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Interfacing electrons and light enables ultrafast electron microscopy and quantum control of electrons,
as well as new optical elements for high-sensitivity imaging. Here, we demonstrate for the first time
programmable transverse electron-beam shaping in free space based on ponderomotive potentials from
short intense laser pulses. We can realize both convex and concave electron lenses with a focal length of a
few millimeters, comparable to those in state-of-the-art electron microscopes. We further show that we can
realize almost arbitrary deflection patterns by shaping the ponderomotive potentials using a spatial light
modulator. Our modulator is lossless and programmable, has unity fill factor, and could pave the way to
electron wave-front shaping with hundreds of individually addressable pixels.
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I. INTRODUCTION

The precise control of electrons facilitated microscopes
that revolutionized materials science [1] and structural
biology [2]. One of the key technologies for this is aberration
correction [3,4]. While Scherzer realized [5] that spherical
aberrations are unavoidable with static, circularly symmetric
lenses, modern aberration correctors avoid this symmetry
and enable both atomic-resolution imaging [3,4,6,7] and a
finite degree of wave-front engineering. In light optics,
spatial light modulators and mirror arrays allow for pro-
grammable arbitrary wave-front shaping, which has led to
great advances [8], e.g., in astronomy, deep-tissue imaging,
or optical information processing. This level of control is not
yet available in electron optics, even though there are
applications that would demand for it, such as random-probe
ptychography [9], efficient structure identification [10], or
optimized phase contrast microscopy [11–13].
Arbitrary, but not programmable, shaping of electron

waves has been demonstrated based on the transmission

of electron beams through suitably sculpted material thin
films [14–18]. Despite inherent challenges regarding
inelastic scattering, these novel electron-optical elements
found applications in, e.g., aberration correction [19], the
manipulation of orbital angular momentum [14,20], the
generation of nondiffracting Bessel [21] and self-healing
Airy beams [22], diffractive probe engineering [23,24],
and contrast enhancement in biological imaging [25,26].
Nanofabrication gave rise to beam-shaping devices based
on tunable electro- and magnetostatic potentials. While
some of them are tailored to specific applications, such as
symmetry mapping [27] or orbital angular momentum
sorting [28], others realize on-axis arrays of individually
addressable electron lenses for arbitrary wave-front shaping
in reflection [29] or transmission [30,31]. Limiting factors
are the achievable transmission, unwanted diffraction from
subapertures, charging, and beam-induced deterioration.
Electron wave packets can also be shaped by optical

fields in the vicinity of matter [32–41], enabling attosecond
coherent control of the electron wave function as well as
multidimensional nanoscale imaging and spectroscopy.
Although these methods do not rely on nanofabrication
techniques, they still suffer from inelastic scattering and
material deterioration.
The control of electrons in free space through ponder-

omotive interaction with light avoids these problems.
Kapitza andDirac predicted that electrons could be diffracted
at a standing light wave via a second-order process [42].
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Early demonstrations include electron deflection [43] and
diffraction [44,45].Nowadays, ponderomotive electron-light
interactions are used to characterize [46–48] and create [49]
ultrashort electron pulses, to modulate the spectrum [50] and
the phase [51,52] of electron beams. The challenges lie in
interfacing electron optics with the required high-intensity
light optics, which offers unity transmission and tunability
and does not cause inelastic scattering.
Here, we demonstrate controllable transverse shaping

of free electrons into an arbitrary density profile using
the ponderomotive potential of a spatially modulated
light pulse. We realize the scheme in a modified scanning
electron microscope (SEM), similar to the recently pro-
posed optical free-space modulator (OFEM) technique
[53]. Our OFEM has a pixel size of 4.3 μm (FWHM of
the focus spot), which, in principle, facilitates 2π phase
modulation on an interaction plane of up to 1607 pixels,
given the 17.2 μJ maximum laser pulse energy in our setup.
Contrary to static, cylindrically symmetric, and energy-
preserving electron optics, we achieve both positive and
negative lensing, as has recently been proposed in a similar
setup [54]. We further can create almost arbitrary electron
deflection patterns using shaped light fields.

II. SETUP

Experiments are carried out in a modified ultrafast scan-
ning electron microscope (USEM, based on a commercial
FEIXL30), as sketched in Fig. 1. TheViennaUSEMfeatures
a laser-triggered electron source, an optical setup for shaping
ponderomotive potentials, and a hole in the bottom of the
specimen chamber for experiments in transmissionmode.An
ultrafast laser (CoherentMonaco, wavelength λ ¼ 1035 nm,
pulse length Δt ¼ 280 fs, repetition rate 1 MHz, and pulse
energy <40 μJ) is split using a 93∶7 beam splitter.
The less-intense beam is used to generate the fourth

harmonic (UV, 258 nm, <2 nJ) with the help of two
β-barium borate (BBO) nonlinear crystals. We then focus
this UV beam onto the Schottky electron gun through a
15-cm focal length lens [55], aligning the polarization
parallel to the tungsten nanotip with a half-wave plate
(HWP). This creates a pulsed electron beam propagating
through the column of the USEM.
The more-intense infrared beam creates the ponder-

omotive potentials (IR, 1035 nm, <17.2 μJ), after passing
a delay stage that adjusts the timing (τ) between IR and UV.
The IR beam is then expanded to a (1=e2) diameter of
7.5 mm and reflected off a water-cooled spatial light
modulator (SLM, Meadowlark 1920 × 1152). The SLM
shapes the wave front of the laser such that the desired
intensity distribution is created in the interaction plane of
electrons and light, as well as in a conjugate plane used
for beam characterization. We calculate the required
patterns either via simple backpropagation or via a modi-
fied Gerchberg-Saxton algorithm (GSA), which allows
us to generate almost arbitrary light intensity distributions

[56,57] (see Appendix A). After passing the interaction
plane, the laser is outcoupled from the USEM specimen
chamber, which minimizes heating effects in the chamber
and enables additional temporal and spatial coarse align-
ment (see Appendix B).
The in-vacuumparts of the optical system aremounted to a

custom USEM door (see the inset in Fig. 1) that features
a nonmagnetic 2D piezo stage to align light and electron
optics. The beams are overlapped using unprotected gold
mirrors on copper substrate,which reflects the incoming light
fields but transmits the electrons through a central 1.5-mm
hole. The beam-shaping optics are mounted directly to the
USEM door (see Appendix B). After interaction with the
shaped laser pulse, the electron pulse propagates through free
space for d ¼ 550 mm. It is then detected using a micro-
channel plate (MCP; see Appendix C).

