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Abstract

Rapid phenotypic adaptation is widespread in nature, but the underlying genetic dynamics remain controversial. Whereas population 
genetics envisages sequential beneficial substitutions, quantitative genetics assumes a collective response through subtle shifts in allele 
frequencies. This dichotomy of a monogenic and a highly polygenic view of adaptation raises the question of a middle ground, as well as 
the factors controlling the transition. Here, we consider an additive quantitative trait with equal locus effects under Gaussian stabilizing 
selection that adapts to a new trait optimum after an environmental change. We present an analytical framework based on Yule branch-
ing processes to describe how phenotypic adaptation is achieved by collective changes in allele frequencies at the underlying loci. In 
particular, we derive an approximation for the joint allele-frequency distribution conditioned on the trait mean as a comprehensive de-
scriptor of the adaptive architecture. Depending on the model parameters, this architecture reproduces the well-known patterns of se-
quential, monogenic sweeps, or of subtle, polygenic frequency shifts. Between these endpoints, we observe oligogenic architecture 
types that exhibit characteristic patterns of partial sweeps. We find that a single compound parameter, the population-scaled back-
ground mutation rate Θbg, is the most important predictor of the type of adaptation, while selection strength, the number of loci in 
the genetic basis, and linkage only play a minor role.
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Introduction
Quantitative traits (QTs) are everywhere in nature, from body size 
and milk yield to melanism and life expectancy. This has made 
the study of their evolution a subject of interest for more than a 
century (Walsh and Lynch 2018; Sella and Barton 2019). Ever since 
the modern synthesis, it has been clear that even complex QTs are 
governed by a finite genetic basis (Fisher 1918). Nevertheless, the 
genomic changes underlying phenotypic adaptation have long 
been elusive. Instead, much effort has gone into theoretical ex-
ploration. Two schools of thought—population genetics and 
quantitative genetics—developed independent narratives for the 
genetics of adaptation, with notable differences.

On the one hand, population genetics is concerned with the dy-
namics of allele frequencies. Consequently, adaptation is under-
stood as major changes in allele frequencies driven by selection. 
The archetypal scenario is a (hard) selective sweep, where an ini-
tially rare beneficial allele at a single locus quickly rises to fixation 
(Maynard-Smith and Haigh 1974; Kaplan et al. 1989; Barton 1998). 
More complex models examine sweep patterns in diversity and di-
vergence data across multiple loci in the basis of a trait or along a 
biological pathway (e.g., Gouy et al. 2017), discuss linkage and epis-
tasis, and the effect of recurrent sweeps on genome-wide diversity 
levels observable through genome scans (reviewed in Stephan 
2019). At the level of phenotype or fitness, this results in a view 

of adaptation via successive selective sweeps as discrete steps of 
a so-called adaptive walk (reviewed in Orr 2005).

On the other hand, quantitative genetics focuses on phenotype 
data. It thrives on being able to abstract from the underlying gen-

etics, which only enter as summary statistics across loci, such as 

the genetic variance and higher moments of the trait distribution 

(Turelli and Barton 1990; Bürger 2000). Accordingly, the dynamics 

at single loci do not play a role. This view is taken to the extreme in 

the infinitesimal model, where phenotypic adaptation in com-

pletely decoupled from the changes in underlying allele frequen-

cies (Barton et al. 2017; Fisher 1918). At the genotypic level, 

adaptation is viewed as tiny allele frequency shifts at a myriad 

of loci with small individual effects, but these dynamics are not 

explicitly described.
After decades of research with little exchange between com-

munities, the emergence of data from genome-wide association 

studies (GWAS) led to a growing interest in an integrated view 

linking phenotypic adaptation with its genetic underpinnings. 

Pritchard and colleagues (Pritchard et al. 2010; Pritchard and Di 

Rienzo 2010) proposed the concept of “polygenic adaptation” as 

an alternative to the selective sweep model with the goal of 

characterizing—and, if possible, detecting—patterns of QT 

adaptation at the genomic level.
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If adaptation can be either highly polygenic or involve only sin-
gle loci, this raises the question of a middle ground, that is, 
whether there is room for an “oligogenic view of adaptation” 
(Bell 2009), with its own characteristic patterns. To address this 
question, a framework is needed that connects the opposite end-
points and also covers the parameter range in between. Several re-
cent concept papers discuss such frameworks (Barghi et al. 2020; 
Láruson et al. 2020; Fagny and Austerlitz 2021).

It turns out that the decisive parameter for determining the 
type of adaptation is not simply the number of loci that underlies 
a trait. What matters is a measure of redundancy (Barghi et al. 2020; 
Láruson et al. 2020), which determines how many alternative gen-
otypes that solve the adaptive task can be readily generated in a 
population (and therefore coexist), either from standing genetic 
variation (SGV) or new mutation. To make these notions precise, 
a model is needed.

Here, we consider a classical additive trait under Gaussian sta-
bilizing selection that adapts to a new trait optimum after an en-
vironmental change. This is a classic scenario that has been 
studied many times before (e.g., Lande 1976; Jain and Stephan 
2017b; Stetter et al. 2018; Thornton 2019; Hayward and Sella 
2022). We ask how adaptive progress of the trait mean toward 
the new optimum breaks down into contributions of alleles at 
the underlying loci. Specifically, we develop an analytical theory 
to approximate the joint distribution of these allelic contributions 
across replicates.

Our method builds on a two-step approach first used in Höllinger 
et al. (2019) to describe adaptation of a binary polygenic trait (such as 
pesticide resistance). In the first step, a multi-type branching pro-
cess is used to infer the joint frequency distribution of co- 
segregating alleles, as long as these frequencies are small and 
strongly affected by genetic drift, but hardly interact (both before 
and after the environmental change). The second step describes 
how this distribution is transformed when the frequencies grow lar-
ger. While genetic drift can be ignored in this phase, epistatic inter-
actions begin to play a role. This transformation is straightforward 
for a binary trait, but it can be extended to a much larger class of 
models, including the additive QT, in particular.

In this manuscript, we describe this method for the case of a 
trait with arbitrarily many unlinked additive loci of equal effect. 
We derive the joint frequency distribution of all alleles that con-
tribute to phenotypic adaptation at arbitrary, fixed values of the 
mean trait. The results show how the genotypic patterns change 
with an increasing phenotypic distance and provide a comprehen-
sive classification of adaptive architectures, from single, consecu-
tive sweeps to small polygenic shifts. In particular, we describe 
and discuss the characteristics of oligogenic architectures that 
lie between the better known monogenic or highly polygenic 
endpoints.

The remainder of the article is organized as follows: In the 
“Model and methods” section, we first introduce the model and 
the assumptions of the simulation methods (individual-based 
(IB) and Wright–Fisher). Then, both steps of the analytical ap-
proximation are explained, while all detailed derivations can be 
found in the separate Supplementary File S1. In the “Results” 
section, we compare the analytical predictions with simulation 
results and describe the most important patterns for both short- 
and long-distance adaptation. We also assess the effects of 
linkage between selected loci. The “Discussion” section examines 
key notions and highlights the scope and limits of the model. The 
Appendix shows complementary figures. Scripts and data are de-
posited on Dryad (DOI: https://doi.org/10.5061/dryad.573n5tbc9, 
Höllinger et al. 2023).

Model and methods
The model
We model a panmictic population of size Ne and follow the 
adaptation of an additive QT, Z, that is governed by L loci. Each lo-
cus i ∈ {1, 2, . . . , L} is biallelic with alleles ai and Ai and equal effect 
sizes set to 0 (for ai) and γ > 0 (for Ai). We focus on haploid genetics 
in the main text for simplicity, and present extensions to diploids 
in the Appendix (Section “Adaptation with linkage”). With ηi ∈ 
{0, 1} indicating the allelic state, we thus have

Z =


1≤i≤L

ηiγ. (1) 

Wrightian fitness is modeled by time-dependent Gaussian stabil-
izing selection towards a trait optimum Zopt(t),

W(Z) = exp −
σ(t)
2

(Z − Zopt(t))
2

 

, (2) 

where σ(t) > 0 (the inverse width of the fitness function) measures 
the selection strength. At time t = 0, a sudden environmental 
change occurs and the trait optimum jumps from the ancestral 

optimum, Zopt(t < 0) = Z0
opt, to a new optimum, Zopt(t ≥ 0) = 

Znew
opt > Z0

opt. As we will see, the selection strength σ(t), which may 

be constant or variable, does not affect our results.
Denote the frequency of the Ai allele in the population as pi. 

New mutations from ai to Ai arise at rate μi per generation and 
back-mutations at rate νi. Loci may be linked, assuming a single 
linear chromosome with recombination rate r between neighbor-
ing loci. Prior to the environmental change, population variation 
segregates at mutation–selection–drift balance. If locus mutation 
rates are sufficiently small (and/or selection is sufficiently strong), 
the trait mean is Z̅ =


i piγ ≈ Z0

opt. Moreover, allele frequencies, pi, 
in the SGV follow a U-shaped distribution, such that, for an ances-
tral trait optimum of Z0

opt = (L − d)γ, there are d ≤ L loci almost fixed 
for the ai allele (pi ≈ 0, “beneficial variation”), while L − d loci are al-
most fixed for the Ai allele (pi ≈ 1, “deleterious variation”) at t = 0. 
The case of no SGV is formally included in this framework as the 
limit of very strong purifying selection (very large σ(t) for t < 0).

After the environmental change, the trait mean Z̅ starts to 
move toward the new optimum. During this adaptation process, 
we take “snapshots” of the population, that is, we record all allele 
frequencies when the trait mean reaches Z̅ = Z0

opt + cZγ ≤ Znew
opt (see 

Fig. 1). Here, cZ measures adaptation at the level of the phenotype 
in units of mutational steps. The joint distribution of allele frequencies 
across evolutionary replicates at such phenotypic passage points 
serves as our measure of the adaptive architecture (following 
Höllinger et al. 2019; Barghi et al. 2020). An overview over the 
used nomenclature is provided in Table A1.

Individual-based simulations
We resort to IB simulations to compute the full adaptation dy-
namics in discrete time for a population of Ne haploids. Each gen-
eration, Ne mating pairs are chosen via stochastic acceptance 
(Lipowski and Lipowska 2012) according to their fitness Equation 
(2). For each pair, a binomially distributed number of crossover 
points are randomly placed on a single chromosome to construct 
the genotype of a single recombinant offspring individual: the 
probability of a recombination event between neighboring sites 
is r. This is followed by bidirectional mutation (ai ↔ Ai), where 
the number of mutated sites in the entire population is Poisson 
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distributed with parameter NeLμ. This completes the simulated 
life cycle.

All individuals are initialized with d randomly chosen loci carry-
ing the allele ai and L − d loci with Ai in order to match the ancestral 
optimum, Z̅ = Z0

opt. Then, the population equilibrates for 20Ne gen-
erations under constant stabilizing selection to reach mutation– 
selection–drift balance prior to the environmental change. At t = 0, 
the optimum jumps to Znew

opt , and the population starts to adapt. 
Allele frequencies at all loci and the full phenotype distribution 
are recorded when Z̅ first reaches a prescribed value, 
Z̅ = Z0

opt + cZγ. We usually consider a population of size Ne = 
1,000 and summarize results for 10,000 replicates. Further de-
tails can be found in the Computational Supplement (uses 
Mathematica by Wolfram Research 2019) and the provided IB 
simulation script (in C++, Stroustrup 2013).

