Title
Entorhinal grid-like codes and time-locked network dynamics track others navigating through space
... show all
Abstract
Navigating through crowded, dynamically changing environments requires the ability to keep track of other individuals. Grid cells in the entorhinal cortex are a central component of self-related navigation but whether they also track others’ movement is unclear. Here, we propose that entorhinal grid-like codes make an essential contribution to socio-spatial navigation. Sixty human participants underwent functional magnetic resonance imaging (fMRI) while observing and re-tracing different paths of a demonstrator that navigated a virtual reality environment. Results revealed that grid-like codes in the entorhinal cortex tracked the other individual navigating through space. The activity of grid-like codes was time-locked to increases in co-activation and entorhinal-cortical connectivity that included the striatum, the hippocampus, parahippocampal and right posterior parietal cortices. Surprisingly, the grid-related effects during observation were stronger the worse participants performed when subsequently re-tracing the demonstrator’s paths. Our findings suggests that network dynamics time-locked to entorhinal grid-cell-related activity might serve to distribute information about the location of others throughout the brain.
Keywords
Cognitive neuroscienceNeuroscience
Object type
Language
English [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:2045845
Appeared in
Title
Nature Communications
Volume
14
ISSN
2041-1723
Issued
2023
Publisher
Springer Science and Business Media LLC
Date issued
2023
Access rights
Rights statement
© The Author(s) 2023

Download

University of Vienna | Universitätsring 1 | 1010 Vienna | T +43-1-4277-0