III. PONDEROMOTIVE PHASE MODULATION

Consider the paraxial wave function of an electron
traveling at a relativistic velocityv along the axial z direction,
ψðr; tÞ ¼ eiγmeðvz−c2tÞ=ℏψ⊥ðx; y; tÞ, with me the electron
mass, γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
the relativistic factor, and ψ⊥

the transverse electron wave shape. The electron is illumi-
nated by a short laser pulse of moderate intensity, described
by a vector potentialAðr; tÞwith a temporal profile extending
over 102 optical periods. Following Ref. [53] and neglecting
the transverse electron motion and the light-induced velocity
modulation, as well as electron-positron mixing, we can
approximate the interaction by an effective scattering phase
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FIG. 1. Experimental setup: programmable ponderomotive
deflection of electrons in free space. Outside of the vacuum
chamber, the SLM-shaped laser distribution is formed in the
conjugate plane (CP). In the specimen chamber, the electron
beam interacts with a counterpropagating laser pulse in the
interaction plane (IP). The induced electron phase modulations
are proportional to the local laser pulse energy. Left: the modified
SEM chamber door which allows for in- and outcoupling the
shaped light fields (see also Appendix B).
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φðrÞ ¼ −ð1=ℏÞ R∞
−∞ dtUðrþ vtez; tÞ imprinted onto the

wave function, with the ponderomotive potential

Uðr; tÞ ¼ e2

2meγ

�
A2
xðr; tÞ þ A2

yðr; tÞ þ
A2
zðr; tÞ
γ2

�
: ð1Þ

In our setup, the light intensity patterns are formed with
optics of moderate numerical aperture (NA< 0.2), which
implies A2

zðr; tÞ ≈ 0. Hence, the potential does not depend
on the light polarization. The small NA also entails that the
depth of focus is larger than both the distance the electron
propagates during the interaction and the dispersed axial
width of the electron wave packet [58]. This is in contrast to
the derivation in Ref. [53], where longer laser pulses are
assumed, such that the electron also interacts with out-of-
focus light. In our setting, each electron interacts with the
total laser pulse in focus, making the scheme more energy
efficient. This allows us to separate the temporal laser pulse
profile, specified by a function uðtÞ, from the transverse
spatial profile, specified by gðx; yÞ and polarized along, say,
the x axis. For a laser pulse that copropagates (upper sign)
or counterpropagates (lower sign) with the electrons, the
real-valued amplitude reads as

Aðr; tÞ ≈ −
E0

ωL
exgðx; yÞu

�
t ∓ z

c

�
sin

�
ωL

�
t ∓ z

c

��
; ð2Þ

with ωL ¼ 2πc=λL the central laser pulse frequency. For
typical pulses much longer than the optical period, the field
strength E0 can be expressed in terms of the total pulse
energy EL flowing through the xy plane as

EL ≈
cε0
2

E2
0

Z
∞

−∞
dtu2ðtÞ

Z
dxdyg2ðx; yÞ: ð3Þ

Putting everything together, we arrive at a phase modula-
tion of the transverse wave function:

φðx; yÞ ≈ −
α

2πð1 ∓ βÞ
EL

Ee

λ2Lg
2ðx; yÞR

dxdyg2ðx; yÞ ; ð4Þ

with α the fine structure constant, β ¼ v=c, and Ee ¼
γmec2 the relativistic energy of the electron. We see that the
phase is proportional to the ratio of pulse and electron
energy times the normalized spatial light profile, while it
does not depend on the temporal envelope of the laser
pulse. See Appendix D for a detailed derivation.

IV. RESULTS

Figure 2(a) shows the experimental configuration with
a converging (30 keV) electron beam. Figure 2(b) (top)
shows the measured focused light intensity before being
demagnified (5×) to the interaction plane. The focus spot of
the light pulse in the interaction plane has a FWHM of
4.3 μm, which represents the diffraction-limited minimum
spot size in our setup. Figure 2(b) (bottom) shows the

electron intensity distribution observed at the MCP for a
laser pulse energy of 6 μJ, an electron-beam radius in the
interaction plane of ρ0 ¼ 17.5 μm, and a distance from
interaction plane to crossover of dc ¼ 5.9 mm.
Figure 2(c) compares these experimental results to wave

optics (top) and ray tracing (bottom) simulations, yielding
good agreement. In the wave optics model, we assume a
spherical wave front of the incoming converging beam in
Fresnel approximation and compute the ponderomotive
phase Eq. (4) for a circularly symmetric fit to the measured
light distribution in Fig. 2(b). In the ray optics simulation,
we treat the electrons as ballistic particles and, hence, the
ponderomotive interaction as a position-dependent trans-
verse momentum kick [59] by δpT ¼ ℏ∇φðx; yÞ. Details of
both methods can be found in Appendix E. They yield
similar results for the high laser intensities considered here;
a 6-μJ laser pulse amounts to a phase shift in the beam
center of 950 rad. Small differences due to diffraction
cannot be observed due to the finite spatial resolution of the
detector (see Appendix C).
Figure 2(d) demonstrates how the electron deflection

depends on the timing of the light pulse, varied in steps of
τ ¼ 666 fs relative to the electron pulse (at 6 μJ pulse

(a) (b) (d)

(c)