Linkage equilibrium simulations
For weak selection and/or strong recombination, we can ignore all 
linkage disequilibria (LD) and reduce the multi-locus dynamics to 
the dynamics of single-locus frequencies, pi. Analytic expressions 
for the single-locus dynamics can be derived for a large class of 
models (see Supplementary File S1). For Gaussian selection, in 
particular, the single-locus equations are well known (Wright 
1935a, 1935b; Barton 1986; de Vladar and Barton 2014; Jain and 
Stephan 2015, 2017b),  

ṗi = pi(1 − pi)σ(t)γi

· (Zopt(t) − Z̅) −
γi

2
(1 − 2pi)

 
+ μi(1 − pi) − νipi. (3) 

The first selection term, Zopt(t) − Z̅, describes directional selection 

toward Zopt(t). It dominates as long as the trait mean is sufficiently 

far from the optimum, which is typically the case in the early 
phase of rapid adaptation. The second term, (γi/2)(1 − 2pi) corre-
sponds to disruptive selection and dominates the dynamics 
once the trait mean gets very close to the new optimum. In this la-
ter phase of adaptation, selection for reduced genetic variation 
drives alleles to the boundaries of the allele frequency range— 
either to loss or fixation.

We can assess these dynamics using efficient Wright–Fisher 
simulations that track loci separately in discrete time. Allele 
frequencies at a locus in the offspring generation are generated 
by forward and backward mutation with equal rates, 
Θi/2 = Neμ, followed by binomial sampling to implement selec-
tion and drift. Let the sampling weight of the ai allele be nor-
malized to 1, then the weight of the Ai allele is given by its 
Wrightian (multiplicative) fitness, corresponding to the selec-
tion term in Equation (3),

exp σ(t)γi (Zopt(t) − Z̅) −
γi

2
(1 − 2pi)

  
. (4) 

Fig. 1. Modeling approach. a) After an environmental change, the optimum of a trait Z under Gaussian stabilizing selection, W(Z), shifts from Z0
opt to Znew

opt 
(orange/left and green/right bell curves). The population adapts from mutation–selection–drift balance (SGV). Allele frequencies at all L loci underlying 
the trait are recorded once the trait mean, Z̅, reaches a predefined value (gray arrow). b) We dissect the adaptive process into separate phases: During the 
early establishment phase, both prior and after the environmental change, mutant allele frequencies are typically small. Mutants evolve largely 
independently, but are strongly affected by the stochastic forces of new mutation and genetic drift. Once beneficial mutants have grown to higher 
frequency, stochasticity can be ignored, but competition and epistatic interaction become relevant. As long as the mean phenotype is not too close to the 
new optimum, Z̅ ≪ Znew

opt , directional selection prevails and leads to rapid adaptation. Close to the optimum, the dynamics slow down, and evolution 
under weak disruptive selection leads to a depletion of variation. (C) We use a multi-type Yule branching process to track the allele counts at different loci 
during the establishment phase. The process only follows “immortal” mutant lineages that escape loss due to drift. New immortal lines originate either 
via new mutation at all loci, or by birth events (splits) of existing lines.

A theory of oligogenic adaptation of a quantitative trait | 3
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/225/2/iyad139/7238502 by guest on 21 D
ecem

ber 2023

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad139#supplementary-data


The dynamics at individual loci influence each other via the 

mean trait, Z̅, which is recorded in every generation. Allele fre-

quencies at all loci are reported whenever Z̅ reaches a prede-
fined value.

We usually simulate a population of Ne = 10,000 haploid indivi-
duals, with 3 ≤ L ≤ 10,000, loci underlying the trait, and evaluate 
10,000 replicates per parameter combination. Prior to the environ-
mental change, we let the population equilibrate for at least 8Ne 

generations to build up SGV. Further details can be found in the 
Computational Supplement and the included LE simulation script 
(in C++).

Analytical approximations
To obtain an analytical approximation for the joint allele fre-
quency distribution during rapid adaptation, we extend a frame-
work developed for a binary trait in Höllinger et al. (2019) to the 
case of an additive QT. The approach separates the dynamical 
process into two phases: an initial stochastic establishment phase 
and a subsequent deterministic phase during which established mu-
tants grow and compete (see Fig. 1b). Similar approaches have 
been used by Uecker and Hermisson (2011) and Martin and 
Lambert (2015) to describe the dynamics of a single locus and by 
Götsch and Bürger (2023) for independent loci.

We start with a population in mutation–selection–drift balance 
and the trait mean, Z̅, close to its ancestral optimum, Z0

opt. During 
the first, stochastic phase, mutant frequencies both before and dir-
ectly after the environmental change are small, such that epistatic 
interactions can be neglected. Assuming linkage equilibrium (LE), 
the dynamics at individual loci (due to drift, mutation, and selec-
tion) are approximately independent and can be described by a 
branching process. Once the frequencies of beneficial alleles be-
come sufficiently large, the phenotype adapts rapidly towards the 
new optimum, Znew

opt . Since drift and new mutation can be ignored 
during this phase, the allele frequency dynamics are effectively de-
terministic. They are driven by directional selection, but are no 
longer independent, because alleles at different loci are coupled 
due to (fitness) epistasis. Mutants also compete for their relative 
contribution to adaptive change in the mean trait. The end of this 
phase is reached, when the rapid change of the mean population 
phenotype slows down in the vicinity of the new optimum and 
the dynamics of disruptive selection and drift take over.

Yule branching process
During the establishment phase, we describe the allele dynamics 
by a multi-type Yule process (see Fig. 1c). This process tracks the 
origin and spread of mutations that successfully establish within 
the population, that is, that escape stochastic loss and leave des-
cendants in the population until observation. It thus corresponds 
to a coalescent genealogy, but is constructed forward in time, at 
multiple loci simultaneously. Details of the construction are given 
in the Supplementary File S1.

We denote the establishment probability of a new mutant copy 
(the probability that descendants still exist at the time of sam-
pling) as pest(t). Such copies found new “immortal lineages” of 
the Yule tree. Since selection is time-dependent, also pest(t) de-
pends on time. In particular, establishment of a later-beneficial 
Ai mutant is much less likely if it originates before the environ-
mental change (t < 0), while the allele is still deleterious. 
Analytical approximations for pest(t) lead to complex expressions 
(Uecker and Hermisson 2011), but this is not needed here. Our 

results simply exploit the fact that for small pi the establishment 
probability of mutants with the same phenotypic effect is (ap-
proximately) identical for all loci.

There are two events that create new immortal lines of the Yule 
process: New successful mutation (before and after the environ-
mental change) seeds novel Yule trees at rate

pmut,i(t) ≈ Neμi · pest(t) = Θi
pest(t)

2 

for locus i. Birth events lead to splits of existing immortal lines— 
branching of an existing Yule tree—at rate

psplit(t) ≈
pest(t)

2
.

We start the Yule process at some time t ≤ 0 before the first success-
ful mutation has originated and stop it when a certain number 
of immortal lineages has been generated. At this point, we as-
sess the distribution of immortal lineages across all loci. Since 
the rates of all events at loci are proportional to the same estab-
lishment probability, pest(t), we can drop this common factor if 
we are only interested in the sequence of events and not in their 
timing. (This is where our assumption of equal locus effects 
becomes important.) Mathematically, this corresponds to a 
time rescaling. On the new timescale, the process is time- 
homogeneous, with constant rates pmut,i = Θi and psplit = 1. For 

this simple process, we find that the distribution of ratios of allele 
frequencies of beneficial Ai mutants at the end of the stochastic 
phase is given by an inverted Dirichlet distribution (see Höllinger 
et al. 2019, and the Supplementary File S1).

Deterministic phase
Once the allele frequencies are no longer small, and as long as the 
trait mean is not yet very close to the new optimum, the dynamics 
of beneficial Ai mutants are well described by the deterministic 
directional selection model (Jain and Stephan 2017b),

ṗi = σ(t)γpi(1 − pi)(Zopt(t) − Z̅). (5) 

In terms of odds, ui : = pi/(1 − pi), this reads

u̇i = σ(t)γui(Zopt(t) − Z̅) 

such that odds ratios, ui/uj, remain constant under the dynamics,

∂
∂t

ui

uj
=

u̇iuj − uiu̇j

uj
2 = 0. (6) 

For small allele frequencies, ui/uj ≈ pi/pj. The distribution of 

odds ratios thus approximately follows the inverted Dirichlet 
distribution derived above from the Yule process. Due to 
Equation (6), the ui maintain this distribution throughout the de-
terministic phase. To obtain a result for the joint allele fre-
quency distribution, we need to transform the distribution of 
the odds ui back to the frequencies pi at the stopping condition 

for the mean trait Z̅.
In a wide parameter region, when effects of rare ai mutants 

(that change the trait mean in the opposite direction of phenotypic 
adaptation) can be ignored, the condition on frequencies pi and 
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corresponding odds ui of Ai mutants at the loci 1 to d (beneficial 
variation) at the sampling point reads

Z̅ − Z0
opt

γ
=
d

i=1

pi =
d

i=1

ui

ui + 1
= :cZ, (7) 

with cZ ∈ [0, d]. We then obtain the joint distribution of the pi with 

p1 = cZ −
d

i=2 pi and

P[{pi}|cZ]

=
1

B(Θ)

d

i=2

pi
Θi−1

(1 − pi)
Θi+1 1 +

d
i=2 pi(1 − pi)

(cZ −
d

k=2 pk)(1 +
d

k=2 pk − cZ)

 

· 1 +
1 +

d
k=2 pk − cZ

cZ −
d

k=2 pk

d

i=2

pi

1 − pi

 −Θ1

·
cZ −

d
k=2 pk

1 +
d

k=2 pk − cZ

+
d

i=2

pi

1 − pi

 −
d

i=2
Θi

,

(8) 

for i = 2, . . . , d, where

B(Θ) : =
d

i=1 Γ(Θi)

Γ(
d

i=1 Θi) 

is the multivariate beta-function and Γ is the gamma-function (see 
Supplementary File S1). Equation (8) is the analog of the joint dis-
tribution function for adaptation of a binary trait with only two 
phenotypes (Höllinger et al. 2019, Eq. 8). Note that the expression 
does not depend on any selection parameters (before or after 
the environmental change), but only on the mutation rates, Θi. 
For two loci, in particular, the marginal distribution at the second 
locus can be derived explicitly (p2 = p),

P[p | cZ] =
Γ(Θ1 + Θ2)
Γ(Θ1)Γ(Θ2)

p(1 − p) + (cZ − p)(1 + p − cZ)

(cZ − 2p(cZ − p))Θ1+Θ2

· ((cZ − p)(1 − p))Θ1−1((1 + p − cZ)p)Θ2−1
.

(9) 

For three or more loci, marginal distributions can only be ob-
tained by (d − 1)-fold integration. The special functional form 
of the joint distribution (cf., Ghorbel 2009) and its connection 
to the gamma distribution allow for efficient numerical techni-
ques and precise results even for highly polygenic traits and d of 
the order of 100 or 1,000. This is explained in detail in the 
Computational Supplement.

For high levels of SGV (large Θi, many loci) and/or small adap-
tation distances (small Z̅ − Z0

opt at sampling), the contribution of 
segregating minority ai mutants contributing to deleterious vari-
ation cannot be neglected. It is still possible to derive (and numer-
ically evaluate) an expression for the joint distribution of allele 
frequencies at all L loci underlying the trait for this case. Since 
the terms become increasingly complex, the results (and all deri-
vations) are relegated to the Supplementary File S1. The asso-
ciated, complete numerical solution procedure can be found in 
the Computational Supplement.

Results
Below, we compare our analytical results with comprehensive 
computer simulations and discuss characteristic features of 
the adaptive architecture of a QT across broad parameter 
ranges in terms of selection strength, mutation rates, number 

of loci in the genetic basis, linkage, presence/absence of SGV, 
and distance of the adaptive phenotype from its ancestral 
value.

Loci have equal strength in our model, and for simplicity we 
also assume equal locus mutation rates in the results part. This 
leaves two main sources of differences between loci: asymmetric 
initial conditions (some loci are nearly fixed for Ai alleles and 
others for ai alleles before the environmental change) and the sto-
chastic effects of mutation and genetic drift. We begin by explain-
ing how we define and represent “adaptive architecture.”

