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Abstract  11 

In population genetics, the emergence of large-scale genomic data for various species and 12 

populations has provided new opportunities to understand the evolutionary forces that drive 13 

genetic diversity using statistical inference. However, the era of population genomics presents 14 

new challenges in analysing the massive amounts of variants and genomes. Deep learning has 15 

demonstrated state-of-the-art performance for numerous applications involving large-scale data  16 

Recently, deep learning approaches have started gaining popularity in population genetics and 17 

been applied in various population genetics problems, including identifying population structure, 18 

inferring demographic history and investigating natural selection, due to the advent of massive 19 

genomic datasets, powerful computational hardware and complex deep learning architectures. 20 

Here, we introduce common deep learning architectures and provide comprehensive guidelines 21 

for implementing deep learning models for population genetic inference. We also discuss current 22 

challenges and future directions for applying deep learning in population genetics, focusing on 23 

efficiency, robustness and interpretability. 24 

 25 

Introduction 26 

Population genetics is a more than century-old discipline that harnesses genetic variation within 27 

and between populations to explore evolutionary processes or forces such as mutation, 28 

recombination, natural selection, genetic drift and gene flow1–3. The main goal of population 29 

genetics is to investigate how different evolutionary forces and their interactions shape the 30 

population dynamics of genetic variants with a given demographic history, spatial structure and 31 

mating system1, 2, 4. These evolutionary forces can be mathematically modelled as evolutionary 32 

parameters, and the dynamics of genetic variants can be represented by changes in allele 33 
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frequencies or times to the most recent common ancestor5, 6. Therefore, population genetic 34 

inference refers to estimating evolutionary parameters or identifying genetic patterns produced 35 

by evolutionary forces in populations using different approaches. Typical tasks in population 36 

genetic inference include inferring demographic models, identifying population structure, studying 37 

spatial genetic patterns, estimating mutation or recombination rates, detecting signatures and 38 

quantifying strengths of natural selection, as well as investigating admixture or introgression 39 

events and their footprints in genomes, such as ancestry proportions and introgressed fragments 40 

(Table 1). In addition, simulating genomic data is an important approach utilized in population 41 

genetic inference (Fig. 1).  42 

 With the advent of high-throughput sequencing technologies, genomic data are now 43 

driving a revolution in population genetics. The paradigm of studying population genetics has 44 

been shifted from using small-scale protein electrophoretic variation or molecular markers to 45 

utilizing large-scale genome-wide single nucleotide polymorphisms or structural variations7–9. For 46 

instance, in human population genetics, the 1000 Genomes Project10 provides high-quality 47 

genotype data for ~90 million variants from 26 modern human populations across five continents 48 

with considerable sample size. New datasets for ancient human genomes and non-human 49 

species are constantly becoming available, such as the Allen Ancient DNA Resource11 and the 50 

1001 Genomes Project12. Other datasets with a focus on functional genomics for identifying 51 

causes of diseases, for example, the UK Biobank13 and the China Kadoorie Biobank14, could be 52 

also considered to be utilized for population genetic inference. However, the capacities of humans 53 

and traditional computational approaches to integrate and interpret the massive amounts of 54 

variants and genomes from different populations and species are often exceeded, raising new 55 

challenges in the genomics age. 56 

To tackle these challenges, machine learning has provided various successful 57 

computational strategies for population genetics15, including hidden Markov models and principal 58 

component analysis. A promising machine learning approach is deep learning, which uses 59 

artificial neural networks (ANNs), consisting of multiple layers of artificial neurons that perform 60 

mathematical operations and form a hierarchical representation of the data to generate 61 

predictions without the need for mathematical modelling from domain-specific knowledge. Thanks 62 

to the data explosion, hardware revolution and model innovation during the past two decades, 63 

deep learning has achieved state-of-the-art performance in various machine learning tasks, such 64 

as computer vision and natural language processing16. The astonishing success of deep learning 65 

in automatizing complex pattern recognition tasks has fuelled the translation of deep learning 66 

approaches in fields where large volumes of data exist but no analytical solutions for the questions 67 



 

3 

are available. In genomics, deep learning has already gained popularity for its potential to provide 68 

innovative solutions for diverse problems such as pathogenic variant diagnosis17 and genome-69 

wide association studies18. 70 

 Here, we summarize the recent progress in population genetics with deep learning. We 71 

first briefly review traditional approaches for population genetic inference, followed by machine 72 

learning-based techniques in population genetics and classical ANN architectures, including feed-73 

forward neural networks (FNNs), convolutional neural networks (CNNs), recurrent neural 74 

networks (RNNs) and graph neural networks (GNNs). We also introduce deep generative models 75 

(DGMs), including variational autoencoders (VAEs) and generative adversarial networks (GANs). 76 

We then present novel and promising deep learning models, including transformers19 and 77 

diffusion models20. Finally, we provide guidelines for implementing deep learning-based tools and 78 

discuss current issues and future directions for deep learning in population genetics. 79 

 80 

Traditional population genetic inference 81 

Traditionally, population genetics uses deterministic and stochastic models21 (Fig. 1). 82 

Deterministic models assume that the dynamics of genetic variants are not affected by random 83 

fluctuations in evolutionary forces, whereas stochastic models are more realistic, as they explicitly 84 

model random effects in evolutionary processes6, 21. The Wright–Fisher model — which assumes 85 

a population of a constant size, random mating and non-overlapping generations in the absence 86 

of the effects of mutation, gene flow and natural selection — is a popular stochastic model that 87 

describes allele frequency changes within populations. This model can be understood as a 88 

sequential process using a discrete-time Markov chain from probability theory22. Furthermore, it 89 

can be approximated with a continuous Markov process by the diffusion theory, which models the 90 

dynamics of genetic variants over time in populations by approximating their trajectories with 91 

diffusion processes23. Another powerful approach for modelling evolution is the coalescent theory 92 

and its extensions24, 25, which model the dynamics of genetic variants in a sample by tracing how 93 

they originated from a common ancestor backwards in time. Once a probabilistic model is 94 

established, statistical inference approaches, including maximum likelihood estimation26, Markov 95 

chain Monte Carlo27 and approximate Bayesian computation28, can be evaluated with simulated 96 

data and applied to empirical data for parameter estimation (reviewed in ref. 29). 97 

Traditional approaches offer advantages, including interpretability under population 98 

genetics theory and the possibility for performance improvement by increasing model complexity. 99 

However, they also have several disadvantages. First, population genetics models often simplify 100 
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complex biological processes for computational feasibility5. For example, genomic data is usually 101 

assumed neutral when inferring demographic models; however, natural selection may mimic 102 

genetic patterns produced by demographic events30. Second, traditional tools may not work well 103 

on high-dimensional and large-scale datasets. For example, scalability becomes a challenge for 104 

methods utilizing extended haplotype homozygosity to efficiently detect signals of natural 105 

selection in datasets containing millions of genomes31–33. Third, traditional approaches may lack 106 

versatility, as their performance can vary dependent on factors such as sample sizes, underlying 107 

evolutionary models, and phased or unphased data. For example, tools designed for human 108 

demographic history with large-scale data may not perform well when analysing data with small 109 

sample sizes or from non-human species34. To address these limitations, deep learning can 110 

provide innovative solutions that differ from novel methodology based on traditional approaches35, 111 

