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ABSTRACT

Background: A small class of RNA molecules, in particular the

tiny genomes of viroids, are circular. Yet most structure prediction

algorithms handle only linear RNAs. The most straightforward

approach is to compute circular structures from ‘internal’ and ‘external’

substructures separated by a base pair. This is incompatible, however,

with the memory-saving approach of the Vienna RNA Packagewhich

builds a linear RNA structure from shorter (internal) structures only.

Result: Here we describe how circular secondary structures can be

obtained without additional memory requirements as a kind of ‘post-

processing’ of the linear structures.

Availability:Thecircular foldingalgorithmis implemented in thecurrent

version of the of RNAfold program of the Vienna RNA Package,

which can be downloaded from http://www.tbi.univie.ac.at/RNA/

Contact: ivo@tbi.univie.ac.at

1 INTRODUCTION

Most RNA molecules are linear. Circular single stranded RNAs, on

the other hand, occur only in a few cases. The most prominent class

are the ‘genomes’ of viroids, see (Flores et al., 2004; Tabler and

Tsagris, 2004) for recent reviews. A related example is the circular

RNA genome of Hepatitis Delta virus which contains a viroid-like

domain, see e.g. (Gudima et al., 2004; Wadkins and Been, 2002)

and the references therein. In addition, alternative splicing may lead

to circular RNAs from intronic sequences. This appears to be a

general property of nuclear group I introns (Nielsen et al., 2003)

and was also observed during tRNA splicing in Halobacterium
volcanii (Salgia et al., 2003). Circularized C/D box snoRNAs

were recently reported in Pyrococcus furiosus (Starostina et al.,
2004). Circular nucleic acids, furthermore, have been investigated

in the context of in vitro selection experiments (Kong et al., 2002),

and they appear as intermediates in a sequencing strategy for the

UTRs of RNA viruses.

While structure prediction of these fairly rare circular RNAs may

appear as a rather esoteric topic, most of the examples above have

functional secondary structures. Indeed, viroids were among the

first RNAs for which secondary structures have been studied sys-

tematically (Steger et al., 1984), see also Repsilber et al. (1999) for

more recent work. Since viroid RNAs are short (�200–400 nt), we

have to expect significant differences between the folds of linear

and circular sequences. We will demonstrate in Figure. 1 that this is

indeed the case.

It is therefore worthwhile to develop circular variants of at least

the most common RNA folding tools; indeed algorithms for com-

puting minimum energy folding and the computation of suboptimal

structure of circular RNAs are implemented in Michael Zuker’s

mfold package (Zuker, 1989, 2003). These algorithms, in fact,

treat linear RNAs as exceptional variants of the circular ones. In

contrast, the Vienna RNA Package http://www.tbi.univie.ac.at/

RNA (Hofacker et al., 1994; Hofacker, 2003), optimizes the

memory requirements for linear RNAs; this approach saves

approximately a factor of 2 in memory as well as some CPU

time. Circular RNAs, however, are non-trivial to handle in this

framework. In this contribution we demonstrate how circular

RNA folding can be implemented efficiently as a kind of ‘post-

processing’ step of the forward recursion and as a corresponding

‘pre-processing’ step for the the backtracking part of the folding

algorithms without requiring significant additional resources or a

redesign of the optimized recursion for the linear RNA case.

Circular RNA folding can therefore be included into the Vienna

RNA Package without duplicating the code or compromising the

efficiency of the current implementations.

This contribution is organized as follows: We briefly recall

the RNA folding algorithms as implemented in the Vienna

RNA Package. We then discuss the extension of the minimum

free energy folding approach to circular RNAs and describe how the

same ideas apply to the computation of the partition function.

2 FOLDING LINEAR RNA MOLECULES

The energy model for RNA folding is based upon carefully meas-

ured energy parameters (Mathews et al., 1999, 2004) for the loops of

the RNA secondary structure [i.e. the cycles of the unique minimum

cycle basis (Leydold and Stadler, 1998, http://www.combinatorics.

org/)]. The energy of a loop depends on the sequence near the base

pairs that are part of the loop, the length of the loop and on its type.

From the biophysical point of view one distinguishes hairpin loops,

stacked base pairs, bulges, true interior loops and multi(branched)

loops. From an algorithmic point of view one can treat bulges,

stacked pairs and true interior loops as subtypes of interior loops.�To whom correspondence should be addressed.
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We consider an RNA sequence x of length n. Hairpin loops are

uniquely determined by their closing pair k, l. The energy of a

hairpin loop is

Hðk‚ lÞ ¼ Hðxk‚xk+1‚‘‚xl�1‚xlÞ‚

where ‘ is the length of the loop (expressed as the number of its

unpaired nucleotides). Each interior loop is determined by the two

base pairs enclosing it. Its energy is tabulated as

Iðk‚ l; p‚qÞ ¼ Iðxk‚xk+1; ‘1; xp�1‚xp; xq‚xq+1; ‘2; xl�1‚xlÞ‚

where ‘1 is the length of unpaired strand between k and p and ‘2 is

the length of the unpaired strand between q and l. Symmetry of the

energy model dictates I (k, l; p, q) ¼ I (q, p; l, k). If ‘1 ¼ ‘2 ¼ 0 we

have a (stabilizing) stacked pair, if only one of ‘1 and ‘2 vanish we

have a bulge. For multiloops, finally we have an additive energy

model of the form M ¼ a + b · b + c · ‘ where ‘ is the length of

multiloop (again expressed as the number of unpaired nucleotides)

and b is the number of branches, not counting the branch in which

the closing pair of the loop resides. As described here, the multiloop

energy is independent of the sequence of the closing pair. Sequence

dependence is introduced, however, by the dangling end contribu-

tions which we briefly discuss at the end of Section 3.