Adaptive architecture
Following Barghi et al. (2020), the adaptive architecture of a trait 
informs about the number and relative contributions of loci that 
collectively cause a given level of phenotypic adaptation. By defin-
ition, the joint allele frequency distribution at all loci in the genet-
ic basis of the trait, taken across replicates at arbitrary points of 
phenotypic adaptation, provides an exhaustive description. 
However, for a trait with a genetic basis of more than a few loci, 
this is a complex high-dimensional quantity that needs to be pro-
jected onto one-dimensional marginal distributions for 
visualization.

Rather than simply marginalizing for a fixed locus, we follow 
Höllinger et al. (2019) and derive marginal distributions for groups 
of loci ordered by allele frequency. Therefore, we order all loci ac-
cording to the frequency of the Ai allele in each evolutionary rep-
licate. Since all locus effects are equal, this also corresponds to 
their relative contribution to the phenotype. We then construct 
univariate frequency distributions for loci with the same fre-
quency rank across replicates (which may be different physical 
loci between replicates). For L loci in the genetic basis of the trait, 
this yields a set of L size-ordered marginal distributions to visual-
ize the original L-dimensional joint distribution.

In designating frequency-ordered loci, we focus on the loci with 
Ai as minority allele (the “beneficial variation”), since these con-
tribute the largest allele frequency changes. We therefore often 
discard the (L − d) loci with the largest frequency of the Ai allele 
(assume them to be fixed) and call the locus with the 
(L − d + 1)-largest frequency the “major locus” of the adaptive pro-
cess. Subsequent loci are called the “first,” “second,” “third,” etc., 
minor loci, accordingly. This is consistent with Höllinger et al. 
(2019) and also with standard nomenclature. Indeed, although 
all locus effects are equal in our model, the major locus would typ-
ically yield the strongest signal in an association study of the 
adaptive trait (if there is any signal at all) because it has the largest 
frequency change.

Sampling in “pheno-time”
The adaptive architecture relates adaptive change at the 
level of the phenotype to changes in the underlying 
genotype. Accordingly, we record allele frequencies during the 
adaptive process not after a fixed time, but when a stopping 
condition Z̅ = Z0

opt + cZγ is reached for the mean phenotype 
(fixed pheno-time). For each sampling point, we calculate analytical 
predictions for the joint distribution of allele frequencies and 
compare them with numerical simulations.

In this manuscript, we focus entirely on the architecture of the 
early, rapid phase of adaptation, while the trait is still predomin-
antly subject to directional selection. We thus consider sampling 
points before the trait mean reaches the new optimum, Z̅ < Znew

opt . 
The architecture observed at these points is transient and is even-
tually replaced by a pattern of adaptive substitutions as stabiliz-
ing selection at the new optimum drives alleles to either loss or 
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fixation. In the following sections, we describe the key aspects of 
this transient architecture for scenarios of increasing complexity.

Architecture types and background mutation rate
We start with a particularly simple scenario that nevertheless 
highlights the key features of the basic architecture types. To 
this end, consider a trait with only three unlinked haploid loci 
that are all initially fixed for the ai allele (no SGV). Selection prior 
to the environmental change is directional toward the lower 
bound of the phenotype range, Z0

opt = 0. At t = 0, the trait optimum 
switches to the opposite end of the phenotype range, Znew

opt = 3γ. 
Adaptation occurs from recurrent new mutation, with the same 
rate Θ = 2Neμ at all three loci. We record the frequencies of Ai al-
leles when the trait mean has increased by a single mutational 
step, Z̅ = γ (i.e., cZ = 1), which is two steps below the new optimum.

Figure 2 shows the marginal distributions of the major locus 
with the largest allele frequency at sampling (red), followed by 
the first and second minor loci (dark and light blue, respectively) 
for various values of the mutation rate, where Θbg = 2Θ = 4Neμ 
measures the background mutation rate that is further discussed be-
low. We show Wright- Fisher simulation results (assuming LE) for 

two models: dots for the full model (Equations 3 and 4) and aster-
isks for the simplified directional selection model, Equation (5), 
without the disruptive selection term of the full model (the second 
term in Equation 4). The analytical predictions (solid lines) show a 
perfect fit for the directional selection model, for which they were 
derived. For the full model (dots) deviations become visible, as all 
marginal distributions are slightly pushed towards the boundar-
ies of the frequency range by the disruptive selection term (with 
a relative strength of up to 1/4 of the strength of directional selec-
tion). In more detail, we observe the following: 

• For very low mutation rates, Θbg ≲ 0.1, the adaptive change in 

phenotype is usually accomplished by a single locus. 
Adaptation thus occurs by a classic selective sweep at the 
first locus where an Ai allele appears and is picked up by se-
lection. This locus is the major locus with a pronounced peak 
of its frequency distribution (red) at 1. Both minor loci hardly 
contribute to adaptation at all (blue distributions peak at 0). 
Note that this strong heterogeneity across loci is not visible 
in the marginal distribution of a single focal locus, since all 

Fig. 2. Types of adaptive architecture. After an environmental change, an initially monomorphic trait adapts from Z = 0 towards a new optimum at 
Znew

opt = 3γ, using new beneficial mutations at three loci. We observe the marginal distributions of ordered allele-frequency classes when phenotypic 
adaptation has proceeded by one mutational step, Z̅/γ = cZ = 1. Analytical predictions (lines) are compared to the numerical simulations of the directional 
selection model (asterisks) and the full model (dots). In each panel we display the distributions of (from left to right) the second minor, first minor and 
major locus. We find three distinct patterns of adaptive architectures: single selective sweeps for low Θbg, partial sweeps for intermediate Θbg and a 
collective, shift-like response of all three loci for high Θbg. Ne = 10,000, Neσγ2 = 100, 100,000 replicates. Note the differences in the y-axes ranges.
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three loci can end up as the major locus with equal 
probability.

• For intermediate mutation rates, 0.1 ≲ Θbg ≲ 10, the distribu-

tions of major and minor locus frequencies are still clearly 
distinct. However, minor loci now also contribute significant-
ly to phenotypic adaptation, leading to two (Θbg = 0.1: major 

and first minor) or even three (Θbg ≥ 1: all loci involved), par-

tial sweeps.
• Finally, at high mutation rates, Θbg ≳ 10, the three marginal al-

lele frequency distributions of major and minor loci gradually 
converge. Phenotypic adaptation occurs via the collective and 
homogeneous response at all three underlying loci (frequency 
shifts around 1/3 at all three loci for a 3-locus trait).

The striking differences in adaptive architecture, from heteroge-
neous single sweeps to homogeneous collective shifts, reflect 
the decreasing role of stochasticity for the evolutionary process 
as Θbg increases. All characteristic features are captured by the 
analytical approximation of the joint distribution, Equation (8).

The background mutation rate Θbg

The type of architecture, between sweeps and shifts, is already 
decided early in the initial stochastic phase of the adaptive pro-
cess. As it turns out, its degree of homogeneity is largely deter-
mined by a single composite parameter, the so-called 
background mutation rate Θbg (Höllinger et al. 2019). For a haploid 
model with equal locus mutation rates μ and d ≤ L loci carrying an 
ai majority allele for t < 0, it reads

Θbg = 2Neμ(d − 1). (10) 

Θbg can be understood as a measure of redundancy (Barghi et al. 

2020), because it measures the total mutational input of beneficial 
alleles with an equivalent effect to the allele at the major locus 
and are thus redundant options for the next adaptive step. Its 
role in the process can also be understood as follows. Consider 
the early stochastic phase of adaptation described by the Yule 
process. At some point in time, the first Yule tree is seeded by 
the first Ai mutation that escapes stochastic loss. Then 1/Θbg is 

the average waiting time for a second Yule tree to emerge at a dif-
ferent locus (measured on the timescale of the exponential 
growth of the first Yule tree, which has a split rate of 1). Θbg 

thus quantifies the expected head start of the front-runner allele 
over its competitors, and thus the heterogeneity of allelic contri-
butions to the adaptive trait.

Effect of selection, trait basis size, and SGV
Equipped with these concepts, we can explore the adaptive archi-
tecture of an additive QT across a wider parameter space. In par-
ticular, we study the effects of the size, L, of the genetic basis and 
the selection strength, before and after the environmental 
change. We also include SGV as a source of adaptive variants.

Our basic setup is as follows: for a trait of size L (we use L = 10 
and L = 100 in the figures), we place the ancestral optimum in 
the middle of the phenotype range, Z0

opt = Lγ/2, where we let the 
population equilibrate to mutation–selection–drift balance. LE is 
assumed. At time t = 0, the trait optimum jumps to a new value 
at a distance of three mutational steps, Znew

opt = Z0
opt + 3γ. As in the 

previous section, we record the adaptive architecture once the 
trait mean has increased by one mutational step (Z̅ = Z0

opt + γ, 
that is, cZ = 1). Adaptation over larger distances and effects of LD 
are discussed in the following sections. When comparing adaptive 

architectures of traits with different size L of their genetic bases, 
we need to decide how model parameters are scaled. Following 
the insights of the previous section, we first make sure that the 
background mutation rate Θbg = 2Neμ(L/2 − 1) is kept constant in 
all comparisons. We further keep the scaled selection strength 
Neσγ2 prior to the environmental change constant, which leads 
to total expected levels of SGV that are (almost) independent of 
Ne and L (see the Supplementary File S1, Remark 3, for details).

Figure 3 summarizes the effects of three parameters on the 
adaptive architecture: the background mutation rate Θbg (be-
tween 0.01 and 100), the selection strength Neσγ2 (10 for weak 
and 100 for strong) and the number of loci L (10 and 100). The 
simulation results are compared with analytical predictions. 
Most importantly, we see that neither selection strength nor trait 
size nor the origin of the mutations from SGV or new mutation has 
a qualitative effect on the adaptive architecture (compare panels 
in the same row of Fig. 3 and with the same Θbg in Fig. 2). As in the 
three-locus case, the background mutation rate emerges as the 
(only) crucial parameter for determining the architecture type or 
mode of adaptation: For Θbg ≲ 0.1, we observe a single sweep at 
the major locus, while all other loci remain fixed at pi = 0 or 1. 
At intermediate values, 0.1 ≲ Θbg ≲ 10, adaptation proceeds via 
partial sweeps at a limited number of loci. The relative contribu-
tion of different (but identical) loci remains very heterogeneous 
(major and minor loci), highlighting a dominant role of genetic 
drift. For large Θbg ≥ 10, very many loci contribute to adaptation. 
Individual contributions become more homogeneous, and thus 
approach 1/L, leading to “subtle allele frequency shifts” for traits 
with a large genetic basis. For a detailed, quantitative assessment, 
we distinguish parameter regions where the purging of deleteri-
ous mutations does or does not play a role for phenotypic 
adaptation.

Adaptation dominated by beneficial variants
When a trait under stabilizing selection adapts to a shift in the op-
timum, there are two ways how selection on SGV can contribute: 
either by increasing the frequency of beneficial mutants (Ai), or by 
eliminating deleterious mutants (ai) that change the phenotype in 
the opposite direction. In our example, with the original trait opti-
mum in the middle of the phenotype range, half of the loci may 
carry rare Ai alleles and the other half rare ai mutants for t ≤ 0. 
After the environmental change, the former constitute the “bene-
ficial variation” and the latter the “deleterious variation.”

There is a large parameter range in which the maximal contri-
bution of all rare deleterious variants to the change in Z̅ (by elim-
inating all of them) is small relative to the total adaptive change 
in Z̅. This is the case if mutation rates are small and/or stabilizing 
selection is strong, such that levels of SGV are low. In contrast, 
even single beneficial mutants can make a substantial contribu-
tion if they progress to fixation from a low starting frequency or if 
they originate as a new mutation after the environmental 
change.

In Fig. 3, there is hardly any deleterious variation segregat-
ing at sampling for weak selection and Θbg ≤ 0.1, and for strong 
selection and Θbg ≤ 1 (orange/yellow/green colors). We can 
thus assume that the corresponding loci are fixed for the Ai al-
lele in the joint distribution and use Equation (8) to describe 
the joint variation at the beneficial loci. The analytical 
prediction is independent of selection parameters. Its good fit 
shows that the adaptive architecture, in this parameter region, 
neither depends on the strength of stabilizing selection prior to 
the environmental change (and, hence, on the amount of SGV) 
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nor on the strength of directional selection that drives the 
adaptation.