36. 112 

 113 

What is deep learning? 114 

The primary goal of machine learning is to develop algorithms that can automatically extract 115 

information from data and find solutions for specific tasks37. Supervised learning, unsupervised 116 

learning and reinforcement learning are three learning paradigms of machine learning with some 117 

intermediate categories, such as self-supervised learning and semi-supervised learning37–39. 118 

Supervised learning constitutes a machine learning paradigm that trains machine learning models 119 

by using data with known labels provided by humans, whereas in unsupervised learning, machine 120 

learning models are trained using data without labels. Reinforcement learning is a paradigm by 121 

which machine learning models are trained using actions with rewards. In self-supervised 122 

learning, machine learning models are trained by first learning representation from unlabelled 123 

data, which are then used to automatically generate labels for downstream supervised learning 124 

tasks. By contrast, semi-supervised learning constitutes first training on a small, labelled dataset 125 

with supervised learning and then training on a large, unlabelled dataset with unsupervised 126 

learning.  127 

Many machine learning algorithms are not domain-specific, allowing researchers to 128 

generalize their questions and solve them by choosing existing machine learning algorithms40. 129 

For example, identifying population structure from genetic data can be solved by clustering 130 

algorithms without population genetics theory, such as the K-means algorithm41. Another machine 131 

learning algorithm, hidden Markov models, has various applications in population genetics, 132 

including inferring historical population size changes42, archaic introgressed fragments43 and 133 
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strengths of natural selection44. Traditional machine learning algorithms usually extract features 134 

with domain-specific knowledge from raw data16, such as genetic variants. Summary statistics 135 

from population genetics theory can be considered as features extracted from these genetic 136 

variant datasets45–47. However, deep learning allows automatic feature extraction from raw data, 137 

as ANNs contain many layers with different possible operations and form deep hierarchical 138 

architectures16, 38 (Fig. 2a). Here, we outline several common ANN architectures that can address 139 

various problems in population genetic inference. 140 

 141 

Common architectures 142 

FNNs are the most classic architecture of ANNs48. In FNNs, information only flows from the input 143 

layer to the output layer through hidden layers48 (Fig. 2a). Nodes in ANNs are analogous to 144 

neurons, as they receive outputs from the previous layer and usually transform them with 145 

nonlinear activation functions as inputs for the next layer48 (Fig. 2a). If every node in a hidden or 146 

output layer receives outputs from all nodes in the previous layer as its inputs, this layer is 147 

considered fully connected or dense (Fig. 2b). Fully connected neural networks are not equivalent 148 

to FNNs, as occasionally claimed36, 49, 50. The term ‘fully connected’ describes how a layer 149 

connects to its neighbouring layers in an ANN, whereas ‘feed-forward’ describes how information 150 

flows within an ANN. Thus, an FNN is not necessarily fully connected. For example, CNNs are a 151 

type of FNN that is not fully connected48 (Fig. 2b). Additionally, a fully connected neural network 152 

is not necessarily feed-forward, such as fully connected RNNs51. If FNNs only contain fully 153 

connected layers, they are referred to as multilayer perceptrons52. Fully connected FNNs or 154 

multilayer perceptrons have illustrated the capability of ANNs in various population genetics 155 

problems, including inferring demographic history53–56 and population structure57, detecting 156 

admixture events50, dissecting genomic regions under natural selection53, 58, 59, estimating 157 

mutation rates60, 61 or predicting sample locations from genomes62. 158 

 CNNs are currently the dominant architecture in population genetics (Table 1). CNNs 159 

typically process grid-like inputs, including images, matrices, or tensors. Several data types may 160 

be interpreted in an image-like manner, for example, genotype matrices63, 64. A standard CNN 161 

contains several series of convolutional and pooling layers to automatically extract features from 162 

raw data before passing them into fully connected layers (Fig. 2a). In a convolutional layer, a filter 163 

composed by a set of kernels captures information within a small region of the input through a 164 

mathematical operation called convolution. The output from the convolutional layer is usually 165 

transformed by rectified linear unit activation functions or related ones and then often fed into a 166 
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pooling layer for combining information from adjacent regions (Fig. 2b). Pooling layers make 167 

CNNs invariant to small translations in inputs (Fig. 2b); however, they may be inessential if precise 168 

spatial information is required48, as in AlphaGo65. CNNs also have been employed to numerous 169 

population genetics tasks, including demographic inference55, 63, local ancestry inference66, 67, 170 

detection of natural selection36, 58, 63, 68–77 or introgression63, 78–81, and estimation of mutation or 171 

recombination rates as well as dispersal distance61, 63, 82. Moreover, fully connected FNN and CNN 172 

architectures can be utilized as components in DGMs64, 83, 85, 86, 87. However, treating genotype 173 

matrices as images may cause some problems, as image pixels are row-ordered, whereas 174 

genomes in genotype matrices have no inherent order in population genetics, and evolutionary 175 

parameters are invariant to switching genome order63, 80. This problem can be addressed by 176 

making the deep learning architecture insensitive to the order75, 88 or creating order from sequence 177 

similarity63, 80. Hence, architectures should be assessed with domain-specific knowledge when 178 

transferring architectures from machine learning into population genetics. 179 

RNNs differ from FNNs because they allow information to flow back to previous layers or 180 

within the same layer48, 89 (Fig. 2a), thus enabling the tracking of information from previous inputs 181 

using memory. RNNs usually handle sequential inputs, including speech, text, music and 182 

biological sequences. For example, an RNN can accept genetic variants position by position and 183 

determine the output at one position using information from previous positions (Fig. 2c). In 184 

principle, RNNs could memorize all past information; however, in practice, they can only 185 

remember information within a short range depending on the nature of the data and 186 

architectures48, 89. Several techniques, such as long short-term memory and gated recurrent units, 187 

have been established to increase memory range and improve RNN performance48, 89. RNNs 188 

have been applied to population genetics tasks, including inferring recombination maps and 189 

detecting selective sweeps90, 91, outperforming or performing as well as leading methods based 190 

on traditional approaches. However, RNN performance in machine learning has been surpassed 191 

by a novel architecture: transformers19 (discussed below). Therefore, future studies may consider 192 

transformers rather than RNNs for processing sequential data in population genetics. 193 