FIG. 2. Ponderomotive electron-light interaction: (a) An SEM
objective lens (OL) focuses the electron pulse to a crossover
slightly below the interaction plane. The objective aperture (OA)
is set to 100 μm. (b) Top: light intensity distribution (scale bar
93 μm) before being demagnified (5×) to the interaction plane.
Bottom: observed electron intensity distribution (scale bar 1 mm)
at the detector plane. (c) Wave optics (top) and ray optics
(bottom) simulations of the detected electron beam shown in
(b). (d) Detected electron distributions (scale bar 1.6 mm) when
delaying the laser pulse with respect to the electron pulse by
multiples of τ ¼ 666 fs. The delay causes the interaction to take
place in a plane where the light is not focused.
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energy). With no timing overlap (top and bottom), we
detect a homogeneous electron intensity distribution. At
perfect overlap (center), we see a clear signature of the pon-
deromotive interaction. A timing mismatch of �τ hardly
affects the observed electron distribution, as it displaces
the interaction plane by δz ¼ vτ=ð1þ v=cÞ ¼ 51 μm. Such
displacements lead to only slight changes of the light
intensity distribution (see Appendix B for details).
Considering previous electron pulse length measurements
performed in a similar system [58], we can, therefore,
assume that, at perfect timing overlap, all electrons
see almost the same transverse light intensity distribution.
For timing mismatches of �2τ, the electrons interact with
a more defocused light pattern, and the ponderomotive
signature is weaker.
Next, we show that ponderomotive potentials can realize

both convex and concave lenses. This is in stark contrast
to static, cylindrically symmetric, and electron energy-
preserving electron optics that can realize only a convex
lens, if there are no charges on the optical axis [5]. A
convex (concave) lens applies a phase shift to an incoming
beam that decreases (increases) quadratically with distance
ρ from the optical axis: ϕðρÞ ¼∓ πρ2=λef, with λe ¼
h=γmev the de Broglie wavelength of the electron. This
can be realized close to the center of focused Laguerre-
Gaussian (LG) beams with radial index p ¼ 0. For an
azimuthal index l ¼ 0 (LG00), the Taylor expansion of
the spatial distribution is given by g200ðρÞ ≈ 1–2ρ2=w2

00 þ
Oðρ4=w4

00Þ, which corresponds to a concave lens. For
l ¼ 1 (LG10), one obtains g210 ≈ ρ2=w2

10 −Oðρ4=w4
10Þ,

which corresponds to a convex lens. In both cases, w
denotes the beam waist of the respective mode.
Figure 3 demonstrates controllable ponderomotive lens-

ing. The center in Fig. 3(a) shows the detected electron
distribution without laser interaction, and the left (right)
shows the detected intensity upon interaction with an
LG00 (LG10) mode at a pulse energy of 2.5 ð3.1Þ μJ. The
experimental LG light intensity distributions are shown as
insets in Fig. 3(b), as measured in the conjugate plane
at a magnification of 5×. The converging electron beam
illuminates the central part of these distributions, where
the quadratic approximations are valid (R ∼ 0.8 μm,
dc ∼ 241 μm). We deduce the focal length of the pon-
deromotive lens from the radius ρs of the measured elec-
tron distribution using a ray optics model: f ¼ dρ0=
ðρ0 − ρs þ dθρ;0Þ, with ρ0 and θρ;0 the maximum radius
and convergence angle, respectively, of the electron beam in
the interaction plane and d the distance from the interaction
plane to the screen (see Appendixes E and F). The focal
length is given by

fðELÞ ¼ �ð1 ∓ βÞ π3w4

2αλ2Lλe

Ee

EL
: ð5Þ

Figure 3(b) shows this deduced focal length as a function of
the laser pulse energy for the convex (orange) and concave

(blue and green for two independent data runs) lenses. The
solid line is calculated according to Eq. (5), where we get EL
and w from fitting the measured light distributions (see
Appendix F). The gray-shaded areas denote a 5% uncertainty
of the width that we estimate from the fit. We see good
agreement between theory and experiment, except for two
data points taken at low pulse energies. When the observed
electron-beam width is close to ρsðELÞ ≈ ρ0 þ dθρ;0, align-
ment is difficult, and small errors can lead to a sign change in
fðELÞ. At higher pulse energies, we see that we can reach
focus lengths down to 1.6 mm, comparable to those found in
modern TEMs.
In Fig. 4, we demonstrate programmable electron-beam

shaping at a laser pulse energy of 6 μJ. First, we use the SLM

(a)

(b)

FIG. 3. Lensing using ponderomotive potentials. (a) Detected
electron distribution with concave (left, LG00), no (center), and
convex (right, LG10) ponderomotive lens (scale bar 1 mm).
(b) Focal length as a function of the laser pulse energy for
LG00 (green and violet) and LG10 (orange) modes. The inset
shows the respective light intensity distributions, measured in a
plane conjugate to the interaction plane.

FIG. 4. Programmable electron-beam shaping: detected
electron distribution after interaction with shaped light fields.
For (a)–(c), the SLM is used to add vertical trefoil, coma, or
astigmatism (scale bar 1.1 mm) to the incoming light field. In (d),
a Gerchberg-Saxton algorithm is used to shape the light field into
a distribution resembling a smiley, which also appears in the
detected electron distribution (scale bar 1.2 mm).
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to add trefoil, coma, or astigmatism to the optical beam
leading to the characteristic electron deflection patterns in
Figs. 4(a)–4(c), respectively. The electron-beam settings are
the same as in Fig. 2(b) (bottom). Finally, Fig. 4(d) shows a
smiley imprinted onto the electron beam (dc ¼ 8.4 mm,
ρ0 ¼ 24 μm). While for all other figures, we calculate the
phase pattern applied to the SLM using backpropagation
from the conjugate plane to the SLM, we here use a GSA
with 20 iterations to converge to the desired pattern (see
Appendix A).