Contribution of deleterious variation
For high initial levels of SGV (high mutation rates and/or weak se-
lection), deleterious variants are not yet fully purged at the sam-
pling point (orange/yellow/green distributions in Fig. 3). Since 
the beneficial variation must compensate for the effect of the 
deleterious variation, this affects the distributions at all loci. In 
particular, this makes the adaptive architecture dependent on se-
lection before the environmental change, because the strength of sta-
bilizing selection affects the amount of SGV. As an example, 
consider the case L = 10 and Θbg = 1 in Fig. 3. With weak selection, 
substantial amounts of SGV accumulate before the environmen-
tal change (shown as open squares), and some of the deleterious 
variation is not yet eliminated at the time of sampling. In contrast, 
with strong selection, the deleterious variation is completely lost. 
The distributions at the beneficial loci are similar in both cases, 
but not identical. The differences between weak and strong selec-
tion become larger for higher mutation rates, such as Θbg ≥ 10.

Our approximation can account for the contribution of both the 
beneficial and the deleterious variation to the adaptive architec-
ture, see the Mathematical and Computational appendices for de-
tails. In short, the joint distribution of beneficial and deleterious 
minority alleles still follows a transformed Dirichlet distribution, 
as in Equation (8), but with an additional parameter κ to scale 
down the frequencies of the deleterious variants relative to the 
beneficial variants. This scaling factor depends on the total 
amount of SGV and thus also on the selection intensity before 
the environmental change. In the figure, we use this extended ap-
proximation in all panels with Θbg ≥ 1, where non-trivial contribu-
tions of deleterious variation can occur. For Θbg ≤ 0.1, the scaling 
factor becomes κ ≈ 0 and the extended approximation reduces to 
Equation (8).

Effect of the number of loci L underlying the trait
Even if a trait is highly polygenic, phenotypic adaptation can be 
oligogenic if the number of loci that contribute to the adaptive 
change is much smaller. Indeed, our results show that the poly-
morphic part of the adaptive architecture is hardly affected by 
the size of the genetic basis at all, as long as L is sufficiently large 
(or the background mutation rate Θbg sufficiently small) such that 
typically fewer than L loci are polymorphic. In this case, differ-
ences in the number of loci L only lead to differences in the num-
ber of fixed loci at frequency 0 or 1 (compare L = 10 and L = 100 in 
Fig. 3 for Θbg ≤ 0.1 and approximately still for Θbg = 1). This neces-
sarily changes for larger background mutation rates once traits 
with a smaller genetic basis run out of further loci that could con-
tribute to adaptation (Θbg ≥ 10 in Fig. 3).

We can use the approximate invariance of the adaptive architec-
ture on L to describe the adaptive dynamics of a trait with a large gen-
etic basis by a simpler model with few loci and rescaled locus 
mutation rates. As explained above, 1/Θbg is the expected waiting 
time between the origin of the first and second beneficial mutation 
that contribute to phenotypic adaptation (the first and second Yule 
tree in our framework). Following Höllinger et al. (2019), we can refine 
this approach and match the waiting time between the first Yule tree 
and its jth follower to approximate the distribution of the jth minor 
locus. Details are given in the Computational Supplement.

In Fig. 3, we show how the marginal distributions of the loci 
with the largest contribution to the adaptive change for traits 
with L = 10 or 100 can be approximated by a 2-locus model (for 
Θbg = 0.01) or a 3-locus model (for Θbg = 0.1 and 1). The match is 

excellent (with lines almost indistinguishable from the full ap-
proximation for Θbg ≤ 0.1) whenever the number of contributing 
loci does not exceed the size of the approximating model. For 
Θbg = 1, where often more than three loci contribute, deviations 
appear. In particular, oligogenic adaptation beyond single sweeps 
is a collective phenomenon that cannot be reduced to a single- 
locus picture. Due to our conditioning on the phenotype (and 
also due to fitness epistasis), the shapes of the marginal 
distributions at different loci with segregating alleles are not 
independent.

Limits of the analytical approximation
The approximation produces a good fit of the simulation data, as 
long as the relevant alleles are confined to relatively small fre-
quencies ≲10% in the SGV. When the initial allele frequency distri-
butions (open squares) extend to intermediate frequencies, two 
factors become important that are not included in the Yule for-
malism. First, disruptive selection (the term ∼2p − 1 in Equation 
3) adds a frequency-dependent component that increases the dis-
tance between the major and minor locus distributions in the SGV 
and, consequently, also in the adaptive architecture. This is clear-
ly visible, for example, for Θbg = 10 and weak selection in Fig. 3. 
Second, for large mutation rates, back-mutation becomes an im-
portant factor in shaping allele frequency distributions in the 
SGV. When strong mutation overwhelms selection, all allele fre-
quencies are pushed toward the mutation equilibrium (pi = 0.5 
for equal forward and backward rates). This decreases rather 
than increases the distance between major and minor locus distri-
butions. Sometimes the effects of mutation and disruptive selec-
tion can almost cancel (e.g., for L = 10, Θbg = 100, weak selection 
in Fig. 3), but usually they do not, leading to deviations from the 
theoretical predictions. Note that high mutation rates per se do 
not compromise the approximation if the SGV is controlled by 
strong selection (for Neσγ2 = 100 and L = 100, Θbg = 100) or if adap-
tation occurs only from new mutation (cf., Fig. 2).

Adaptation dynamics across larger distances
So far, we have analyzed the types of adaptive architecture that 
emerge at a single point in the very early phase of phenotypic adap-
tation—a change of Z̅ by one mutational step. We now complement 
this “single snapshot” with a dynamic approach to explore the 
changes in the adaptive architecture as the mean trait evolves across 
larger phenotypic distances toward a more distant optimum.

In Fig. 4, we track the adaptation dynamics of a haploid trait 
with 10 identical loci evolving from mutation–selection–drift bal-
ance around an ancestral optimum at Z0

opt = 2γ to a new optimum 
six mutation steps away, Znew

opt = 8γ. We display marginals of the 
joint allele frequency distribution at five points throughout the ra-
pid adaptive phase, when the trait mean Z̅ reaches consecutive 
values one to five mutational steps away from the ancestral 
optimum (i.e., Z̅ = 3γ, . . . , 7γ). As in the previous section, we exam-
ine five orders of magnitude for the background mutation rate, 
Θbg = 7 · 2Neμ = 0.01, . . . , 100 (at the first mutational step, the 
major locus has 7 competing minor loci). We assume strong selec-
tion (Neσγ2 = 100). Additional figures for traits with 10 and 100 loci 
are provided in the Appendix (Section “Adaptation with LE”).

The first column in Fig. 4 (after a single mutational step) is 
analogous to Fig. 3 and shows different types of adaptive architec-
tures, from a single sweep to collective shifts, as the background 
mutation rate increases. Further columns show that the type of 
the adaptive architecture is largely preserved at later observation 
points, while the color coded distributions of frequency-ordered 
loci move towards fixation at frequency p = 1. For small Θbg < 1, 
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we obtain a pattern typical of mutation-limited adaptation with 
successive and largely non-interfering selective sweeps. For large 
Θbg ≥ 1, we observe concerted movement of alleles at several (or 
all) loci simultaneously.

Limit shapes of adaptive architecture
From the figure panels of Fig. 4 (clearest for small mutation rates), 
it appears that the adaptive architecture, when observed at inter-
vals of kγ (full mutational steps), approaches a “quasi-stable” limit 
as phenotypic adaptation progresses. The shape of the joint distri-
bution remains almost invariant, while the role of each locus 

within this joint distribution changes: a locus that contributes a 
small-frequency allele after the first step will contribute a larger 
frequency after the second and later steps, etc. In combination, 
these changes effectively lead to one fewer locus fixed at 0 and 
one more fixed at 1 with each step, but a constant pattern in the 
interior of the frequency space.

A stable limit shape requires that sufficiently many loci have 
traversed the entire frequency range from 0 to 1. This happens 
quickly in the sweep regime with only few segregating loci, but 
takes much longer for large Θbg when adaptation is achieved by 
small shifts at many loci. A limit is never reached if the distance 

Fig. 3. Effect of selection strength and trait basis size on the adaptive architecture of a QT. The shape of the adaptive architecture, indicating selective 
sweeps (Θbg ≤ 0.01), partial sweeps (0.1 ≤ Θbg < 10), or shifts (Θbg ≥ 10), is independent of the selection strength and the number of loci in the trait basis. 
For a trait of size L = 10 or L = 100, the optimum shifts at time t = 0 from Z0

opt = Lγ/2 to Znew
opt = Z0

opt + 3 · γ. Stabilizing selection is either weak (Neσγ2 = 10) or 
strong (Neσγ2 = 100). The allele frequency distributions of all loci ordered according to their frequency are obtained from simulations at t = 0 (SGV, open 
symbols) and after adaptation of a single mutational step, Z̅ = cZ = 1 · γ (closed symbols). Lines show the analytical approximation, using either the full 
L-locus model (solid lines) or a 2- or 3-locus formalism where closed expressions can be derived (dashed lines), see the text for details. For L = 100, the 
distributions of the 10 “middle” loci (46 through 55), which correspond most closely to the 10-locus case, are shown in color. All other distributions are 
shown in gray. Ne = 10,000, 10,000 replicates. Note the differences in scaling of the y-axis.
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to the new optimum is too small, or if the trait runs out of further 
loci that could start their adaptive course at p = 0 before the first 
loci have reached frequency p = 1. In our example of a trait with 
only 10 loci, this is already the case for Θbg = 10. For traits with a 
larger genetic basis that adapt to a distant optimum, convergence 
can also be observed for larger background mutation rates (see the 
case Θbg = 10 for a trait with L = 100 loci in the Appendix, Fig. A1, 
and also Fig. 5 for L = 10,000 below).

A more detailed look shows that the limit distribution in our mod-
el is only quasi-stable. Indeed, due to the dwindling supply of adap-
tive material, the expected waiting time between the origin of one 
beneficial mutation and the next, and thus the distance between 
the corresponding marginal distributions, increases with each 
step. As a consequence, the joint distribution gradually becomes 
more U-shaped (or sweep-like), with lower probability weights at 
intermediate frequencies, as phenotypic adaptation progresses. 
In Fig. 4, this is most clearly visible for Θbg = 0.1 (see also the cases 
Θbg = 1 and Θbg = 10 in Fig. A1). Furthermore, see Fig. A2 in the 
Appendix for the dynamics of trait summary statistics for L = 10 
and 100.

We can describe this effect as a reduction in the “effective 
background mutation rate” that occurs when a trait with finitely 

many loci adapts over a longer distance. For the final adaptive 
step to the sampling point at Z̅ = kγ in Fig. 4, there are (10 − k) “re-
dundant” loci that are not required to reach this value, but can 
still contribute to adaptation and compete with the first k loci. 
We thus have an effective background rate of Θbg,eff = Θbg(10 − k) 
/7 in terms of the initial background mutation rate (for the first 
step, where k = 3). In our approximation of the 10-locus architecture 
by an effective 3-locus model (for Θbg ≤ 1 in Fig. 4), we match this ef-
fective rate Θbg,eff to obtain a good fit (for Θbg ≤ 0.1 the differences 
are hardly visible).

Highly polygenic traits
A model of a QT with a constant supply of new mutations (infinite 
loci or infinite alleles) would lead to a proper limit in the joint dis-
tribution without reduction in Θbg,eff . Such “clean” results can also 
be observed for a trait with a finite, but very large genetic basis. 
Figure 5 shows results for adaptation over a large phenotypic dis-
tance (up to 800 mutational steps) of a trait with an even much lar-
ger genetic basis of L = 10,000 loci.