 GNNs utilize graphs as inputs. Graphs are models to represent relationships among 194 

entities using nodes and edges92. For instance, ANNs themselves can be visualized with graphs, 195 

where nodes represent operations with results and edges represent parameters (Fig. 2). Two 196 

types of GNNs are widely used. One is graph convolutional networks, which generalize 197 

convolutional layers on grid-like data to graph-structured data93 (Fig. 2d). The other is graph 198 

attention networks, which replace graph convolutional layers with self-attention layers94. Graphs 199 

are common in population genetics. For example, ancestral recombination graphs are used to 200 
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reconstruct the evolutionary history among genomes with recombination95. Haplotype networks 201 

are frequently applied for analysing and visualizing relationships between haplotypes96. GNNs 202 

have been used for demographic inference from ancestral recombination graphs97, demonstrating 203 

the potential of GNNs in population genetics. 204 

 205 

Deep generative models 206 

Both supervised and unsupervised learning can apply the architectures above. Unsupervised 207 

learning is challenging because ground truth is absent for determining model performance. 208 

Generative models, an unsupervised learning approach, can learn the intrinsic properties of 209 

training data and create similar data that are not in the training dataset. While non-ANN generative 210 

models such as hidden Markov models have been popular in population genetics for decades, 211 

DGMs are more powerful for many questions98. Besides VAEs and GANs, other DGMs include 212 

energy-based models, which map the probability of data into an energy function and link good 213 

predictions with low energy and poor predictions with high energy; normalizing flows, which 214 

gradually approximate the complicated probability distribution of data starting from a simple initial 215 

probability distribution, achieved through a series of invertible and differentiable mathematical 216 

transformations; and autoregressive models, which process sequential data and make predictions 217 

in one step using the predictions from previous steps as inputs99. A classic energy-based model 218 

is restricted Boltzmann machines48 (Fig. 3a), which contain only one visible (input) layer and only 219 

one hidden layer, with connections only between these two layers but not within each layer; this 220 

ANN for unsupervised learning has recently been applied for simulating human genomes87, 100. 221 

However, restricted Boltzmann machines have been overshadowed by other DGMs in machine 222 

learning owing to potential limitations, including their lack of training efficiency and scalability to 223 

large datasets, inflexibility in implementing various tasks, and inability to generate high-quality 224 

outputs101, 102. 225 

VAEs are based on autoencoders, which contain encoders and decoders48 (Fig. 3b). The 226 

encoder transforms an input into a latent representation termed code, whereas the decoder 227 

attempts to reproduce the original input using the code generated by the encoder48. Classic 228 

autoencoders serve as non-linear dimensionality reduction tools; however, they are not 229 

generative models, as they can only reconstruct their inputs and cannot create useful new data 230 

from their codes48. VAEs are DGMs that extend autoencoders, typically by minimizing the 231 

distance between the distribution of their codes and a normal distribution48, and can synthesize 232 

meaningful new data by randomly sampling a code from the learnt distribution of their codes (Fig. 233 
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3b). Autoencoders103 and VAEs86 are faster and more scalable for estimating ancestry proportions 234 

than traditional approaches such as ADMIXTURE104 and ChromoPainter105; however, they are 235 

slower for identifying population structure compared to dimensionality reduction techniques such 236 

as principle component analysis83, 84.  237 

GANs are capable of synthesizing higher-quality outputs than VAEs48, 101, 102. A typical 238 

GAN contains a generator and a discriminator engaged in a competitive process48. The 239 

discriminator tries to distinguish real data from synthetic data generated by the generator, and the 240 

generator aims to create convincing synthetic data using noise from normal distributions, making 241 

it difficult for the discriminator to identify the fakes48 (Fig. 3c). GANs or GAN-like architectures 242 

(Table 1) have been applied to inferring demographic models64, detecting loci under selection106, 243 

estimating recombination rate and demographic parameters simultaneously107, and creating 244 

individual genomes from real or simulated data85, 87, 100, 108. Two issues may limit the practical 245 

applications of GANs. First, training GANs can be unstable due to the alternating parameter 246 

updates between the generator and discriminator during training48 (Fig. 3c). If the discriminator 247 

fails to learn how to identify synthetic data, the generator will also struggle to learn how to create 248 

realistic synthetic data. Second, GANs may not generate diverse outputs109. They might forget 249 

how to produce certain types of data, resulting in mode dropping, or they may only generate a 250 

limited variety of distinct data, leading to mode collapse while still achieving good performance 251 

(Fig. 3d). Outputs from VAEs and GANs can reflect population structure and produce allele 252 

frequency spectra similar to their training data; however, they may not adequately capture 253 

patterns of linkage disequilibrium from the training data83, 85, 87, 100. 254 

 255 

Novel architectures and models 256 

Since deep learning is a rapidly evolving field, novel architectures and DGMs are continually 257 

emerging. One promising architecture is transformers38, which are also deep FNNs110 (Fig. 4a). 258 

They are related to RNNs111, and their core components are self-attention layers (Fig. 4b) that 259 

can mimic convolutional layers112. Architectures constructed with self-attention layers have 260 

surpassed CNNs and RNNs in different machine learning tasks113, 114. Even in biological studies, 261 

transformer-based models can also outperform RNN-based models when predicting mutations 262 

that cause immune escape and affect the fitness of the SARS-CoV-2 virus115. Besides self-263 

attention, many variants of attention mechanisms have been developed and applied in various 264 

transformer-based architectures110. The first transformer architecture was developed for 265 

sequence-to-sequence learning with the encoder–decoder architecture19, 110. Moreover, the 266 



 

9 

encoder can function independently, similar to BERT (Bidirectional Encoder Representations from 267 

Transformers)116, and the decoder can likewise be used in isolation, such as generative pre-268 

trained transformers (GPT)117. Transformers are data-hungry and require substantial 269 

computational memory for training118, 119. Therefore, they may not surpass other deep learning 270 

architectures for the same task without sufficient training data118. As more large-scale datasets 271 

become available, transformers may show potential for fully utilizing big data in population 272 

genetics. Diffusion models are another promising DGMs that have recently outperformed GANs 273 

in image synthesisError! Reference source not found.. Diffusion models contain a forward diffusion process 274 

and a reverse denoising process121 (Fig. 4c). During the forward process, inputs are incrementally 275 

added with noise, while an ANN attempts to recover the inputs by removing the noise during the 276 

reverse process121. 277 

The above architectures can be used alone or in combination. For example, integrating a 278 

VAE and GAN can result in better performance than using a VAE alone for simulating human 279 

genomes108. Furthermore, ANNs can be combined with other machine learning or statistical 280 

inference approaches, for example, approximate Bayesian computation with deep learning for 281 

demographic inference from allele frequency spectra54 or mixture models with ANNs for inferring 282 

the distribution of fitness effects, that is, the proportions of deleterious, neutral and beneficial 283 

mutations across the genome122. Hence, there are numerous opportunities for enhancing the 284 

performance of deep learning-based tools and exploring various problems in population genetics 285 

using different architectures and their combinations. 286 

 287 

How to implement deep learning tools? 288 

Model optimization 289 

The success of applying deep learning-based approaches relies on not only the knowledge of 290 

architecture but also the implementation of deep learning models48 (Fig. 5). Before implementing 291 

a deep learning model, training data should be collected and may be pre-processed (Box 1). 292 