V. DISCUSSION

Our experiments show that we can deflect electron
beams almost arbitrarily by shaping ponderomotive poten-
tials. The spatial shapes are limited only by diffraction as
well as by artifacts induced by the hole in the 45° mirror;
our currently used diameter of 1.5 mm facilitates alignment
but could be reduced in future setups. Smaller features
would be possible using light of shorter wavelength or
higher numeric aperture. However, such measures also
reduce the depth of field of the shaped intensity distribu-
tions, which sets constraints on the pulse lengths of
electrons and light.
Although we operate our setup in the high-power limit,

typical wave-front-shaping applications demand lower laser
pulse energies. At 30 keV, the energy density required to
achieve a ponderomotive phase shift of 2π is 0.58 nJ=μm2.
Our system, which offers an IR pulse energy in the intera-
ction plane of up to 17.2 μJ, could, therefore, support the
shaping of an area with radius R≲ 97 μm, corresponding to
N ∼ ð2 � R=FWHMÞ2 ¼ 1607 individual pixels.
A miniaturized version of our setup could also be

implemented in ultrafast electron microscopes [60–62],
where it could be used for aberration correction [19,30]. It
has been shown that 100 addressable pixels could effec-
tively correct spherical aberration [30]. With similar light
focusing capabilities as described here, 100 addressable
pixels with 2π phase modulation capability can be realized
by shaping potentials on a disk with ρ0 ≃ 25 μm. Modern
TEMs provide the required level of coherence across such
an area [63]. In a counterpropagating mode, a total pulse
energy of 2.2 μJ would suffice for 300 keVelectrons, which
is readily available at repetition rates of tens of megahertz.

VI. CONCLUSION AND OUTLOOK

In this work, we have demonstrated programmable
transverse beam shaping of free electron beams. The
technique is based on ponderomotive potentials from
high-intensity laser pulses, which are shaped using a spatial
light modulator. We have shown that we can create both a
convex and a concave lens, the latter being impossible with
traditional electron optics. We achieve focal lengths down
to 1.6 mm, which is comparable to the focal length of an
objective lens in a TEM. Future experiments might use
consecutive laser pulses for realizing complex electron

optical systems made from light, similar to schemes used
for the creation of attosecond pulse trains [49]. We have
further demonstrated our ability to imprint complex pat-
terns and arbitrary images onto an electron beam, with
applications in fast and shaped beam blanking. Our work
paves the way to lossless electron wave-front shaping with
hundreds of individually addressable pixels. This could
have applications in aberration correction [19,30] of pulsed
electron microscopes [64], if the optical modulator is
installed in a suitable plane within the microscope. Our
shaping technology avoids scattering, subaperture diffrac-
tion, and loss, the latter being especially important for pulsed
electron microscopes, where the small electron current leads
to long acquisition times and, consequently, to stability
issues. Further studies are required to show whether ponder-
omotive electron-beam shaping can reach the noise levels
present in current aberration correctors [64,65]. Most impor-
tantly, programmable ponderomotive shaping could be used
for applications intractable with traditional aberration cor-
rectors: These include the creation of exotic beams [21,22],
probe engineering [23,24], pulsed ponderomotive phase
plates for phase microscopy [51], and other adaptive meas-
urement techniques [10,11,13] that maximize the extracted
information in a sample-specific way.
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APPENDIX A: CREATING ARBITRARY LIGHT
INTENSITY DISTRIBUTIONS

Figure 5 shows the light intensity patterns used to shape
the electron beam in Figs. 2–4. The images are taken outside

(b)

(a)

(c)

FIG. 5. Measured target intensities with the CMOS (scale bar
33 μm) in the conjugate plane before being demagnified (5×) to
the IP. (a) Concave and convex lens. (b) Programmable intensity
modulation. (c) Smiley.
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of the SEM, in a plane conjugate to the interaction plane
(target plane). The optics that image these patterns into the
interaction plane also demagnify them by a factor of 5×. To
calculate the SLM phase masks that create these intensity
distributions, two different algorithms are used. Both are
based onFresnel propagation. They take the finite aperture of
our system into account, as well as the hole in the 45° mirror,
which is simulated as a beam block [see Fig. 6(a)]. The latter
prevents loss within the hole and, therefore, avoids heating in
the SEM chamber. While it does affect the quality of the
resulting intensity distributions, the effect is acceptable for
our proof-of principle experiments. The diameter of the hole
in the current implementation is 1.5 mm.
The first algorithm is used for the Gaussian and the

Laguerre-Gaussian focal spots in Fig. 5(a), as well as
for the intentionally aberrated focal spots in Fig. 5(b). A
Gaussian focal field is backpropagated from the target plane
to the SLM. The resulting phase distribution (ϕG) applied to
the SLM yields the approximately Gaussian intensity dis-
tribution in Fig. 5(a). Additional phase patterns are then
added in order to create the Laguerre-Gaussian focal spot
ϕLG10 ¼ argðxþ iyÞ, as well as the spots affected by trefoil
ϕZ−3

3
¼ πð−x3 þ 3xy2Þ, comaϕZ−1

3
¼ πð−2xþ 3x3þ 3xy2Þ,

and astigmatism ϕZ2
2
¼ πð−x2 þ y2Þ. Here, x and y are the

Cartesian coordinates on the SLM in units of RSLM ¼
5.3 mm, which denotes the radius of the area that is
modulated by the SLM. Zm

n signifies the Zernike polyno-
mials characterizing the specific aberration.
The second algorithm is used for arbitrary patterns, like

the smiley in Fig. 5(c). It is based on the GSA [56], as

schematically described in Fig. 6(b). The algorithm is
initiated with the target amplitude and a constant phase
(E1). The field then iteratively propagates between the
SLM and target plane, taking into account the transmission
function of the beam block (Tbb) and the lens (TL). In the
SLM (target) plane, the amplitude of the calculated field
is replaced by the amplitude of the incoming (desired)
field. For the smiley, 20 iterations show the best exper-
imental results. While more iterations improve results in the
simulation, the experimental results deteriorate due to the
emergence of speckle [57].
In both algorithms, the desired pattern is offset from the

optical axis. This leads to an additional blazed grating on
the SLM, which effectively separates the desired intensity
pattern from the unmodulated beam that is reflected off
the SLM [66]. On top of that, the positioning of the laser
beam with respect to the electron beam can be adaptively
optimized. Finally, the aberrations of our optical setup are
partially compensated by an additional phase mask
that is found by optimizing the experimentally obtained
Gaussian focus spot.