Panels a and b of Fig. 5 show the (scaled) trait variance 
vg =


i pi(1 − pi), and the skew κ3(Z) =


i pi(1 − pi)(1 − 2pi), which 

are both summary statistics of the joint allele frequency 

Fig. 4. Adaptation across larger distances. Successive snapshots of the adaptive architecture are shown over the course of adaptation of a QT with 10 loci. 
Populations evolve from mutation–selection–drift balance around the initial optimum Z0

opt = 2γ toward a new optimum Znew
opt = 8γ after a change in the 

environment. Closed symbols show simulation results for the ordered marginal allele frequency distributions after a change in the trait mean Z̅ by cZ = 1 
to cZ = 5 mutational steps. The first column also shows the SGV distributions (open squares). Solid lines are analytical predictions for the full model, 
dashed lines (for Θbg ≤ 0.1) predictions from an adjusted 3-locus model (see main text). Ne = 10,000, Neσγ2 = 100, 10,000 replicates. Note the differences in 
scaling of the y-axis.
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distribution (the second and third cumulant). We evaluate 
these measures at multiple observation points for short-range 
(up to cZ = 20 mutational steps), mid-range (up to cZ = 125) and 
long-range (up to cZ = 800) phenotypic adaptation. For short- 
range, in particular, this includes sampling points at non- 
integer intervals of mutational steps, showing that the joint 
distribution oscillates with period γ. Periodic fluctuations are 
pronounced for low Θbg, where single peaks in the marginal dis-
tributions (representing ongoing sweeps) traverse the fre-
quency space, but become weak and almost disappear in the 
collective frequency-shifts regime.

While visual convergence to a stable limit period occurs within a 
few steps for small Θbg < 1, the adaptation distance that is required 
rapidly increases (roughly proportional to the number of co- 
segregating alleles) for more polygenic architectures: 9–10 steps 
for Θbg = 1, ≈70 for Θbg = 10, and almost 600 for Θbg = 100. Due to 
the large size, L = 10,000, of the genetic basis, the supply of further 
beneficial alleles does not change much, even over these distances. 
As a consequence, the slow change in the adaptive architecture that 
we have seen for L = 10 is no longer visible in the figure. In the 
Appendix (Section “Dynamics of Summary Statistics”), we show 
how the limit values for vg relate to analytical approximations. 
Convergence of the skewness to (a period around) zero reflects the 
fact that the limit architecture (if averaged over a period) is approxi-
mately symmetric for all values of the background mutation rate.

As shown in panel C of Fig. 5, a stable shape of the adaptive 
architecture results only for sampling points at constant 

phenotype (i.e., in “pheno-time”), but not in real time. Indeed, sto-
chastic effects on the waiting times between successive new mu-
tations lead to a broadening of the marginal distributions, when 
sampling occurs at a fixed time after the environmental change. 
For larger times, the probability density piles up at 0 and 1, and 
all characteristic features of the joint distribution are eliminated.

Our analytical approximation describes not only the limit dis-
tribution, but also all dynamical changes in the adaptive architec-
ture, as long as selection is primarily directional (Figs. 4 and A1). In 
particular, this includes a switch from using alleles from the SGV 
in the initial steps to primarily alleles that enter the population as 
new mutations in the later adaptive steps. This transition is seam-
less and occurs without any discontinuity in the shape of the joint 
distribution. Likewise, the shape of the limit architecture is not af-
fected by the decrease in the strength of directional selection as 
the trait mean approaches the new optimum.

Once the trait mean closes in on the new phenotypic optimum, 
the shape of the joint allele frequency distribution eventually does 
change due to the action of disruptive selection against standing 
variation. In Figures 4 and 5, these changes become visible at 
the last observation point. When we follow adaptation further, se-
lection against genetic variation pushes all frequencies toward 
the boundaries until all frequency distributions once again as-
sume the typical U-shape of mutation–stabilizing–selection bal-
ance. Thus, the shapes of adaptive architecture described above 
are only transient, their characteristic differences eventually dis-
appearing as the population equilibrates at the new optimum.

Fig. 5. Dynamics of adaptive architecture of a highly polygenic QT. Panels a) and b) show the expected genetic variance, 〈vg〉, and skew, 〈κ3(Z)〉, of the trait 
at sampling points in “pheno-time” for five values of Θbg = 0.01. Panel c) shows the adaptive architecture (ordered marginal distributions) for Θbg = 1, for 
sampling points in pheno-time (top row) and in real time (bottom). Stopping times are chosen such that the expected mean phenotype 〈Z̅〉 across 
replicates in real time corresponds to the trait mean Z̅ (in each replicate run) in the corresponding panel in pheno-time. Two central marginal 
distributions are shown in red (highest for the first two columns, later the one in the center for half steps or first above the center for full steps) and 
blue (next lower to red). To highlight the stability of the adaptive architecture at both full and half mutational steps in pheno-time, the colors are not 
attached to a fixed frequency rank (as in Fig. 4), but to the role of the locus in the joint distribution, that is, “red” is the largest locus in the first two 
panels, the 10th largest for panel 3 and 4, and the 200th largest for panels 5 and 6. Adaptation proceeds from a monomorphic starting state at Z0

opt = 
0 by recurrent, new mutations towards Znew

opt = 800γ. Ne = 10,000, L = 10,000, Neσγ2 = 1, 35,000 replicates. Note that the skew for Θbg = 10 and 100 in 
panel b) is downscaled as indicated: the inset comment “/10” indicates that presented data are 1/10th of the actual data.
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Linkage and ploidy
Our analytical results and all simulations so far assume LE be-
tween all loci under selection. This assumption becomes unrealis-
tic for highly polygenic traits when beneficial alleles co-segregate 
at many loci. In Fig. 6 and in the Appendix (Section “Adaptation 
with Linkage”), we present IB simulation results to address this is-
sue. In addition, we analyze how our results apply to diploid 
genetics.

We use rescaled mutation and selection parameters for our IB 
simulations with Ne = 1,000 to match the LE simulations with 
Ne = 10,000 of the previous sections. In particular, the selection 

intensity of σγ2 = 0.01 prior to the environmental change (that 
we will use throughout) corresponds to the case of “weak” selec-

tion (Neσγ2 = 10) in the previous figures. We assume that the loci 
underlying the trait are equally spaced on a single, linear 
chromosome, with recombination probability r ≤ 0.5 between 
adjacent loci. Accordingly, the recombination probability 
between two loci at distance Δℓ · r Morgan reads 

rΔℓ =
⌊(Δℓ−1)/2⌋

k=0
Δℓ

2k + 1

 

r2k+1(1 − r)Δℓ−2k−1 ≥ r. For 10 loci and 

r = 0.01, in particular, 0.01 ≤ rΔℓ ≤ r9 ≈ 0.08. This is of the same or-

der as the selection strength, which is σγ2 = 0.01 prior to the envir-

onmental change and 6 · σγ2 = 0.06 directly after the change. 
Recombination operates faster than selection (loose linkage) for 
r ≥ 0.1, whereas linkage is tight for r ≤ 0.001.

Figure 6 shows the effects of linkage on the adaptive architec-
ture of a 10-locus trait with background mutation rate Θbg = 1. 
At the environmental change, the trait optimum switches from 
Z0

opt = 2γ to Znew
opt = 8γ. Adaptation starts from SGV and is assessed 

at several values of Z̅, representing both full and half mutational 

steps. The top row represents the case of free linkage (r = 0.5). To 
validate our simulations and connect them to the previous sec-
tions, we also performed LE simulations for the same scenario, 
which are included in the figure as thin solid lines. For r = 0.5, 
we observe a perfect match for all sampling points, including at 
Z̅ = 7γ, close to the new optimum, where disruptive selection al-
ready has a strong effect. The same holds for r = 0.1 (loose linkage, 
second row). Even for r = 0.01 and r = 0.001 only minor deviations 
are visible, although linkage is strong and a comparison of 
the genetic variance, vg = Var[


i pi], and genic (or LE-)variance, 

vLE
g =


i Var[pi] (upper right corner of the figure panels) shows 

that negative LD build up. Negative LD is expected, both due to 
negative fitness epistasis and Hill–Robertson interference 
(Hill and Robertson 1966).

Larger deviations appear only for complete linkage (r = 0, bot-
tom row), as a consequence of strong clonal interference and “mu-
tational stacking” (Gerrish and Lenski 1998; Desai and Fisher 
2007). Although the dynamics in this limit are entirely driven by 
the competition among haplotypes, and site frequencies are 
only a by-product, the qualitative features of the adaptive archi-
tecture (as measured by the frequency-ordered single-locus mar-
ginal distributions) remain surprisingly robust.

Results for other values of the background mutation rate Θbg 

are presented in the Appendix (Section “Adaptation with linkage”). 
Generally, linkage effects are very weak for small Θbg ≪ 1, because 
multi-locus polymorphism is rare. They also become weaker for 
(very) large Θbg ≳ L, because recurrent new mutation at a locus re-
duces LD. Last, not least, we extend our results to diploid genetics. 
In the absence of dominance, we find perfect agreement (see 
Fig. A7) with the haploid predictions when the key model para-
meters (mutation rate, selection strength, effect sizes) are scaled 

Fig. 6. Effect of linkage on the adaptive architecture of a haploid QT (Θbg = 1). IB simulations with linkage (dots) are compared with LE results (lines). 
Numbers in the top right corner of each panel show the average genetic variance, vg = Var[


i pi], and genic variance, vLE

g =


i Var[pi] (in units of [γ2]). 
While negative LD build up once recombination is weaker than selection (vg < vLE

g for r ≲ 0.01 = σγ2), larger deviations of the adaptive architecture only 
emerge for (almost) complete linkage. Ne = 1,000, L = 10, Neσγ2 = 10, 10,000 replicates (IB), 125,000 replicates and very mild spline-smoothing for LE 
simulations.
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appropriately, see the Appendix (Section “Adaptation with link-
age”) for details.

Discussion
How genetically complex traits adapt to novel environments is a 
classical question of quantitative genetics. In the current study, 
we consider the standard model of quantitative genetics, an addi-
tive trait under Gaussian stabilizing selection that adapts to a shift 
in the trait optimum. However, we use a modeling approach (fol-
lowing Höllinger et al. 2019) rooted in population genetics. While 
we measure adaptive progress at the level of the phenotype, we 
set up an analytical framework to explicitly track the joint allele 
frequency dynamics at all loci of the genetic basis. The fundamen-
tal question is: How does a given level of phenotypic adaptation 
(change in the trait mean) translate into contributions (allele fre-
quency changes) at the underlying loci? We call this collective 
genotypic pattern, conditional on the phenotype, the correspond-
ing “adaptive architecture.” Mathematically, it is described by the 
joint distribution of beneficial allele frequencies across all loci of 
the genetic basis. Depending on the model parameters, this distri-
bution may describe large allele frequency changes at a few loci 
(i.e., sweeps) or small shifts at very many loci. Importantly, it 
sheds light on a large parameter range in between, where many, 
but not extremely many loci contribute to what we call oligogenic 
adaptation of a QT.

Adaptive architectures of a QT
When a QT adapts to a new optimum, there are two phases of adap-
tive evolution. First comes a (relatively) rapid phase driven by direc-
tional selection, during which the trait mean approaches the new 
optimum. This is followed by a (relatively much longer) equilibration 
phase of fine-tuning and allele sorting, in which selection against 
genetic variation and other, weaker evolutionary forces take over. 
Our model and results focus entirely on the first, rapid phase.

We assume a simple trait architecture with additive biallelic 
loci of all the same effect size. This assumption entails a permuta-
tion symmetry that greatly simplifies our mathematical analysis. 
While all loci are equivalent with respect to selection, they may 
differ due to the stochastic forces of mutation and genetic drift. 
The strength of directional selection is arbitrary and can (and usu-
ally does) depend on time and on the genetic background via epis-
tasis for fitness. We assume that the trait adapts either through 
new mutations or from mutation–selection–drift balance. Under 
these conditions, the adaptive architecture (the joint distribution 
of allele frequencies at loci contributing to phenotypic adaptation) 
is fully described by our analytical results, with the following 
main features.