RNA folding algorithms are based on decomposing the set of

possible structures into sets of smaller structures. This decomposi-

tion can be chosen such that each possible structure appears in

exactly one of the subcases. In the course of the ‘normal’ RNA

folding algorithm for linear RNA molecules as implemented in the

Vienna RNA Package (Hofacker et al., 1994; Hofacker, 2003)

the following arrays, which correspond to different structural com-

ponents in Figure 2, are computed for i < j:

Fij, free energy of the optimal substructure on the subsequence x[i, j].
Cij, free energy of the optimal substructure on the subsequence x[i, j]

subject to the constraint that i and j form a basepair.

Mij, free energy of the optimal substructure on the subsequence x[i, j]
subject to the constraint that x[i, j] is part of a multiloop and has

at least one component, i.e. a sub-sequence that is enclosed by

a base pair.

M1
ij‚ free energy of the optimal substructure on the subsequence x[i, j]

subject to the constraint that x[i, j] is part of a multiloop and has

exactly one component, which has the closing pair i,h for someh
satisfying i � h < j.

The ‘conventional’ energy minimization algorithm for linear

RNA molecules (Zuker and Stiegler, 1981; Zuker and Sankoff,

1984) can be summarized in the following way, which corresponds

to the recursions implemented in the Vienna RNA Package

(Hofacker et al., 1994; Hofacker, 2003):

Fij ¼ min
n
Fi+1‚ j‚ min

i<k�j
Cik + Fk+1‚ j

o
Cij ¼ min

n
Hði‚ jÞ‚ min

i<k<l<j
Ckl + Iði‚ j; k‚ lÞ‚

min
i<u<j

Mi+1‚u + M1
u+1‚ j�1 + a

o
Mij ¼ min

n
min
i<u<j

ðu � i � 1Þc + Cu+1‚ j + b‚

min
i<u<j

Mi‚u + Cu+1‚ j + b‚Mi‚ j�1 + c
o

M1
ij ¼ min

n
M1

i; j�1 + c‚Cij + b
o
:

ð1Þ

These recursions are directly derived from the structure decom-

position shown in Figure 2. The corresponding recursions for

the partition function are obtained by replacing minimum

operations with sums and additions with multiplications

(McCaskill, 1990).

The computation of the minimum free energy structure

requires to store only the arrays F, C and M. In addition, the

full M1 array is required for the more elaborate backtracking

procedure of the RNAsubopt program (Wuchty et al., 1999)

which produces all RNA secondary structures within a given

energy interval above the ground state. Similarly, uniqueness of

the decomposition is necessary for partition function algorithms,

see Section 4.

3 FOLDING ALGORITHMS FOR
CIRCULAR RNAS

A straightforward way of dealing with circular RNA molecules

is to compute Cij and Mij also for the subsequences of the form

x[j, n]x[1, i]. This is implemented in the mfold package (Zuker,

2003) and described e.g. in Zuker (1989). The disadvantage of this

approach is, however, that it doubles the memory requirements (and

also the CPU requirements, because more matrix entries need to be

computed).

As an alternative, we propose here to extend the linear folding

algorithms in such a way that the circular molecules are handled

as a kind of ‘post-processing’ of the arrays that are computed

in the linear case. This is not only memory efficient but also

allows us to assess the structural differences between linear

and circular sequences with just a single run of the forward recur-

sions. (Recall that the backtracking step for minimum energy

folding is fast: O(n) compared with the O(n3) steps for filling

the arrays.)

The key observation is that the only difference between the linear

and the circular case is the energy of the loop that contains xn and x1.

In the linear case, there is no energy contribution associated with the

‘exterior’ loop, while it has to be scored like any other loop in the

Fig. 1. Differences between linear and circular folds of the Citrus Viroid IV

(Acc. No. X14638) (Puchta et al., 1991) as a function of cut point in the

sequence (relative to the database entry). Structure distance is measured as

Hamming distance of the dot-parenthesis strings, differences in folding en-

ergy in kcal/mol. Below, the correct circular structure is shown.
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circular case. Hence we have to distinguish the types of ‘exterior’

loops, Figure 3.