APPENDIX B: EXPERIMENTAL SETUP AND
ALIGNMENT PROCEDURE

Figure 7(a) shows the custom SEM door that carries
the experiment. Outside the vacuum chamber, an optical
breadboard is mounted directly to the SEM door [Fig. 7(a),
left] and holds the SLM optics for shaping the laser
pulses. An active beam-pointing stabilization system
(Aligna, TEM-Messtechnik) is used to counteract pointing

(a)

(b)

FIG. 6. (a) Optical setup used to generate the desired laser
intensity distribution. In order for the electrons to pass through
the optical system, a 1.5-mm hole is drilled in the mirrors before
and after the interaction plane. To minimize the laser intensity
losses at the hole and, hence, to facilitate diffraction around it, a
beam block is implemented in the algorithm. (b) The schematic of
the adapted iterative GSA. For propagating the electric field from
one plane to another, the Fresnel transfer function is used. This
allows for introducing additional elements, like beam block, in
the iterative algorithm.

(a) (b)

FIG. 7. (a) 3D drawing of the experimental setup, side view.
(b) Series of simulated ponderomotive potentials (scale bar
45 μm) in the conjugate plane after temporally displacing the
laser pulse by multiples of τ. The same linear scale is used for all
images.
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instabilities (25 μrad according to the specifications of our
laser), as well as vibrations and drifts between the laser
system and the SEM. Inside the chamber [Fig. 7(a), right],
the setup for overlapping light and electrons is placed right
under the objective lens of the SEM. The whole system is
attached to the SEM door, and the optics are mounted on a
2D piezo stage to facilitate alignment with the electron
beam. Light enters and exits the setup through a CF 100
window in the SEM door. The green arrows mark the
incoupling and outcoupling lenses, and the blue arrows
mark the mirrors that overlap the two beams.
We establish the spatial and temporal overlap between

electrons and light in a multistep process. First, a fast
timing scintillator (BC-408) is placed in the interaction
plane and imaged onto a CMOS camera outside of the
vacuum. This is achieved using an additional manually
operated mechanical stage designed to fit into the narrow
space between the two lenses. This allows finding spatial
overlap between the transmitted IR light and the photons
triggered by the incoming electron beam. These photons
are further time stamped with a fast single-photon detector
(SiPM, KETEK PM1125) [67] to reduce the timing
mismatch to within approximately 200 ps. Second, overlap
in the interaction plane is established by doing pump-probe
measurements with a copper TEM grid placed in the
interaction plane [68]. Finally, the copper grid is removed,
and the overlap between the IR laser and electrons in free
space is confirmed by measuring electron deflections
caused by strong ponderomotive potentials. Figure 7(b)
shows simulated ponderomotive potentials, as they are used
for the temporal and spatial alignment in Fig. 2(d).

APPENDIX C: ELECTRON DETECTION

For electron detection, we use a microchannel plate
detector (Tectra GmbH, MCP-025-D-L-F-V-P43-6MI) in

chevron configuration, followed by a phosphor screen
(P43) and optical readout using a lens (Kowa, LM35HC)
and CMOS (FLIR, GS3-U3-23S6M-C) camera. A 2 × 2
median filter is applied to all electron-beam images to avoid
dead pixels.
To characterize the point-spread function of our detector,

we record 31 single-electron detection events at the gain
settings that are used in the experiments. We first fit the
detection events with a Gaussian distribution to find their
center. We then plot the radial distribution of counts (see
Fig. 8), which is well represented by a Voigt profile (red)
with a FWHM of ð99.9� 0.3Þ μm.

APPENDIX D: PONDEROMOTIVE
INTERACTION

Here, we derive the light-induced phase modulation of
an electron beam in free space, using SI units throughout.
We define the direction of propagation to be the z axis and
assume the electron waves travel at a relativistic mean
velocity v ¼ vez, which sets the Lorentz factor as γ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
and the energy as Ee ¼ γmec2. In such a

setting, the electron wave function ψ can be factorized into
the rapidly oscillating plane-wave component at Ee and a
slowly varying envelope ψ⊥ that accounts for the transverse
wave profile:

ψðr; tÞ ¼ ψ⊥ðr; tÞeiγmeðvz−c2tÞ=ℏ: ðD1Þ
Assuming that light-induced variations of the electron
energy are small compared to the initial energy Ee (called
nonrecoil approximation), it is shown in Ref. [53] that the
Dirac equation for the electron state reduces to the effective
Schrödinger equation

ð∂t þ v · ∇Þψ⊥ðr; tÞ ¼ −
i
ℏ
Uðr; tÞψ⊥ðr; tÞ; ðD2Þ

with the effective interaction potential

Uðr; tÞ ¼ e2

2meγ

�
A2
xðr; tÞ þ A2

yðr; tÞ þ
1

γ2
A2
zðr; tÞ

�
þ ev · Aðr; tÞ − eΦðr; tÞ: ðD3Þ

Here, A and Φ are the real-valued vector and the scalar
potential of the light field, respectively. By integrating
Eq. (D2), we find that the evolution of the state ψ⊥ between
two times t0 and t1 can be expressed as

ψ⊥ðrþ vt1; t1Þ ¼ ψ⊥ðrþ vt0; t0Þ

× exp

�
−
i
ℏ

Z
t1

t0

dt0Uðrþ vt0; t0Þ
�
: ðD4Þ

The free propagation amounts to a position shift, while
the light field contributes an additional phase modulation.

FIG. 8. Normalized radial intensity distribution obtained from
31 single-electron detection events. The data points (10974) are
smoothed out using a Savitzky-Golay filter with a window size of
601 and a polynomial order of 3. The fitted Voigt profile
represents a convolution of a Gaussian profile with a FWHM
of 20.4 μm and a Lorentzian profile with a FWHM of 95.2 μm.
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In fact, if we choose a sufficiently large interval ðt0; t1Þ →
ð−∞;∞Þ that covers the whole duration of the electron-
light interaction, Eq. (D4) can be understood as the
instantaneous scattering transformation from the incoming
to the outgoing electron wave evaluated at the same time:

ψ ðoutÞ
⊥ ðr; tÞ ¼ eiφðrÞψ ðinÞ

⊥ ðr; tÞ; ðD5Þ

with the scattering phase φðrÞ ¼ −
R
dt0Uðrþ vt0; t0Þ=ℏ.