A single composite parameter, the population background mu-
tation rate Θbg emerges as the critical factor to determine the 
characteristics of the adaptive regime, from a sweep-type archi-
tecture for small Θbg ≪ 1 to highly polygenic ones with small 
shifts for Θbg ≫ 1, and oligogenic patterns in between. 
Qualitatively, the background mutation rate can be understood 
as a measure of (expected) segregating redundancy (Láruson et al. 
2020): alternative adaptive mutants that likely co-occur in the 
population for the given mutation rates. From the standpoint of 
a single adaptive allele, it measures the extent of competition it 
(likely) faces from equivalent alleles at other loci that originate 
and/or rise in frequency in the time interval during which the fo-
cal allele is on its way to fixation. There are three important obser-
vations. First, the adaptive regime is independent of the strength 
of directional selection acting on the trait. The intuitive reason for 

this is that two effects of selection cancel: While the number of al-
ternative alleles that establish per generation increases with se-
lection (establishment probability pest ∼ s), faster growth 
shortens the time window for competing alleles to arise (∼ 1/s in 
the early phase of exponential growth). This result is analogous 
to the probability of soft selective sweeps, where the effects of se-
lection on pest and on the window of opportunity in which further 
beneficial alleles at the same locus can arise also cancel 
(Hermisson and Pennings 2005; Pennings and Hermisson 2006). 
Second, it does not matter whether adaptation occurs from SGV 
in mutation–selection–drift balance or only from new mutation. 
In particular, for a given Θbg, adaptation from SGV is not “more 
polygenic.” Indeed, the heterogeneity between allele frequencies 
of equivalent loci in the SGV is (maybe surprisingly) large and 
exactly the same as the one that results from recurrent new mu-
tation. Third, the size L of the genetic basis of the trait has only an 
indirect effect on the type of adaptation, via Θbg. In particular, 
adaptation for a highly polygenic trait (large L, as would be ob-
served in GWAS) can still be oligogenic or even sweep-like if bene-
ficial mutation rates are low. In this case, the adaptive process can 
readily be described by a low-dimensional effective model with 
small L and appropriately matched Θbg (see “Results”).

Adaptation dynamics in pheno-time
Our analytical method relies on a change of scale, on which the 
adaptive process is described. Instead of the usual time dynamics, 
we assess the adaptive architecture of a trait for fixed values of the 
corresponding trait mean, Z̅, that is, we follow “pheno-time” in-
stead of real time. From an empirical perspective, pheno-time is 
a natural choice because adaptive progress at the phenotypic level 
is often observable. Mathematically, the change of scale reveals a 
robust pattern that is not visible for replicate samples that are ta-
ken after a fixed time. Due to epistasis (the selection strength 
changes with the distance to the optimum) and genetic drift (repli-
cates reach phenotype values at different times), both scales are 
not related by a simple transformation.

We observe a gradual buildup of adaptive architecture with the 
following steps. Any adaptive process starts with small frequency 
changes of alleles in the SGV: on average across replicates, the fre-
quencies of beneficial variants slightly increase, while those of 
deleterious variants decrease. The adaptive architecture in this 
initial phase is simply a perturbed version of the joint allele fre-
quency distribution in the balance of mutation, stabilizing selec-
tion, and drift. The phenotypic distance that is traversed in this 
initial phase depends on the amount of SGV and thus not only 
on mutation rates, but also on the strength of stabilizing selection. 
It can be large in the highly polygenic regime (large mutation/se-
lection ratio, Θbg/(σγ2), in our model).

Subsequently, as frequency changes get larger, deleterious var-
iants are gradually purged from the population. The non-trivial 
polymorphic part of the adaptive architecture then consists pure-
ly of beneficial variants, both from SGV and from new mutation. 
Henceforth, the shape of the architecture is governed solely by 
the background mutation rate and is independent of the selection 
strength and the proportion of alleles that originate from SGV 
(which could be zero). In pheno-time, its shape follows the bene-
ficial alleles through frequency space and converges to a 
quasi-stable limit once these reach fixation. Alleles that exit the 
frequency space by fixation are replaced by alleles at other loci 
that enter by new mutation, as long as there is still a sufficient 
supply.

The quasi-stable limit shape reflects the type of phenotypic 
adaptation: isolated peaks in the size-ordered marginal 

A theory of oligogenic adaptation of a quantitative trait | 13
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/225/2/iyad139/7238502 by guest on 21 D
ecem

ber 2023



distributions represent successive sweeps, whereas broad distri-
butions at many loci with strong overlaps indicate highly collect-
ive modes of adaptation. Limit architectures are quickly reached 
for small background mutation rates, but require adaptation 
across large phenotype distances in the highly polygenic case.

Finally, once adaptation progresses over distances on the order 
of the total phenotype range, the shape slowly changes in the dir-
ection of a less polymorphic type (smaller Θbg) due to the dwin-
dling supply of new mutations. For a trait with finitely many 
loci, it is therefore only quasi-stable.

All these results assume that selection is directional, and the 
mean trait value has not yet reached the new optimum (the rapid 
phase in Hayward and Sella 2022) Once the new adaptive optimum 
is reached, selection at the locus level is no longer directional, but 
disruptive and generally much weaker. The slow process of allele 
sorting that follows, and the eventual return to equilibrium at the 
new optimum, are not captured by our formalism.

Theory of oligogenic adaptation
The adaptive architectures described by our framework interpol-
ate between two regimes that provide a simplified description of 
the adaptive process. In the “monogenic” limit, adaptation can 
be conceptualized as an adaptive walk. Stochastic effects are im-
portant in this regime and lead to a heterogeneous response (com-
plete sweeps at some loci, no response at others), but the 
individual steps of the walk are largely independent and can be 
described by single-locus theory (e.g., Kopp and Hermisson 
2009b). At the other, polygenic, end of the scale, phenotypic adap-
tation is a collective response of alleles at very many loci. Genetic 
drift can be ignored, and deterministic theory can be used to de-
scribe the initial, rapid adaptive phase (e.g., Lande 1983). Loci 
may interact, but as long as the individual allele frequency shifts 
are tiny, epistatic interactions hardly play a role.

In the intermediate, oligogenic regime, phenotypic adaptation 
is achieved by simultaneous allele frequency shifts at several, 
but not very many loci. In contrast to the monogenic case, adap-
tation is collective, and polymorphic alleles at different loci 
interact due to fitness epistasis. Sweeps are often partial, rather 
than completed, as beneficial alleles only rise to intermediate 
frequencies. In contrast to the highly polygenic scenario, how-
ever, frequency changes are more than just a perturbation of 
the standing variation. Stochastic effects are important and 
lead to heterogeneous contributions of otherwise identical loci 
(major–minor locus structure due to a mix of larger and smaller 
shifts).

Mathematically, oligogenic adaptation is the most challenging 
regime. Previous models mostly rely on deterministic theory 
and/or simulation studies. An insightful analytical approach is 
the model by Jain and Stephan (2015, 2017a, 2017b). Building on 
work by de Vladar and Barton (2014), these authors study an addi-
tive QT and derive frequency trajectories of single alleles with ar-
bitrary effects when adaptation occurs from deterministic 
mutation–selection balance. This initial condition favors 
small-effect alleles, which start from a high frequency of p = 0.5 
(de Vladar and Barton 2014). As a consequence, the prevalence 
of large, sweep-like allele-frequency changes depends on the ef-
fect size, with a higher prevalence of sweeps if locus effects are 
large. These results extend to finite populations if and only if 
the population-scaled mutation rate per locus is large, 
Θ = 2Neμ > 1, such that the distribution of weakly selected 
small-effect alleles in the SGV is unimodal (Devi and Jain 2023). 
In our model, with low Θ and/or stronger selection, alleles typical-
ly start from a low frequency. In this case, the type of adaptive 

architecture (sweeps or shifts) does not depend on the effect 
size. Instead, the background mutation rate Θbg (which does not 
exist in a deterministic model) emerges as the decisive parameter. 
Note that our notion of a “sweep-type architecture” only refers to 
the size of the change in allele frequency and not to the speed: 
Slow frequency changes for weak-effect alleles hardly produce a 
discernible footprint in linked neutral variation (Thornton 2019).

The closest correspondence to our study is the analysis of a bin-
ary trait in Höllinger et al. (2019), where the Yule-framework has 
first been used. In their model, adaptation to the new optimum 
is achieved by a single mutational step at one of several loci 
underlying the trait. Many results, such as the key role of the back-
ground mutation rate Θbg and the independence of the adaptive 
architecture from selection strength, are equivalent in both mod-
els, demonstrating their generality. However, phenomena of mul-
tistep adaptation, such as a stable limit architecture or the effect 
of deleterious variation, can only be studied for a QT.

A related method, combining a Galton–Watson branching pro-
cess with a deterministic logistic growth model, has recently been 
presented by Götsch and Bürger (2023) to study the adaptation of 
an additive QT under exponential directional selection from new 
mutation. Due to the absence of epistasis, the method can be set 
up in real time and allows for arbitrary locus effect sizes. Götsch 
and Bürger (2023) use the number of segregating alleles under se-
lection to characterize the adaptive architecture. Once again, the 
total population-scaled rate of new mutations Θt (the infinite-loci 
counterpart of our parameter Θbg) emerges as the main determin-
ant of the pattern of adaptation.

For highly polygenic traits, further analytical approaches be-
come available. They describe the dynamics of individual loci in 
a “mean-field” quantitative background, which evolves according 
to simple deterministic dynamics. The classical approach dates 
back to Lande (1983) and has been used by Chevin and Hospital 
(2008), Chevin (2019) to describe adaptation of a major-effect al-
lele (“QTL”) in a highly polygenic background approximated by a 
normal distribution. With stabilizing selection, single loci are 
quickly outcompeted by the joint action of the background, pre-
venting sweep-like changes. Sweeps only occur if the shift in trait 
optimum is large and large-effect alleles already contribute sig-
nificantly to the initial SGV (Chevin and Hospital 2008; John and 
Stephan 2020; Stephan and John 2020; Devi and Jain 2023).

An elegant alternative approach was recently developed by 
Hayward and Sella (2022). Their method uses that, for an additive 
trait and assuming LE, selection at single loci depends on the gen-
etic background only via the trait mean Z̅(t) (compare Equation 3). 
For a highly polygenic trait, Z̅(t) becomes approximately inde-
pendent of the dynamics at single loci. One can then insert the de-
terministic solution for Z̅(t) into a single-locus diffusion equation 
to analyze the stochastic dynamics of individual alleles in the gen-
etic basis.

A condition for Hayward and Sella (2022)’s method is that the 
shift in the trait optimum is small enough that “adaptation to 
the new optimum requires only a small average frequency change 
per segregating site.” Under this assumption, all frequency 
changes during the rapid adaptive phase are first-order 
perturbations of SGV frequencies. In our model and the examples 
shown, these conditions are met only in the highly polygenic case 
of Θbg = 100 and phenotypic adaptation of no more than a few 
(≲10) steps. In this case, adaptation to the new optimum is already 
complete with the first step of the adaptive architecture construc-
tion described above, before its characteristic features begin to 
show. Accordingly, the analysis by Hayward and Sella (2022)
mainly describes the relative frequency change of alleles with 
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different effect size and the consequences for allele sorting during 
the equilibration phase—issues that are beyond the scope of our 
work.

Oligogenic and polygenic adaptation
The transition between oligogenic and polygenic adaptation is 
gradual, with no clear demarcation. Besides the background mu-
tation rate, Θbg (which determines the number of co-segregating 
alleles), it also depends on the range of phenotypic adaptation. 
Indeed, if (say) 20 beneficial alleles from the SGV are picked up 
by selection, adaptation can appear as “polygenic,” with small fre-
quency shifts when the phenotype only changes by a single muta-
tional step, but no longer at larger distances. At, say, 10 steps or 
more, frequency changes become large, interactions matter, and 
new mutations start to play a role.