However, data should be cautiously pre-processed because artifacts might be introduced, making 293 

the deep learning model overfit the training data75. In addition, several parameters termed 294 

hyperparameters need to be specified before optimization, as they cannot be optimized 295 

automatically. These hyperparameters are usually related to the architecture itself, such as the 296 

number of neurons in each layer, the number of hidden layers and the form of activation functions. 297 

Hyperparameters are also involved in the training procedure, such as batch size and the number 298 

of epochs (Fig. 5). Different settings of hyperparameters could affect the performance of a deep 299 
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learning model, and they may be tuned with the validation set by approaches such as grid search 300 

or random search 48 (Fig. 5). 301 

A deep learning model is usually optimized by finding the best-fit parameters that minimize 302 

a loss function depending on tasks and data. For example, the mean squared error, which 303 

calculates the average distance between all true values in the training data and their values 304 

predicted by the model, or the root mean squared error are suitable for regression, whereas the 305 

cross-entropy may be desirable for classification. Usually, the loss function can be interpreted as 306 

the negative logarithm of the likelihood function in a deep learning model123; therefore, optimizing 307 

a deep learning model by minimizing the loss function can be regarded as a maximum likelihood 308 

approach123. One common optimization approach is stochastic gradient descent with 309 

backpropagation 48, 123. Stochastic gradient descent has a key parameter termed learning rate, 310 

which is also a crucial hyperparameter that controls how much deep learning model parameters 311 

should be updated in each iteration by affecting gradient magnitudes48, 124. A large learning rate 312 

may make a deep learning model unable to find the optimal parameters, whereas a small learning 313 

rate may slow down the training procedure48. Hence, choosing a suitable learning rate is 314 

challenging. One solution is learning rate schedulers that can change learning rates with a plan 315 

before training. Another solution is adaptive learning rate methods that can vary learning rates 316 

based on gradients during training, such as RMSProp and Adam125, 126. The calculation of 317 

gradients becomes infeasible when the loss function lacks differentiability. In such cases, 318 

alternative optimization techniques can be explored, including Monte Carlo approaches107 and 319 

natural computing algorithms such as simulated annealing approaches64. Moreover, deep 320 

learning models can be optimized by treating their parameters as random variables and using the 321 

Bayesian paradigm to estimate their posterior distributions123. However, the computational 322 

complexity of Bayesian neural networks is typically higher than that of classic neural networks 323 

(see the tutorials in ref. 127). 324 

Several approaches can improve deep learning model performance. Underfitting on 325 

training data should be examined first. Increasing deep learning model complexity can reduce 326 

underfitting, for example, by increasing the number of hidden layers or neurons, or by changing 327 

the form of the activation function. If a complex deep learning model still performs poorly on 328 

training data, adjusting the optimization algorithm can be a solution, for example, using a different 329 

learning rate or optimization algorithm. When the validation loss is small or acceptable, a deep 330 

learning model is optimal, and its performance can be measured on test data (Fig. 5). If a deep 331 

learning does not perform well on test data, it may overfit training data. In this case, the deep 332 

learning model could be improved by reducing the complexity of the deep learning model even if 333 
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increasing the error in the training dataset. Another strategy may be collecting more training data 334 

or modifying existing training data to increase the size and diversity of training data through data 335 

augmentation48. Regularization techniques, including weight decay123, dropout128 and early 336 

stopping129, could also reduce overfitting by adding constraints into the machine learning models. 337 

Other techniques, including cross-validation130 and batch normalization131, have regularizing 338 

effects as well123, 132, although their primary purposes are not regularization. For a deep learning 339 

model, the best regularization techniques need to be determined by experiments. For instance, 340 

dropout and batch normalization seemed not to work in a VAE implementation for visualizing 341 

population structure83. Simple models such as logistic regression or decision trees can be used 342 

as baseline models before applying deep learning models48. If the baseline models achieve 343 

acceptable performance, then there may be no need to experiment with deep learning methods, 344 

which are usually computationally intensive and less explainable. If a deep learning model cannot 345 

outperform such baseline models, the implementation should be improved or abandoned. 346 

 347 

Performance measures 348 

To assess performance of the deep learning model, various measures can be chosen based on 349 

data and tasks48. Supervised learning tasks can be categorized into regression, classification, and 350 

structured prediction. For regression, besides the mean squared error or the root mean squared 351 

error, correlation coefficients can evaluate performance, such as the Pearson or Spearman 352 

correlation coefficients. For binary classification, several common measures, including accuracy, 353 

precision, recall and F1 score, are based on the numbers of correct and incorrect predictions. 354 

These can be visualized with confusion matrices, receiver operating characteristic curves or 355 

precision–recall curves. Since different measures quantify different aspects of deep learning 356 

model performance, appropriate measures should be selected according to specific questions. 357 

For example, archaic introgressed fragments are rare in modern human genomes133. Precision 358 

and recall may be good choices in this case, because researchers often want to know how many 359 

inferred introgressed fragments are true and how many true introgressed fragments can be 360 

identified overall34. These measures can be further extended into multiclass classification and 361 

structured prediction. 362 

DGMs are usually assessed by the fidelity and diversity of their outputs134; however, 363 

evaluating their performance poses a challenge owing to the computationally intractable nature 364 

of their likelihood functions135, 136. Although various measures have been proposed for evaluating 365 

DGMs, a consensus on the best one has yet to be reached137. Common measures in image 366 
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synthesis are unsuitable for population genetic inference because they are specific to ANNs 367 

trained on image datasets64. Previous studies have employed several qualitative and quantitative 368 

approaches to evaluate DGMs in population genetics. Qualitative measures can be obtained by 369 

comparing dimensionality reduction results between real data and synthetic data generated by 370 

the deep learning model83, 87, 100, 138, assessing summary statistics from population genetics theory 371 

for both real and synthetic data64, 83, 85, 87, 100, or contrasting the results from DGMs with those from 372 

tools using traditional approaches64, 86. Quantitative measures can be derived by the classification 373 

accuracy of discriminators or other supervised classifiers when distinguishing between real and 374 

synthetic data64, 138. Some studies have also utilized the nearest-neighbour adversarial accuracy 375 

to measure overfitting and underfitting85, 87, 100, which calculates the average distance between all 376 

data points and their nearest neighbours in both the real and synthetic datasets (details in ref. 377 

100). The resulting score ranges from 0 to 1; a score >0.5 suggests overfitting, whereas a score 378 

<0.5 indicates underfitting. Precision and recall for probability distributions are additionally 379 

applicable to assessing generative models by defining precision as the probability that a random 380 

data point from the probability distribution of the synthetic dataset falls within the support of the 381 

probability distribution of the real dataset, and by defining recall as the probability that a random 382 

data point from the probability distribution of the real dataset falls within the support of the 383 

probability distribution of the synthetic dataset136, 139. With these definitions, the performance of 384 