The time coordinate t marks the scattering event, i.e., the
point in time when the electron wave packet hits the
light pulse.
Regarding the interaction potential from Eq. (D3), notice

that we may fix the gauge such that Φ ¼ 0 and we can
safely neglect the term v · A as we integrate the optical field
over a pulse length of 102 periods [53]. Hence, we may
omit the respective terms in U.
Given a paraxial light pulse (as focused by moderate

numerical apertures) with central frequency ωL that
propagates in the �z direction and is linearly polarized
along x, the associated complex-valued electric field can be
written as

Eðr; tÞ ¼ E0exgðx; yÞe−iωLðt∓z=cÞu
�
t ∓ z

c

�
; ðD6Þ

with E0 the characteristic field strength, gðx; yÞ the
transverse mode profile, and uðtÞ the temporal pulse
envelope. For simplicity, these three terms are taken to be
real valued in the following. The real-valued vector
potential in Eq. (D3) is related to the physical field
amplitude via −∂tAðr; tÞ ¼ RefEðr; tÞg.
For the temporal pulse width considered here (Δt ¼

280 fs), the envelope uðtÞ varies on much greater time-
scales than the optical oscillation period (2π=ωL ¼ 3.5 fs),
which allows us to write the vector potential to leading
order as

Aðr; tÞ ¼ Re

�
Eðr; tÞ
iωL

�

¼ −
E0ex
ωL

gðx; yÞ sin
�
ωL

�
t ∓ z

c

��
u

�
t ∓ z

c

�
:

ðD7Þ

Plugging this into Eq. (D3), the scattering phase becomes

φvðrÞ ¼ −
e2E2

0g
2ðx; yÞ

2meγℏω2
L

Z
dt0u2

�
t0 ∓ zþ vt0

c

�

× sin2
�
ωL

�
t0 ∓ zþ vt0

c

��

¼ −
e2E2

0g
2ðx; yÞ

2meγℏω2
Lð1 ∓ βÞ

Z
dtu2ðtÞsin2ðωLtÞ: ðD8Þ

In the last line, we substitute t0 ∓ ðzþ vt0Þ=c → t and
introduce β ¼ v=c. As a next step, we can write
sin2ðωLtÞ ¼ ½1 − cosð2ωLtÞ�=2 and neglect the integral
over u2ðtÞ cosð2ωLtÞ due to the slowly varying pulse
envelope, which leaves us with the ponderomotive scatte-
ring phase averaged over the fast optical oscillation:

φvðx; yÞ ≈ −
e2E2

0g
2ðx; yÞ

4meγℏω2
Lð1 ∓ βÞ

Z
dtu2ðtÞ: ðD9Þ

Notice that the phase no longer depends on the z coor-
dinate, which is consistent with the paraxial regime for both
light and electron waves.
Finally, we can express the laser field amplitude in

terms of a more directly accessible parameter. To this end,
consider the field energy flowing through the xy plane per
unit area and time, as described by the Poynting vector S ¼
RefEg × RefHg withH ¼ cε0ez × E to leading order. The
measured laser pulse energy EL is obtained by taking the
integral of jSj over the plane and over time, which leads to

EL ¼ cε0E2
0

Z
dtu2ðtÞ cos2ðωLtÞ

Z
dxdyg2ðx; yÞ

≈
cε0
2

E2
0

Z
dtu2ðtÞ

Z
dxdyg2ðx; yÞ; ðD10Þ

assuming once again a slow temporal pulse profile. We can
now eliminate this profile and the field strength in the
ponderomotive phase [Eq. (D9)] and simplify

φvðx; yÞ ¼ −
α

2πð1 ∓ βÞ
EL

Ee

λ2Lg
2ðx; yÞR

dxdyg2ðx; yÞ : ðD11Þ

This equals the expression given in the main text, with α the
fine structure constant and λL ¼ 2πc=ωL the pulse wave-
length. The transverse light beam profile g2ðx; yÞ is divided
by its integral and can, thus, be given in arbitrary units.
Moreover, the phase is Lorentz covariant, since it reads the
same in the electron rest frame where β0 ¼ 0, E0

e ¼ mec2,
λ0L¼ λL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�βÞ=ð1∓βÞp
, and E0

L ¼EL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1∓ βÞ=ð1� βÞp
.

APPENDIX E: FREE ELECTRON PROPAGATION

The wave function of a freely propagating relativistic
electron can be expanded in terms of plane-wave bispinor
solutions to the Dirac equation [69]. Given the momentum
p and the spin-1=2 state jsi, the solution reads as

Ψp;sðr; tÞ ¼
1ffiffiffiffiffiffiffiffi
N p

q eiðp·r−EptÞ=ℏ
� jsi

c
Epþmec2

p · σ̂jsi
�
; ðE1Þ

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ec4þp2c2
p

the energy, N p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp þmec2Þ=2Ep

q
a normalization factor, and σ̂ ¼

ðσ̂x; σ̂y; σ̂zÞ the Pauli matrices. The electronic character of
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the solution (Ep > 0) and the spin state are preserved under
the free evolution. Hence, a spatial wave packet of fixed spin
can be expressed in terms of a scalar field ψðr; tÞ:

Ψsðr; tÞ ¼
Z

d3pcðpÞΨp;sðr; tÞ ¼
�

ψðr; tÞjsi
−iσ̂ · ∇χðr; tÞjsi

�
;

ψðr; tÞ ¼
Z

d3p
cðpÞffiffiffiffiffiffiffiffi
N p

q eiðp·r−EptÞ=ℏ;