A hallmark of the highly polygenic regime is that the genetic 
variance remains approximately constant, which is often used 
as a model assumption in quantitative genetic approaches (e.g., 
Lande 1983; Chevin and Hospital 2008; de Vladar and Barton 
2014). For the infinitesimal model, a stable variance is a conse-
quence of the even stronger assumption that selection does not 
change allele frequencies. As Hayward and Sella (2022) point 
out, it still holds for small, but non-zero frequency shifts, as 
long as the increase in variance due to the increase of aligned al-
leles (the beneficial variation) is offset by the decrease in variance 
due to the frequency decrease of opposing alleles (deleterious 
variation).

We can contrast this with characteristics of oligogenic adapta-
tion. With a limited number of polymorphic alleles, allele fre-
quency changes necessarily become larger. As a result, the 
effect of beneficial variation for changing genetic variance, as 
well as its contribution to the adaptive progress of the trait 
mean, outweighs the effect of the deleterious variation that is 
eventually eliminated from the population. Genetic variance typ-
ically increases during buildup of the adaptive architecture until 
the quasi-stable limit shape is reached. In this later phase, the 
genetic variance is once again approximately stable, either con-
stant or oscillating. However, this is for different reasons than 
for highly polygenic adaptation over short distances: While the 
deleterious variation no longer plays a role, beneficial variants 
reach much higher frequencies. Depending on whether this fre-
quency is smaller or larger than 0.5, further frequency increases 
can increase or decrease the genetic variance. In the limit, the 
contributions of different loci approximately cancel. The loss of 
variation due to fixation of alleles is compensated by recurrent 
new mutation, as previously described by Hill (1982a, 1982b) for 
adaptation of a quantitative trait under long-term truncation se-
lection. A comprehensive discussion of both types of stable vari-
ance can be found in Götsch and Bürger (2023).

Biology of oligogenic adaptation
Throughout the history of quantitative genetics, evidence for 
highly polygenic adaptation has been gathered from various 
sources. This includes the classic observation that the response 
to artificial or natural selection on QTs is typically rapid and with-
out major changes in genetic variance (reviewed in Sella and 
Barton 2019; Flatt 2020). Modern GWAS results largely supports 
the view of phenotypic adaptation proceeding via frequency 
changes at many loci with small individual effect (Shi et al. 
2016). The contribution of genomic regions to the heritability is of-
ten roughly proportional to their length, which is consistent with 
an infinitesimal or “omnigenic” model (Boyle et al. 2017; Liu et al. 
2019).

However, empirical evidence that goes beyond the infinitesimal 
model is equally widespread. In particular, major allele frequency 
changes driven by positive selection are frequently observed. This 
includes signals of sweeps and partial sweeps, but also polygenic 
footprints in quintessential QTs, such as human body size (Field 
et al. 2016). Such footprints do not exist with truly infinitesimal 
genetics.

A polygenic genetic architecture implies a high level of redun-
dancy (Barghi et al. 2020; Láruson et al. 2020), reflecting the number 
of different ways how alleles can combine to produce the adaptive 
phenotype. As argued by Hayward and Sella (2022), it then “be-
comes uninteresting to focus on the particular subset of alleles” 
that was recruited—largely at random—to accomplish this task. 
However, data from replicated events of adaptive evolution often 
show a much higher level of parallelism than might be expected 
from the number of underlying loci and the segregating variation. 
Examples are summarized in Láruson et al. (2020), Barghi et al. 
(2020) and come from both natural evolution (e.g., Conte et al. 
2015; Yeaman et al. 2018a) and from “Evolve and Resequence” ex-
periments (e.g., Barghi et al. 2019).

Larger frequency changes and substantial parallelism are hall-
marks of oligogenic adaptation: They show that the “segregating 
redundancy” that is available for adaptation is not unlimited. 
In models with equivalent loci (both for an additive and a 
binary trait, cf., Höllinger et al. 2019), the composite parameter 
Θbg = 2Neμ(d − 1) is the appropriate measure of redundancy and 
determines the type of adaptation. Oligogenic characteristics are 
expected if (at least) one of the factors in Θbg is small. 
Empirically, they are highly variable: While 2Neμ measures the ex-
pected diversity per locus and strongly depends on the population 
size, d is the number of loci available to respond to a new selection 
pressure and depends on the size of the genetic basis. For ex-
ample, melanism in flies (Bastide et al. 2016) or lipid traits in hu-
mans (Shi et al. 2016) have a much smaller genetic basis than 
classical size- or yield-traits.

However, it is important to distinguish the genetic basis of a 
trait from its “adaptive basis,” that is, the loci that are sufficiently 
free of pleiotropic, epistatic, or developmental constraints to con-
tribute to sustained adaptive change (Yeaman et al. 2018b; 
Yeaman 2022). Only the latter enter into d and, thus, affect Θbg. 
Pleiotropy is necessarily ubiquitous for omnigenic traits, where 
trans-acting alleles in peripheral pathways with minute effects 
on the focal trait are thought to contribute the bulk of heritable 
variation (Liu et al. 2019). If these alleles are strongly constrained 
due to their primary function, the basis of the adaptive architec-
ture could be much smaller than the total genetic basis of these 
traits as seen in GWAS (Barghi et al. 2020; Láruson et al. 2020).

Scope and limits of our model
The most stringent limitation of the model concerns the assump-
tions on the trait genetics: alleles at all loci are additive, with equal 
effect sizes on the trait and on fitness. While our method describes 
the heterogeneity among frequencies of beneficial alleles due to 
mutation and drift (the stochastic variation within fitness 
classes), it does not capture heterogeneity due to selection differ-
ences (the deterministic variation between fitness classes). The 
only exception is the distinction of two classes with loci that har-
bor the beneficial and deleterious variation, respectively. Already 
this extension shows that the consequences of unequal effect 
sizes on the adaptive architecture are not only quantitative, but 
also qualitative. In particular, the background mutation rate is 
no longer the only relevant parameter, but both absolute and rela-
tive selection strength matter. Similarly, the presence (or not) of 
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standing variation and its distribution across different locus 
classes affect the results. While selection differences among loci 
increase the heterogeneity of the adaptive architecture, our re-
sults show, however, that observed patterns from a single repli-
cate may not be easy to distinguish from a “null model” with 
equal loci. The extension to deleterious loci also shows how, in 
principle, multiple classes of loci can be included that differ either 
in their effect on the trait or in pleiotropic effects on fitness. Each 
additional class requires an additional model parameter and a 
separate fit to the starting configuration prior to the onset of dir-
ectional selection. A general model with many classes can become 
complex, and the scope of this approach remains to be explored.

A second limitation refers to the selection regime. Our method 
relies on directional selection acting on all loci, as is typical during 
the early phase of phenotypic adaptation after a change of the op-
timum. There is no straightforward extension to other modes of 
selection, including disruptive selection (at the locus-level) that 
drives adaptive fine-tuning during the equilibration phase. The 
assumption is also important prior to the environmental change, 
where standing variation is maintained by a balance of mutation 
and negative directional selection. For stabilizing selection, this is 
approximately true if selection is strong enough to keep deleteri-
ous alleles at a low starting frequency, pi ≲ 0.1. It does not hold 
if much of the trait adaptation is due to common alleles that are 
already segregating at intermediate frequencies before adapta-
tion, either because of very weak selection, or because of past epi-
sodes of directional selection, or because they are maintained by 
other forces, such as balancing selection or recurrent gene flow.

Despite these restrictions, the directional selection model en-
compasses a large set of scenarios. In particular, our results for 
the adaptive architecture after a sudden shift of the trait optimum 
can also be applied to the second standard model of phenotypic 
adaptation: They hold (without change) for a trait with a moving 
optimum (e.g., Lynch et al. 1991; Bürger 2000; Jones et al. 2004; 
Kopp and Hermisson 2009a, 2009b), as long as the gap between 
the optimum and the trait mean remains sufficiently large that 
overshooting can be ignored (the “mutation-limited regime” of 
Kopp and Hermisson 2009a, 2009b). In general, the method is 
much less restrictive with respect to the ecological assumptions, 
which determine the shape of the phenotypic fitness function 
and its change in time, than with respect to the genetic assump-
tions. This includes fitness epistasis of any order (see the 
Supplementary File S1 for details), as long as the simple additive 
trait genetics ensures that all loci are affected in the same way.

Our analytical predictions assume LE between all loci in the 
genetic basis of the trait, which is unrealistic, especially for traits 
with a highly polygenic basis. Comparison with IB simulations 
show, however, that the results for the joint allele-frequency 
distribution remain accurate even for strong linkage and long- 
distance adaptation. This is true even though we observe (as 
expected, Hill and Robertson 1966) a significant increase in nega-
tive LD when the average recombination rate between pairs of loci 
is smaller than the selection coefficient. Although the model as-
sumption of LE is violated, this has surprisingly little effect on 
the distribution of allele frequencies. Only if linkage is complete 
do larger deviations in the direction of a more polygenic adaptive 
architecture occur. It would be interesting to relate our results to 
the predictions from models of clonal interference (Gerrish and 
Lenski 1998; Desai and Fisher 2007) in this limit. Relevant effects 
are also expected if selection effectively acts on linkage blocks, ei-
ther because initial levels of LD are large (e.g., due to admixture) or 
when loci underlying the trait are densely distributed along the 

genome (cf., Sachdeva and Barton 2018; Sachdeva 2022). An im-
portant condition for the robustness of the LE results is the addi-
tive trait architecture. In particular, the mean trait Z̅ that defines 
the pheno-time scale is invariant under changes in LD. This is dif-
ferent for the strongly epistatic binary trait architecture consid-
ered in Höllinger et al. (2019), where stronger effects of linkage 
have been observed.

Finally, all our results assume a single, panmictic population of 
constant size. Specifically, the population-scaled locus mutation 
rates Θi = 2Neμi should remain approximately constant over the 
time period described by the dynamics (before and after the envir-
onmental change). If adaptation occurs in a spatially extended 
population, different beneficial variants may dominate in differ-
ent regions and subsequently mix through gene flow. For a single 
adaptive step and alleles that are mutually exclusive, the result-
ing spatial patterns have been analyzed (Ralph and Coop 2010; 
Paulose et al. 2019) and compared with empirical data (Feder 
et al. 2019). Furthermore, a trait optimum can vary in space and 
time (Polechová et al. 2009; Polechová 2018). All of these scenarios 
are expected to significantly affect patterns of adaptive architec-
ture, both in the short term and in the long term, when gene 
flow drives allelic turnover (Yeaman 2015). A simpler situation 
in which our method could be applied is adaptation from 
migration–selection balance in a continent-island model. 
Extensions are needed to deal with strong LD due to multi-locus 
migration and potential barriers to gene flow. For this model, 
Sachdeva (2022) recently found that the effects of population- 
wide LD in migration–selection equilibrium can be accounted 
for by an adequately defined effective migration rate, providing 
a starting-point for a non-equilibrium analysis.
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Appendix
In this appendix, we present complementary figures to the figures 
in the main text with different choices of the parameter values. 
We also explain how our model extends to diploid genetics and 
present results for various levels of linkage in this case.

Adaptation with LE
Adaptive architecture for 100 loci
Figure A1 complements main text Fig. 4 (for a 10-locus trait) and 
shows the buildup of adaptive architecture for long-range adapta-
tion of a trait with L = 100. Approximate convergence to a stable 
limit architecture can be observed for Θbg ≤ 10. For increasing dis-
tance of phenotypic adaptation, the results also show the broad-
ening of the architecture (larger distances between successive 
size-ordered marginal distributions). As explained in the main 
text, this is due to the dwindling of adaptive material, correspond-
ing to a reduction in the effective Θbg,eff . The fit between LE simu-
lation results and analytical curves is even better than in the main 
text Fig. 4. This is because the ≈10-fold smaller mutation rates per 
locus for L = 100 lead to a reduced effect of back mutation, which is 
ignored in the approximation.