DGMs on different kinds of data, such as images and text, can be evaluated by using the same 385 

metrics136. These metrics can be further improved for better assessing and understanding 386 

DGMs139. Besides, other recent advancements proposed to evaluate GANs (reviewed in refs. 109 387 

and 134) might also prove useful in population genetics. 388 

 389 

Current issues and future directions 390 

The chances for deep learning in population genetics 391 

Experimental ANNs for population genetics can be traced back to approximately 30 years ago140. 392 

A later study suggested that the performance of ANNs was marginally better than traditional 393 

likelihood-based approaches for inferring the origin of individuals at that moment141. The current 394 

success of deep learning is mainly due to the avalanche of big data, the advances of complex 395 

deep learning architectures and the advent of powerful graphics processing units38, 142. Applying 396 

deep learning in population genetics has several advantages now. First, deep learning provides 397 

algorithmic approaches for approximating complicated mathematical functions143, 144. Hence, 398 
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deep learning does not rely on likelihood functions derived from population genetics theory and 399 

allows for end-to-end learning18, 48, which involves training a machine learning model to predict 400 

final outputs directly from raw inputs, bypassing the need for manually defined features or dividing 401 

the task into multiple steps. By identifying complex non-linear patterns present in the data without 402 

the need for simplified model assumptions, deep learning models have the potential to outperform 403 

traditional approaches. Second, deep learning can effectively handle and extract information from 404 

high-dimensional data123, such as large vectors or tensors of genotypes, summary statistics, or 405 

many complex and highly correlated features, whereas traditional approaches usually use one or 406 

a few summary statistics. Third, deep learning can efficiently analyse large-scale data with many 407 

genomes for tasks, such as estimating ancestry proportions in datasets containing hundreds of 408 

thousands of genomes86, 103. Fourth, deep learning offers a versatile approach capable of 409 

processing either phased or unphased data with both large and small sample sizes in population 410 

genetics82. Researchers then could apply a single tool for analysing different types of data, 411 

because unphased data with small sample sizes are common in non-human species82. Fifth, deep 412 

learning can uncover patterns undetectable by traditional approaches. For example, deep 413 

learning models inferred an archaic introgression event from a third archaic human population 414 

before the split of East Asians, South Asians and Oceanians54, whereas only Neanderthal and 415 

Denisovan ancestries were previously detected in these populations145. Sixth, deep learning 416 

provides efficient methods to synthesize realistic genomes in research without violating privacy85, 417 

87, 100, 108, 138. Finally, many deep learning approaches have not yet been explored in population 418 

genetic inference. For example, it will be intriguing to compare the performance of diffusion 419 

models with other DGMs for simulating genomes. Similar to text-to-image synthesis146, future 420 

studies could explore how to generate artificial genomes from plain text description. Furthermore, 421 

implementing reinforcement learning would be interesting, as it may mimic evolution147, design 422 

novel algorithms148, 149, or optimize deep learning models with non-differentiable loss functions150. 423 

Moreover, it could enable ANNs to operate without training data derived from human knowledge 424 

while surpassing human experts, similar to AlphaGo Zero151. Nevertheless, the nature of 425 

population genetic data and problems bring unique obstacles.  426 

The challenges for deep learning in population genetics 427 

The current main issues involve the efficiency, robustness and interpretability of deep learning 428 

models. Training deep learning models can be time-consuming and resource-intensive because 429 

many parameters and hyperparameters need fine-tuning39, 152. Trends in machine learning involve 430 

building deep learning models by increasing numbers of layers and parameters153, like ResNet, 431 
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which can comprise 1,000 layers154 or GPT and other large models, which can contain billions of 432 

parameters155–158. Although these complex deep learning models have achieved impressive 433 

performance in machine learning, academic researchers may struggle to train similar models with 434 

limited computational resources. To improve training efficiency, several strategies could be 435 

considered. First, recycling pre-trained models as a starting point may prove beneficial39. Several 436 

recently developed deep learning-based tools have provided pre-trained models, enabling the 437 

direct analysis of user-defined data (Table 1). These pre-trained models can reduce the amount 438 

of training data and time while enhancing performance on similar problems through transfer 439 

learning. For example, training a deep learning model to estimate the mutation rate of de novo 440 

mutations can begin with another pre-trained deep learning model for rare mutations and 441 

outperform those trained from scratch61. Moreover, pre-trained large language models on text can 442 

improve classification tasks on DNA sequences, indicating the potential of reusing pre-trained 443 

models from other fields159. Second, developing efficient architectures and algorithms remains an 444 

open-ended challenge (reviewed in ref. 153). For example, network compression can remove 445 

unnecessary parameters and reduce deep learning model sizes160. Meta-learning can optimize 446 

hyperparameters, search neural network architectures and improve training efficiency on various 447 

tasks with limited data161–163. Third, meta-heuristic approaches may serve as alternative 448 

optimization methods to stochastic gradient descent164. Of particular interest is neuroevolution, in 449 

which parameters and hyperparameters of deep learning models are fitted by mimicking 450 

evolution165, 166. 451 

 Building robust deep learning models presents several challenges. First, issues with 452 

training data can have a significant impact on deep learning model performance through various 453 

forms. One form is data shortage, commonly existing in genomic datasets from non-human 454 

species, even for our closest primate relatives167. Besides collecting more data from non-human 455 

species, possible solutions include few-shot learning168, which enables deep learning models to 456 

be trained with only a few training samples, and zero-shot learning169, which allows deep learning 457 

models to make inferences with unseen data. For example, SALAI-Net is a species-agnostic ANN 458 

that can first be trained with sufficient human data and then applied for local ancestry inference 459 

with non-human data67. Another challenge is data imbalance, when training data contain uneven 460 

proportions of data from different categories in classification, potentially biasing the model 461 

performance towards the majority category. Data imbalance is frequently observed in genomic 462 

features such as genetic variants under recombination or recent selection170. Potential solutions 463 

may be balancing the proportions of different groups in the training data before the start of training 464 

or developing deep learning models that can be trained using imbalanced datasets, like in the 465 
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case of detecting ghost introgressed fragments with introUNET80. Other forms include data 466 

mismatch, whereby the validation or test data have different statistical properties from the training 467 

data, potentially leading to poor model performance on unseen data. Data mismatch can be due 468 

to model misspecification. For example, tools developed under the standard Wright–Fisher model 469 

may not perform well with data from other evolutionary models97.  470 

Second, supervised learning (Table 1) requires knowing the true evolutionary parameters 471 

in training data, which is usually impossible in population genetics. One solution may be simulated 472 

data from known evolutionary models, as performing realistic simulations is increasingly possible 473 

with more available curated datasets and demographic models171. Popular population genetics 474 

simulators, such as ms and msprime172, 173, are coalescent approximations to the neutral Wright–475 