χðr; tÞ ¼
Z

d3p
cðpÞffiffiffiffiffiffiffiffi
N p

q ℏc
Ep þmec2

eiðp·r−EptÞ=ℏ: ðE2Þ

Note that the (unnormalized) positronic field component
χ can be obtained from the scalar wave function ψ via
ðiℏ∂t þmec2Þχ ¼ ℏcψ . The electronic wave function ψ
obeys the Klein-Gordon equation:

ðℏ2
∂
2
t − ℏ2c2∇2 þm2

ec4Þψ ¼ 0: ðE3Þ

Here, we consider paraxial electron waves with a relativistic
forward velocity v along the z axis, such that Ep ¼ Ee ¼
γmec2 and p ¼ γmev. Replacing ℏ2

∂
2
t → −E2

e in the
Klein-Gordon equation, we arrive at the Helmholtz wave
equation ð∇2 þ k2Þψ ¼ 0, with the effective wave number
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

ec4
p

=ℏc ¼ γmev=ℏ. Propagation of the elec-
tronwaves through the apertures of our experiment can, thus,
be described using Fresnel diffraction theory.
We remark that, for the numerical simulation of electron

pulses in our experiment, we ignore the spread of forward
velocities around the mean value v. Its impact on the results
is negligible compared to other uncertainties such as the
finite resolution in the detector.

1. Wave optics simulations

In order to verify the measured light lensing effect, we
compute the Fresnel diffraction image of a paraxial electron
wave of forward velocity v, after it interacts with a light
pulse via the ponderomotive potential. Omitting constant
prefactors and assuming a circular aperture of radius R in
the interaction plane, the electron density distribution in the
detection plane at the effective distance d reads as

IðrSÞ ∝
				
Z
jrj≤R

d2rψ ðinÞ
⊥ ðrÞeiφðrÞþikðr2−2r·rSÞ=2d

				2: ðE4Þ

For a circularly symmetric ponderomotive phase φðrÞ ¼
φðρÞ and for a centered and converging incident wave

ψ ðinÞ
⊥ ∝ expð−ikρ2=2dcÞ, with ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, we can

switch to polar coordinates and simplify:

IðρSÞ ∝
				
Z

π

−π
dθ

Z
R

0

ρdρeikρ½ρð1−d=dcÞ−2ρS sin θ�=2dþiφðρÞ
				2

∝
				
Z

π

−π
dθ

Z
1

0

dξeiκδξ−iκ
ffiffi
ξ

p
sin θρS=RþiΦðξÞ

				2: ðE5Þ

Here, we substitute ξ ¼ ðρ=RÞ2 and introduce ΦðξÞ ¼
φðR ffiffiffi

ξ
p Þ and the dimensionless parameters κ ¼ kR2=d

and δ ¼ ðdc − dÞ=2dc. Carrying out the angular integral
yields the Bessel function J0ðκ

ffiffiffi
ξ

p
ρS=RÞ, and the remaining

ξ integral can be computed numerically. However, we
have κ; jδj ≫ 1 and a strongly varying phase Φ in our
setting, which renders direct numerical integration methods
unstable.
A viable alternative is to first perform a stationary phase

approximation of the ξ integral in Eq. (E5) and then compute
the remaining θ integral numerically. To this end, let FðξÞ
denote the total complex phase under the integral and
ξn ∈ ð0; 1Þ be all nondegenerate stationary points such that
F0ðξnÞ ¼ 0 andF00ðξnÞ ≠ 0. Explicitly, the points depend on
θ and are solutions to 2

ffiffiffiffiffi
ξn

p ½κδþΦ0ðξnÞ� ¼ κ sin θρS=R.We
may then approximate

Z
1

0

dξeiFðξÞ ≈
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πi

F00ðξnÞ

s
eiFðξnÞ: ðE6Þ

For the wave optics simulations of the Gauss and the
Laguerre-Gauss light pulses in the main text, we have a
numerical solver find ξn ∈ ð0; 1Þ for each relevant value of
sin θρS=R, compute Eq. (E6), and finally evaluate the θ
integral. The resulting radial diffraction pattern IðρSÞ is then
mapped onto a two-dimensional grid of 2001 × 2001 detec-
tor pixels and smeared over the finite detector pixel size as
described in Appendix C.

2. Ray tracing simulations

For direct comparison, we compute the light-induced
electron lensing using the approximation of geometric
optics. This omits diffraction effects and treats the electrons
as ballistic particles moving on piecewise rectilinear
trajectories (rays).
Each ray is initialized in the interaction plane with its

transverse position and its angle with respect to the optical
axis: η⊤0 ¼ ðx0 y0 θx;0 θy;0Þ. For a convergent probe, the
angles are given by θx;0 ¼ x=dc and θy;0 ¼ y=dc, where dc
is the distance from the interaction plane to the electron
crossover. The interaction with the ponderomotive potential
changes the angle in the x direction as θx;1 ¼ θx;0 þ
ℏ∇xφðx; yÞ=pz and analogously in the y direction. Here,
pz is the longitudinal momentum. Interaction-induced
changes in pz can be neglected. The positions x0 and y0
remain unchanged in the thin optics approximation. Free-
space propagation to the screen (distance d) is calculated as
ηs ¼ Sη1, where S is the free-space propagation matrix:

TRANSVERSE ELECTRON-BEAM SHAPING WITH LIGHT PHYS. REV. X 12, 031043 (2022)

031043-9



S ¼

0
BBB@

1 0 d 0

0 1 0 d

0 0 1 0

0 0 0 1

1
CCCA: ðE7Þ

The ray tracing simulation in Fig. 2(c) (top) is done using
the Monte Carlo method with 5 × 105 randomly sampled
starting conditions.
For the perfect lens calculations shown in Fig. 3(b), the

ponderomotive interaction is described analytically using
the ABCD matrix of a thin lens L:

L ¼

0
BBB@

1 0 0 0

0 1 0 0

−1=f 0 1 0

0 −1=f 0 1

1
CCCA; ðE8Þ

where the focus length can be calculated according to
Eqs. (F3) and (F5). The electron trajectories at the screen
are then described as ηs ¼ SLη0. We get an analytic
expression for the radius of the beam on the screen:

ρsðELÞ ¼ ρ0

�
1 −

d
fðELÞ

�
þ dθρ;0; ðE9Þ

where ρ0 and θρ;0 are defined by the outermost in-
coming beam.
Our simulation results in the main text agree well with

both the measured images and the Fresnel wave diffraction
results.