Dynamics of summary statistics
Adding to Fig. 5 for a 10,000-locus trait in the main text, we show 
summary statistics of the adaptive architecture of QTs with 10 
and 100 loci in Fig. A2. The adaptive scenarios correspond to the 
ones of Figs. 4 and A1, respectively. In addition, we also show a 
case of adaptation from only new mutation (de novo) for L = 10. 
Furthermore, we show how our results for pheno-time relate to 
the usual dynamics in real time.

The first row of Fig. A2 shows the scaled number of generations 
(on the y-axis, in units of Θbgσγ2) required for the mean phenotype 
Z̅ to reach passage points in units of mutational steps cZ (x-axis). 
To derive a simple analytical prediction for this dependence, we 
use a result by Götsch and Bürger (2023) for an additive trait under 
constant directional selection and constant rates of beneficial 
mutation (assumption of an infinite-locus model). Translated to 
our model parameters, Götsch and Bürger (2023, Eq. 4.21) derive 
an expected change in the mean trait of

ΔZ̅ ≈ Θ(Lγ − Z̅)σγ(Znew
opt − Z̅) 

for long-term adaptation. That is, to leading order in the selection 
coefficient, the average adaptive progress in the trait mean is sim-
ply given by the product of the selection strength and the popula-
tion mutation rate. In our model, both the selection strength 

(which scales with the distance to the new optimum, Znew
opt − Z̅) 

and the rate of new beneficial mutations (which is proportional 

to the distance to the end of the phenotype range, Lγ − Z̅) are vari-
able. This leads to a differential equation, which, in dimensionless 
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quantities, can be written as

dt
dcZ

=
d − 1

(d − cZ)(Znew
opt /γ − L + d − cZ) 

where time t is measured in units of [Θbgσγ2]−1. The solution is

t(cZ) = C +
(d − 1)

L − Znew
opt /γ

log
d − cZ

Znew
opt /γ − L + d − cZ)

 

. (A1) 

Table A1. Nomenclature. Overview of the main parameters used in the manuscript.

Symbol Meaning Formula

Ne (effective) population size
pi frequency of allele Ai at locus i 0 ≤ pi ≤ 1
γ, μi effect of allele Ai (all equal) and locus mutation rate (usually equal, μi = μ)
L, d total number L of loci in the genetic basis, d of which have pi(0) ≤ 1/2
Z, Z̅ trait value and its meana Z̅ =

L
i=1 γpi

vg, κ3(Z) genetic variance and skew of Z

Z0
opt, Znew

opt initial trait optimum (t < 0), new trait optimum (t ≥ 0) Z0
opt = dγ

cZ stopping condition (sampling point) for Z̅
b

Z̅ = Z0
opt + cZγ ≤ Znew

opt

Θbg population-scaled background mutation rate (μ = μi) Θbg = 2Neμ(d − 1)

W(Z), w(Z) Wrightian (discrete-time) and Malthusian (continuous-time, ln W(Z)) fitness W(Z) = exp [ − σ
2 (Z − Zopt)

2]

σγ2 selection coefficient against minority-allele in SGV seq = σγ2 = s(t) , t < 0

aWe denote means of x across individuals within a population as x̅ and across evolutionary replicates as 〈x〉. 
bIn simulations, we observe the joint allele frequency distribution at first-hitting time t, such that Z̅(t) ≥ Z0

opt + cZγ. Accordingly, t can vary between realizations.

Fig. A1. Dynamics of the adaptive process for a QT with 100 loci. Successive snapshots (in intervals of 10 mutational steps) of the ordered marginal 
allele-frequency distributions over the course of adaptation of a QT with 100 loci. Equilibrated populations evolve from an initial optimum Z0

opt = 20γ 
toward a new optimum Znew

opt = 80γ. LE simulation densities (points) are accurately predicted by the analytical model. Dashed curves (for Θbg = 0.01 and 0.1) 
show analytical three-locus approximations accounting for the progressive reduction in the effective Θbg,eff with cZ (see main text). Solid lines correspond 
to results of the 100-locus Monte-Carlo method, including deleterious variation (cf., the Supplementary File S1). The distributions of the loci with the 
(Z0

opt + cZ − 5)th (dark green) to (Z0
opt + cZ + 4)th (magenta) largest frequency are shown in bright colors. All others are shown in gray. We include a 

step-change in the strength of stabilizing selection from Neσ(t)γ2 = 100 for t < 0 to 10 for t ≥ 0 to avoid artifacts due to excessively strong directional 
selection for t ≥ 0. Ne = 10,000, 10,000 replicates. Note the differences in scaling of the y-axes.
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Fig. A2. Genetic variance and skew for QTs with 10 and 100 loci. QTs with 10 loci (two left columns: without/with SGV) and 100 loci (right: with SGV) adapt 
from Z0

opt = 0.2Lγ to Znew
opt = 0.8Lγ (6 mutational steps for L = 10 and 60 steps for L = 100). The top row shows the average number of generations to reach 

passage points of phenotypic adaptation (real time in terms of pheno-time). The dashed black line indicates an approximate theoretical expectation (for 
all Θbg, see Equation A1). The middle and bottom row show the dynamics of the genetic variance (with expectations as dashed lines, see Equation A2) and 
the skew in pheno-time. Ne = 10,000, Neσγ2 = 100 (switch to Neσγ2 = 10 for t > 0 for 100 loci, cf., Fig. A1), 10,000 replicates (1,000 and 5,000 for Θbg = 0.01, 
respectively, 0.1 in first row). The insets “/5” indicate that the corresponding lines are 1/5th of the actual data.

Fig. A3. Effect of linkage on adaptive architecture of a QT (haploids, Θbg = 0.01). With very low background mutation rates, only complete linkage causes 
apparent changes in the adaptive architectures. Other parameters are as in Fig. 6.
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This curve is displayed as a black dashed line in the first row of 
Fig. A2 (with C chosen such that it passes through (0, 0)). 
Similarly, the analytical expectations (dashed curves) for the 
equilibrium variance in the second row of Fig. A2 are based on 
Götsch and Bürger (2023, Eq. 4.24). In terms of our model 

parameters and with a variable mutation rate, this reads,

〈vg〉(cZ) = Θbg
d − cZ

d − 1
. (A2) 

We observe the following: 

Fig. A4. Effect of linkage on adaptive architecture of a QT (haploids, Θbg = 0.1). With low background mutation rates, the adaptive architectures are still 
highly robust, even under tight linkage. Other parameters are as in Fig. 6.

Fig. A5. Effect of linkage on adaptive architecture of a QT (haploids, Θbg = 10). With high background mutation rates, we can detect mild alterations under 
tight and complete linkage. Other parameters are as in Fig. 6.
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• The analytical prediction (Equation A1) (which assumes an 
infinite-locus model) matches the simulation data in the 
top row whenever the background mutation rate Θbg is 

small enough that recurrent mutation at the same locus 

is unlikely. For small L and/or high Θbg, new mutations 

frequently occur at loci where mutant alleles are already 
established, which results in slower dynamics (steeper 
increase).

Fig. A6. Effect of linkage on adaptive architecture of a QT (haploids, Θbg = 100). With very high background mutation rates, linkage has no apparent effect 
on the adaptive architectures. Other parameters are as in Fig. 6.

Fig. A7. Effect of linkage on adaptive architecture of a QT (diploids, Θbg = 1). The shape of the marginal distributions is virtually identical for diploids 
without dominance (Ndip

e = 500) and haploids (Ne = 1,000, Fig. 6). Importantly, cZ corresponds to steps of size 2 · γ/
��
2
√

=
��
2
√

γ. All other parameters and the 
curves (LE) are the same as in Fig. 6.
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• For the variance (second row), we see that the estimate for 
the average variance in real time (Equation A2) is consistently 
lower than the simulation data for small Θbg < 1. The reason 

(also observed by Götsch and Bürger 2023) is that sampling at 
fixed phenotype values does not represent time averages. 
Indeed, for very small Θbg, there is no segregating variation 

for the trait most of the time, which is only possible for sam-
pling at integer values of cZ (where the approximation 
matches more closely). For higher Θbg, the pheno-time values 

no longer oscillate and approach the time average—until 
saturation effects due to recurrent mutation at the 
same loci lead to lower variances in a finite-locus model com-
pared to an infinite-locus model for large Θbg. See also Fig. 5

for L = 10,000 in the main text, where the real time averages 
from the infinite-locus model (vg ≈ Θbg) are approximately 

met once the oscillations become small for Θbg ≥ 1.

• The initial variance in SGV is smaller than the equilibrium 
long-term variance in all cases shown, even for Θbg = 100. 

Until the dynamic equilibrium is reached, the rate of adapta-
tion is slower (which leads to a shift to larger y-values in the 
top row, see Θbg = 10 for L = 100 and Θbg = 1 for L = 10). Since 

initial variation is absent in the de novo scenario, the rate of 
adaptation is even slower (compare first and second column, 
top row). However, differences in variance and skew due to 
the starting conditions vanish quickly (≲ 1 mutational step 
for Θbg ≤ 10).

• Positive initial skew (bottom row) results from the asymmet-
ric starting conditions (more mutations to increase the trait 
than to decrease it). Negative genetic skew indicates a dwin-
dling supply of fresh loci, which is either transient (yielding 
oscillations) for low effective Θbg,eff , or persistent when the fi-

nite trait basis has been exhausted.

Adaptation with linkage
Haploids with linkage
We extend Fig. 6 to other settings of Θbg: 0.01 (Fig. A3), 0.1 (Fig. A4), 
10 (Fig. A5) and 100 (Fig. A6). The effect of linkage is strongest for 
intermediate values of Θbg: 

• For low mutation rates, tightly linked loci are rarely 
polymorphic simultaneously. For Θbg = 0.01 (Fig. A3), the 

adaptive architecture remains unaltered even for r = 0, while 
for Θbg = 0.1 (Fig. A4) slight changes are visible.

• While the effect of linkage for Θbg = 10 (Fig. A5) is 

similar compared to Θbg = 1 (Fig. 6), all differences vanish 

for Θbg = 100 (Fig. A6). With very high mutation rates, the ran-

domizing effect of recurrent, bi-directional mutation elimi-
nates LD.

For large Θbg ≥ 10, the first phenotypic checkpoint is placed at 
cZ = 2 since the trait mean in the SGV exceeds cZ = 1 in some repli-
cates (with asymmetric starting condition, mutation biases the 
trait mean upwards).

Diploids with linkage
For simplicity, we have derived and presented all our results so far 
for a haploid population. Here we show how the formalism ex-
tends to diploids without dominance. To match the haploid dy-
namics, we consider a diploid model with the same number of 
gametes, Ndip

e = Ne/2 and maintain the same mutation rates μ 
per locus, such that Θ = 2Neμ = 4Ndip

e μ. We assume the same num-
ber of loci L underlying the trait and the same proportion of loci 
with ai-majority vs. Ai-majority allele at the initial optimum Z0

opt 

(constant d). We thus have Θbg = (d − 1)2Neμ = (d − 1)4Ndip
e μ. To 

maintain the same level of SGV (with expected frequency 
2μ/(σγ2)), we also hold the selection strength σγ2/2 prior to the en-
vironmental change constant (compare the first columns, “SGV,” 
between Figs. 6 and A7).

Lastly, we also want to make the genic, vLE
g =


i pi(1 − pi)[γ2], 

and genetic variance, vg = (


Z Z2qZ − (


Z ZqZ)2) (where qZ is the 
frequency of phenotype Z in the population), comparable between 
haploids and diploids (see insets in Figs. 6 and A7). To that end, we 
need to set γdip = γ/

��
2
√

because the trait is a sum over the contribu-
tions of 2L = 20 alleles in the diploid case, instead of L = 10 for hap-
loids. Accordingly, the phenotype range is 0 ≤ Z ≤ 2Lγ/

��
2
√

=
��
2
√

Lγ 
and the optimum shifts by 6 mutational steps of size 

��
2
√

γ from 
Z0

opt = 2 ·
��
2
√

γ to Znew
opt = 8 ·

��
2
√

γ.
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