Fisher model, although others like SLiM can evolve forwards in time with natural selection and 476 

implement non-Wright–Fisher models174. Hence, tools trained on simulated data may have 477 

different performances on real data39. For example, although background selection is common in 478 

real data, it is usually not considered in simulations, because simulating such data is more time-479 

consuming175. However, ignoring background selection can bias demographic inference176. 480 

Domain adaptation can help supervised deep learning models achieve good performance even 481 

on training data without background selection or from mis-specified demographic models177. 482 

Another solution may be unsupervised learning, utilizing training data without known true 483 

evolutionary models64, 85, 86. Additionally, pre-training and self-supervised learning can improve 484 

model robustness178, 179.  485 

Third, deep learning models and tools should be reproducible. Currently, TensorFlow180 486 

and PyTorch181 dominate deep learning frameworks (Table 1). However, a good deep learning 487 

model in one framework may not perform well in another. Even within the same framework, their 488 

performance may vary due to factors like hardware, random seed, or the framework version182. 489 

Therefore, deep learning model development should be documented and reported183. Future 490 

studies should consider applying and developing tools for improving reproducibility and 491 

reusability. Open Neural Network Exchange offers a potential solution for interoperability between 492 

different deep learning frameworks. dnadna is a recently developed framework with PyTorch as 493 

backend, aiming to improve the development of deep learning-based tools for reproducibility and 494 

user-friendliness in population genetics184.  495 

Fourth, deep learning models may be susceptible to adversarial attacks. A recent 496 

technique was developed for creating adversarial mutations on genomes, and even a small 497 

proportion of adversarial mutations could dramatically reduce the deep learning model 498 

performance on local ancestry inference185. It remains unknown how such adversarial attacks 499 
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would affect deep learning in other population genetics tasks. For example, bad actors may sightly 500 

modify their data to fool deep learning tools to construct erroneous evolutionary histories based 501 

on their own interests. Consequently, future studies should investigate adversarial attacks and 502 

defence techniques when applying deep learning186. 503 

Ultimately, developing interpretable deep learning models should be the goal, as deep 504 

learning models should provide not only accurate predictions but also insightful explanations39, 505 

187. Reducing the deep learning model complexity may be one strategy to help researchers 506 

interpret deep learning models75, 103. Other strategies may include techniques from explainable 507 

artificial intelligence (xAI), which aim to understand the decision procedures of deep learning 508 

models (reviewed in refs. 188 and 189). These techniques can be model-agnostic or model-509 

specific, depending on their applicability to all or specific machine learning algorithms, providing 510 

local or global interpretation. Local interpretation focuses on understanding why an ANN gives a 511 

specific output for a given input, whereas global interpretation aims to understand how an ANN 512 

makes predictions using features and parameters learnt from data190, 191. LIME (Local 513 

Interpretable Model-agnostic Explanations) is a common local model-agnostic interpretation 514 

method that can explain predictions from ANNs by approximation from interpretable models such 515 

as linear models and decision trees192. Other common local interpretation methods include SHAP 516 

(SHapley Additive exPlanations)193, based on game theory, and saliency maps194, especially for 517 

CNNs. These can provide global interpretation for how neutral and non-neutral variants affect 518 

CNN predictions by aggregating local interpretations across different inputs75, 79. Moreover, prior 519 

human knowledge can be useful. For example, deep learning models can be interpreted by finding 520 

correlation between values from hidden units of ANNs and summary statistics from population 521 

genetics theory106. Some machine learning algorithms can be explained using population genetics 522 

theory, such as principal component analysis195, 196. Therefore, it is interesting to explore ANNs 523 

with population genetics theory and expand population genetics theory with ANNs in the future197. 524 

 525 

Conclusions 526 

Although deep learning still has many issues, its power to manage large-scale and multi-modal 527 

data in a multitasking environment198, 199 is paving a new road to study multiple evolutionary 528 

problems with massive multi-population and multi-omic datasets in this genomic era. 529 

Simultaneously, we believe that biological studies will continue to inspire and improve machine 530 

learning algorithms, just as geneticists contributed to the establishment of linear regression — a 531 

fundamental machine learning algorithm123 — a century ago200, 201.  532 
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Table 1. Recent open-source deep learning software for population genetic inference 1041 

Tool 

Population 

genetics 

problem 

Learning 

paradigm 
Architecture 

Programming 

language 

Deep learning 

framework or 

library 

Available 

pre-trained 

model 

LAI-Net66 Admixture Supervised CNN Python PyTorch Yes 

Neural 

ADMIXTURE103 
Admixture Unsupervised AE Python PyTorch No 

HaploNet86 Admixture Unsupervised VAE Python PyTorch No 

SALAI-Net67 Admixture Supervised CNN Python PyTorch Yes 

donni56 Demography Supervised FNN Python Scikit-learn Yes 

pg-gan64 Demography Unsupervised GAN-like Python TensorFlow No 

evoNet53 

Demography 

Natural 

selection 

Supervised FNN Java Customized No 

genomatnn79 Introgression Supervised CNN Python TensorFlow Yes 

introUNET80 Introgression Supervised CNN Python PyTorch No 

ERICA81 Introgression Supervised CNN Python TensorFlow Yes 

MuRaL61 Mutation rate Supervised FNN/CNN Python PyTorch Yes 

diploS/HIC68 
Natural 

selection 
Supervised CNN Python TensorFlow No 

Flex-sweep77 
Natural 

selection 
Supervised CNN Python TensorFlow Yes 

Timesweeper74 
Natural 

selection 
Supervised CNN Python TensorFlow No 

disc-pg-gan106 
Natural 

selection 
Unsupervised GAN-like Python TensorFlow No 

popvae83 
Population 

structure 
Unsupervised VAE Python TensorFlow No 

GenoCAE84 
Population 

structure 
Unsupervised AE Python TensorFlow No 
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ReLERNN90 
Recombination 

rate 
Supervised RNN Python TensorFlow No 

PG-Alignments-

GAN85 
Simulation Unsupervised GAN Python PyTorch No 

Locator62 Spatial pattern Supervised FNN Python TensorFlow No 

disperseNN82 Spatial pattern Supervised CNN Python TensorFlow Yes 

AE, autoencoder; CNN, convolutional neural network; FNN, feed-forward neural network; GAN, 1042 

generative adversarial network; RNN, recurrent neural network; VAE, variational autoencoder. 1043 

We have categorized open-source software developed since 2016 that employs common artificial 1044 

neural network architectures based on population genetics problems they address. We define a 1045 

tool as software if it includes a detailed manual and command-line interface for user-defined data 1046 

and parameters. We have excluded software for improving deep learning model performance and 1047 

implementation from this table, as they are not specific to any population genetics problems184. 1048 

Similar to a GAN, GAN-like software contains a generator and a discriminator, but only one of 1049 

them is an artificial neural network. 1050 

 

Figure 1 | The workflow for traditional and machine learning approaches in population 

genetic inference. Traditional approaches build deterministic and stochastic models based on 

population genetics theory. Statistical inference can provide approaches to estimate parameters 

in stochastic models. Besides, population genetics theory can provide domain-specific knowledge 

when using machine learning algorithms. Currently, only supervised and unsupervised learning 

are applied in population genetic inference. Algorithms in supervised learning try to learn how to 

separate data and predict labels because training data are labelled (indicated by crosses and 

circles here), while algorithms in unsupervised learning try to learn probabilistic distributions to 

group data because no label is available in training data. Both supervised and unsupervised 

learning can use approaches based on deep learning or other algorithms. Simulation is supported 

by population genetics theory and used for validating different approaches. Also, it can provide 

simulated data for simulation-based approaches from statistical inference29 and training data for 

machine learning algorithms15. Once an approach is validated with simulations, it can be applied 

to real data. 

