that is mostly 
embraced by and acceptable to the present impact-driven sectorial 
adaptation that research and programmes presently support. Most 
importantly, this idea of “putting the small holder farmers’ vulnerable 
first” demands a much stronger focus on resilience and adaptive capacity 
as well as ability. 
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