APPENDIX F: LENS CALCULATION

We now consider the ponderomotive phase of circularly
symmetric light pulses in order to realize electron lenses.
An ideal lens for electrons of wavelength λe would impart a
phase modulation to the electron wave that is quadratic in
the distance ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
to the optical axis:

φlensðρÞ ¼ −
π

fλe
ρ2; ðF1Þ

where the focal length f is positive for convex lenses and
negative for concave lenses.

1. Convex lens

The negative quadratic phase modulation of a convex
lens can be realized in the center of a focused Laguerre-
Gauss mode with radial index p ¼ 0 and azimuthal index
l ¼ 1 (LG10). The spatial intensity profile of LG10 is then
given by

g210ðρÞ ¼
ρ2

w2
10

exp ð−2ρ2=w2
10Þ; ðF2Þ

where w10 is the beam waist of the Laguerre-Gauss mode.
Using a Taylor expansion around ρ=w10 ¼ 0, we get the
desired ρ2 dependence with g210 ≈ ρ2=w2

10 −Oðρ4=w4
10Þ.

We can now calculate the focal length of the pondero-
motive electron lens. We insert Eq. (F2) into the denomi-
nator in Eq. (D11) and its Taylor expansion into the
numerator and compare the coefficient of the quadratic
term with Eq. (F1). Eventually, we get

f10ðELÞ ¼ ð1 ∓ βÞ π
3w4

10Ee

2αλ2Lλe

1

EL
: ðF3Þ

The experimentally recorded intensity distribution
shown in Fig. 9(a) is not a perfect LG10 mode. Most
notably, the intensity does not go to 0 in the center, and
higher diffraction orders from the SLM make up for a
significant fraction of the measured pulse energy. This is
taken into account by fitting the distribution with the sum of
a dominant LG10 and a minor LG00 mode for the intensity
observed in the center. The residuals of this fit are shown in
Fig. 9(b) and amount to up to 5.3% of the peak intensity

(a)

(c) (d)

(b)

FIG. 9. (a) Spatial intensity distribution of the LG10 beam
measured in the conjugate plane. (b) Residuals of a fit to the
distribution. The fit function is a sum of a dominant LG10 mode
and a minor LG00 mode. (c) Cross cut showing the fit (orange)
and its LG10 (turquoise) and LG00 (blue) components, as well as
the quadratic Taylor expansion around ρ ¼ 0 (violet). (d) Diam-
eter of the electron beam at the detector as a function of the laser
pulse energy, along with the theory and an error region due to our
error in determining the waist of the dominant LG10 component.
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and less than 2.6% at the central part of the beam which is
illuminated by the electrons. The fitted distribution makes
up for 56% of the total laser power. Figure 9(c) shows a
cross cut through the fit and its LG10 and LG00 compo-
nents, along with a quadratic fit to the center of the
distribution. The quadratic coefficient is dominated by
the LG10 component, for which we get a waist of
w10 ¼ 4.51ð22Þ μm. In the experiment, the maximum
energy within the fitted distribution is EL ¼ 3.1 μJ, for
which we get a focal length of f ¼ 4.5 mm. Figure 9(d)
shows the measured diameter of the electron beam on the
detector. Because of the asymmetry in the light distribution
that is visible in the residuals, slightly cylindrical lensing is
observed in the experiment. Both here and in the calcu-
lation of the focal length, we use the geometric mean
between the fitted minor and major axes of the electron-
beam distribution at the MCP, which we deduce using
the Otsu segmentation method in the image processing
tool Fiji [70].
Figure 9(d) also shows a linear fit to the data (orange), as

well as the theoretical expectation from Eq. (F3) (dashed
line). Note also that our experimental 5% error in deter-
mining the waist of the beam enters the equation to the
fourth power, which yields the shaded area in the plot. The
two outliers at small pulse energies are not taken into
account in the fit. These are most likely due to misalign-
ment which proves difficult at low pulse energies. Apart
from these outliers, we see that the measurement became
more unstable at higher pulse energies, most likely due to
thermally induced misalignment.

2. Concave lens

The positive quadratic phase distribution for a
concave lens can be achieved with a Gaussian intensity
distribution. The spatial intensity profile of the Gaussian
beam is given by

g200ðρÞ ¼ exp ð−2ρ2=w2
00Þ; ðF4Þ

and its Taylor expansion around ρ=w00 ¼ 0 gives us
g200ðρÞ ≈ 1–2ρ2=w2

00 þOðρ4=w4
00Þ.

We calculate the phase modulation according to
Eq. (D11) and compare the coefficient of the quadratic
term to retrieve the focal length of the electron lens:

fðELÞ ¼ −ð1 ∓ βÞ π
3w4

00Ee

2αλ2Lλe

1

EL
: ðF5Þ

The experimentally recorded intensity distribution shown
in Fig. 10(a) is not a perfect Gaussian. Most notably, there is
an outer diffraction ring, as well as higher diffraction orders
from the SLM, that accounts for a significant amount of the
measured laser pulse energy. This can be seen in the residuals
of the Gaussian fit [Fig. 10(b)]. The electrons hit only the
central part of the distribution, where the error is <3%.

The fittedGaussianmakes up for 45%of the total laser power
and has a width of w00 ¼ 3.65ð18Þ m. Figure 10(c) shows a
cross cut of theGaussian, alongwith a quadratic fit to it. In the
experiment, the maximum energy within the Gaussian is
EL ¼ 2.5 J, resulting in a focal length of f ¼ −1.6 mm.
Figure 10(d) shows the measured diameter of the electron
beam on the detector and a linear fit to the data (orange), as
well as the theoretical expectation according to Eq. (F5)
(dashed line). Note that our experimental 5% error in
determining the waist of the beam enters the equation to
the fourth power, which yields the shaded area in the plot.
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