 

Figure 2 | Common architectures and layers for artificial neural networks (ANNs). a | ANNs 

contain m hidden layers with n neurons in each hidden layer. The arrows between nodes 
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represent weights or parameters learnt from data. ANNs can be feed-forward neural networks or 

recurrent neural networks (RNNs) depending on the information flow. An ANN usually contains 

three parts: an input layer, an output layer, and hidden layers. A typical convolutional neural 

network (CNN) combines q convolutional layers, activation layers, and pooling layers together. 

Their outputs then are passed into p fully connected layers. b | The input here is a biallelic 

genotype matrix. Different colours highlight variants from different positions. Neurons in the fully 

connected layer process all variants and assign different weights to the same allele, whereas 

neurons in the convolutional layer only process several variants depending on the kernel size and 

assign the same weight to the alleles from the same genome if the input is processed by the same 

kernel, leading to parameter sharing between different neurons. The kernel here is one-

dimensional, and its weights are learnt from data. A max pooling layer outputs the maximum 

element from its inputs, enabling CNNs invariant to slight shifts in the input. c | RNNs can process 

biological sequences position by position while tracking information present in previous positions. 

d | Graph convolution is a generalized convolution because grid-like data are equivalent to graphs 

where a node (blue) connects with all its neighbouring nodes (red) inside a kernel. Then, 

convolution combines information with a node and those connecting with this node. 

 

Figure 3 | Deep generative models. a | A restricted Boltzmann machine (RBM) contains only 

one visible (input) layer and only one hidden layer48. Information can flow between these two 

layers. Hence, RBMs are represented using undirected graphs, while other architectures are 

usually depicted using directed graphs with arrows. Genotype matrices can be regarded as 

images and passed into a deep generative model (DGM). Then the DGM can generate new data 

using the properties learnt from training data. In genotype matrices, different colours indicate 

different alleles at the same position. b | A variational autoencoder contains an encoder and a 

decoder48. The encoder converts the inputs into codes — latent representations. The decoder 

then tries to reconstruct the inputs similar to the original inputs and usually enforces the 

distribution of the code close to a normal distribution. The code can visualize population structure 

and the decoder can generate artificial genotypes83. c | A generative adversarial network (GAN) 

contains a generator and a discriminator48. The generator creates synthetic data and the 

discriminator tries to distinguish real and synthetic data. The generator and discriminator update 

their parameters in turn. The generator parameters are fixed and the discriminator parameters 

are updated for some iterations (blue arrows); then the discriminator parameters are fixed and 

the generator parameters are updated for some iterations (red arrows). d | GANs may have mode 
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collapse in which only subsets of the distribution of the training data are learnt, and mode dropping 

in which subsets of the distribution of the training data are forgotten.  

 

Figure 4 | Novel architectures and models. a | A simplified transformer architecture is based on 

the vanilla transformer, which contains N encoders and decoders19. The encoder learns 

representation from training data through a series of layers, including self-attention layers, 

normalization layers, and feed-forward layers. Then the decoder uses this representation with 

training data to make predictions, for example, to predict whether a position in genomes is an 

introgressed variant (highlighted in red here) or not. Because transformers receive all inputs 

together, positional encoding is necessary if position information is important. b | Self-attention 

layers are the key components of transformers. The inputs are numeric vectors, such as genetic 

variants in genomes denoted with 0 and 1. Inside a self-attention layer, the inputs are converted 

into three components: query, key, and value. The outputs are generated using these three 

components through several operations, including matrix multiplication, transpose and softmax, 

which is a mathematical function that converts the elements of its inputs into values between 0 

and 1 conditional on the sum of all the elements equal to 1. Here, the query weights, key weights, 

and value weights are parameters learnt from the data. Variants from different positions and their 

corresponding results are highlighted with different colours. c | Diffusion models contain forward 

and reverse processes. Here, the denosing diffusion probabilistic model202 is illustrated as an 

example. Noise from a normal distribution is injected into the inputs, such as genotype matrices 

(different colours indicate different alleles at the same position), step by step during the forward 

diffusion process; then artificial neural networks can gradually recover the input by learning how 

to denoise during the reverse denosing process. 

 

Figure 5 | The implementation workflow. To implement a deep learning model, researchers first 

define their problem and gather enough data before selecting an appropriate architecture. In 

population genetics, data could be either real data from biological sequences or simulated data 

from a given evolutionary model. The raw data can then undergo data pre-processing (Box 1). 

Typically, the processed dataset is split into training, validation, and test sets. The training set is 

further divided into smaller batches, which are randomly selected and fed into the model to 

iteratively update its parameters. When all batches have been utilized, an epoch is completed. 

Subsequently, the validation set is employed to monitor the model performance after each epoch. 

The choice of performance metrics relies on the specific problem and data type; a confusion 

matrix is depicted here as an example. If the model performance on the validation set is subpar, 
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researchers can explore different hyperparameter settings (grid search as an example here) and 

adjust the network architecture until satisfactory performance is achieved. Once the optimal model 

is obtained, it can be evaluated using the test set. If the performance remains unsatisfactory, 

researchers might consider collecting additional data, employing regularization techniques 

(weight decay as an example here), reducing the model complexity, or even replacing the goal 

with a less ambitious one. After experimenting these approaches, if the model still does not 

perform well, researchers may abandon deep learning; if the model demonstrates good 

performance on the test set, the workflow can conclude. 

 

Box 1. Data preprocessing 

Typically, artificial neural networks (ANNs) require numeric inputs. Hence, non-numeric inputs, 

such as genome sequences, must be converted into numerical values using embedding or 

encoding techniques before being processed by ANNs. Encoding can transform non-numeric 

values into numbers (see the figure). A prevalent strategy for encoding genome sequences 

involves converting genome alignments with different nucleotides into genotype matrices 

containing 0 and 1 as elements, since population genetics usually assumes that a variant has 

only two allelic types. If missing values or multiple alleles must be considered, additional values 

such as –1 can be incorporated into genotype matrices. Genotype matrices may be further 

filtered, such as by removing variants with many missing values, to ensure data quality. Another 

encoding approach utilizes summary statistics, such as the allele frequency spectrum45. In 

addition, one-hot encoding — a technique that converts each category variable into a distinct 

binary vector representation of several distinct categories, where 1 is placed at the position 

corresponding to the specific category and all other positions are filled with 0 — is common in 

machine learning, although it is not frequently applied in population genetics (but see ref. 61), 

which can handle multi-allelic data. However, encoding may not preserve the relationships 

between input features. Embedding can address this limitation and reduce input data 

dimensionality. Deep learning models can also be employed for dimensionality reduction to learn 

embeddings from data. A variational autoencoder was developed to learn embeddings in a 

hyperbolic space from genotype data. These embeddings can generate population trees for 

classifying individuals into different populations and can be used for studying genetic ancestry or 

simulating genotype data203. In addition to embeddings from genotype data, positional embedding 

could also be considered. For example, one study employed a separate fully connected layer to 

learn information from variant positions within genomes and merged position and genotype 

information for predictions63. Moreover, encoding and embedding can be used together61. 
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Furthermore, different neural network architectures may require specific techniques for pre-

processing48. For example, if a convolutional neural network requires inputs with fixed size, 

techniques such as padding, which ensures that the inputs have the same size by adding 

additional elements around the original data, or width normalization can be considered75. 

 

Glossary 

Accuracy: The ratio of the number of correct predictions to the total number of predictions in a 

dataset. 

 

Admixture: The process in which genetic material from multiple populations merges into a single 

population. 

 

Adversarial attack: A technique that slightly perturbs input data and causes machine learning 

models to make wrong predictions on such manipulated inputs with high confidence. 

 

Approximate Bayesian computation: A statistical inference approach that employs simulation to 

estimate the posterior distribution of model parameters based on observed data when the exact 

posterior distribution is intractable, as motivated by Bayes Theorem. 

 

Backpropagation: An optimization algorithm that recursively calculates gradients from the output 

layer to the input layer based on the chain rule from calculus for updating the parameters of an 

artificial neural network. 

 

Cross-entropy: A metric that measures the performance of machine learning models for 

classification by comparing the similarity of two probability distributions. 

 

Decision tree: A class of supervised learning algorithms that makes predictions by learning and 

organizing rules into a binary tree-like structure from data.  

 

Domain adaptation: A technique that enables machine learning models trained with data from one 

domain (source domain) to be adapted and make accurate predictions on data from a different 

but related domain (target domain). 
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Dropout: A technique to regularize artificial neural networks by randomly deactivating neurons 

during training. 

 

Early stopping: A technique to regularize artificial neural networks by stopping training before 

reaching the minimum loss on the training set. 

 

F1 score: A metric that measures the performance of machine learning models for binary 

classification by calculating the harmonic mean of a given pair of precision and recall. 

 

Game theory: A math discipline that studies strategies of interaction among rational players. 

 

Gated recurrent unit: A unit similar to long short-term memory but with fewer parameters that 

improves the performance of recurrent neural networks on long sequences. 

 

Grid search: A technique that optimizes hyperparameters by training and evaluating the model 

performance on combinations of a predefined set of hyperparameters. 

 

Hidden Markov model: A class of generative models that processes sequential data by assuming 

the observed sequence is generated by a sequence of unobserved random variables 

independently transiting from the current state to the next state and not depending on all previous 

states. 

 

Logistic regression: A type of regression that generates binary output ranging from 0 to 1 and can 

be viewed as a special type of artificial neural network composed by a neuron using a sigmoid 

activation function.  

 

Long short-term memory: A unit that improves the performance of recurrent neural networks on 

long sequences by deciding whether information should be remembered or forgotten in the neural 

network along the sequence. 

 

Loss function: A mathematical function that quantifies the difference (that is, loss) between the 

actual data and the predictions made by a machine learning model. 
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Markov chain: A sequence of random variables where the future state of a given step only 

depends on the current state and remains unaffected by all previous states.  

 

Markov chain Monte Carlo: A statistical inference approach for estimating statistical model 

parameters by gradually approximating the probability distribution of model parameters by 

simulating a Markov chain of parameter values. 

 

Maximum likelihood estimation: A statistical inference approach for estimating statistical model 

parameters by finding parameters that can maximize the probability of observed data. 

 

Meta-learning: A class of machine learning algorithms that automates the learning process of 

machine learning algorithms for different tasks. 

 

Mixture model: A probabilistic model that is generated from multiple atomic probability 

distributions. 

 

Precision: The ratio of the number of correctly predicted instances to the total number of instances 

predicted as belonging to that class by the model in a dataset. 

 

Principal component analysis: A technique that reduces the dimensionality of high-dimensional 

continuous data while keeping most of the information from the data by exploiting linear 

relationships among the features. 

 

Random search: A technique that optimizes hyperparameters by training and evaluating the 

model performance on random combinations of hyperparameters from a predefined search 

space. 

 

Recall: The ratio of the number of correctly predicted instances to the total number of instances 

actually belonging to that class in a dataset. 

 

Rectified linear unit: A common activation function that returns the input value if the input value is 

larger than zero or returns zero otherwise. 

 

Regression: A supervised learning task that makes quantitative predictions from input data.  
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Saliency map: A graphical representation that visualizes the contributions of each pixel in an 

image to the predictions made by an artificial neural network, revealing the regions of the image 

that significantly influence the decision-making process of the network. 

 

Sequence-to-sequence learning: A machine learning task that involves training models to convert 

input sequences into corresponding output sequences, which is often employed in natural 

language processing for applications such as machine translation and speech recognition.  

 

Simulated annealing approach: An optimization method that iteratively conducts probability 

solution updates proportional to the number of iterations already performed and the quality of the 

proposed solution to discover the global optimal solution. 

 

Stochastic gradient descent: An optimization algorithm that iteratively updates parameters in 

machine learning models by randomly choosing data to calculate the gradients of the loss 

function. 

 

Structured prediction: A supervised learning task that, unlike traditional classification or regression 

tasks which usually predict a single entity output, forecasts complex structures within the input 

data and generates outputs like sequences, trees, and graphs. 

 

Summary statistic: A metric computed from genetic variants that is informative for an evolutionary 

parameter of interest. 

 

Support: A set of values of a random variable for which the probabilities are greater than zero with 

a given probability distribution. 

 

Tensor: A multidimensional array that is generalized from vectors and matrices for organizing 

high-dimensional data. 

 

Transfer learning: A technique that allows reusing previously trained successful models for one 

task to other similar tasks. 
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Weight decay: A technique to regularize machine learning algorithms by penalizing large values 

in the model parameters through adding a term to the loss function that is proportional to the 

square of the magnitude of the parameters. 