Exterior hairpin. If the exterior loop is a hairpin, then there is a

base pair p, q, 1 � p < q� n such that both x[1, p� 1] and x[q + 1, n]

are unpaired. The optimal energy of such a structure is

F
*

H ¼ min
p<q

fCpq + Hðq‚pÞg ð2Þ

where ‘¼ p� 1 + (n� q + 1) is length of the hairpin loop and 1� p <
q � n.

Exterior interior loop. In this case, the ‘exterior loop’ contains

the closing pairs k, l and p, q of exactly two components. Thus

F
*

I ¼ min
k<l<p<q

fCpq + Ckl + Iðq‚p‚ l‚kÞg ð3Þ

where ‘1 ¼ n� q + k� 1 and ‘2 ¼ p� l� 1. In practice, the size ‘¼
‘1 + ‘2 of an interior loop is limited to ‘� m, typically m¼ 30. Thus

F
*

I can be computed in O(n3) time without additional memory

requirements.

Exterior multiloop. Generalizing the approach for the interior

loops, we can view an exterior multiloop as a multiloop with at least

three branches on the sequence interval form 1 to n. Starting from

M1
ij we compute the linear auxiliary array M2

kn containing the

optimal energy of x[k, n] given that the sequence interval is con-

tained in a multiloop, has exactly two components, and starts with

a base pair k, h. We obtain

M2
kn ¼ min

k<u<n
ðM1

ku + M1
u+1‚nÞ: ð4Þ

This array requires only O(n) memory and can be computed

in O(n2) time. A multiloop with at least three components can

now be constructed from a piece with at least one component

at the beginning of the sequence and a piece that contains

exactly two components (with first closing pair k + 1, v, for

some k < v < n � 2):

F
*

M ¼ min
1<k<n

fM1‚ kM
2
k+1‚n + ag: ð5Þ

The multiloop case thus can be dealt with in quadratic time with

only linear memory overhead.

The minimum free energy structure of the folded circular

molecule is therefore

F
* ¼ min fF*

H‚F
*

I ‚F
*

Mg: ð6Þ

Fig. 3. The circular fold can be decomposed into three cases depending on the loop-type that contains (1,n). In the multiloop case we have to make sure the there

are at least three stems. This requires an additional arrayM2 corresponding to structures with exactly two closing pairs, which is easily obtained by concatenating

two structures with exactly one closing pair.

Fig. 2. Decomposition of secondary structures underlying the folding algorithms as implemented in the Vienna RNA Package. Top: a structure on [i, j] starts

either with an unpaired base or with a paired 50 base. Second row: A structure enclosed in a base pair is either a hairpin loop, delimited by an interior loop, or

branches in a multiloop. The multiloop itself is composed of two parts, one with one or more components (M) and another with exactly one component (M1). Note

that in the multiloop cases i and j do not form a base pair. The last two rows further depict the recursions for the two types of multiloop components. Again, the

decompositions are into disjoint sets of cases.
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Backtracking. Backtracking is straightforward with this

approach: First we determine whether the optimal ‘exterior loop’

is a hairpin (F
* ¼ F

*

H), an interior loop (F
* ¼ F

*

I ) or a multiloop

(F
* ¼ F

*

M). Depending on the result we determine either

(1) p, q such that F
*

H ¼ Cpq + Hðq‚pÞ, or

(2) k, l and p, q such that

F
*

I ¼ Cpq + Ckl + Iðq‚p; l‚kÞ, or

(3) (a) k such that F
*

M ¼ M1‚k + M2
k+1‚n + a, and then

(b) u such that M2
kn ¼ M1

k‚u + M1
u+1‚n.

The next step already follows the normal backtracking procedure

of the linear folding problem.

Dangling ends. The Vienna RNA Package implements

three different models for handling the so-called dangling-end

contributions that arise when an unpaired nucleotide stacks with

an adjacent base pair. These contributions can be (1) ignored, (2)

taken into account for every combination of adjacent bases and base

pairs or (3) a more complex model can be used in which the

unpaired base can stack with at most one base pair. The latter

model strictly speaking violates the secondary structure model in

that an unpaired bases xi between two base pairs (xp, xi�1) and

(xi+1, xq) has three distinct states with different energies: xi does

not stack to its neighbors, xi stacks to xi�1, or xi+1. (The secondary

structure model, in contrast, distiguishes only unpaired from

paired bases.) The folding algorithm then minimizes over

these possibilities. In cases (1) and (2) one can absorb the

dangling-end contributions in the loop energies. In case (3), how-

ever, they have to be treated explicitly, which is done in the

forward recursions already for all cases with the exception of the

dangling end contribution reaching across the ‘gap’ 1�n. The cases

unpaired x1 stacks to paired xn and unpaired xn stacks to paired

x1 need to be treated separately, adding two additional subcases to

the multi-loop recursion above. Even more subclasses are needed if

one wants to allow also for co-axial stacking of helices in the

multiloop.

An important observation about the recursions (2–5) is that each

possible secondary structure is counted exactly once, i.e. the recur-

sions are non-redundant. This is important when one is interested in

enumerating structures as, for example, in the RNAsubopt pro-

gram. This property is also crucial for the partition function calcu-

lations discussed in the next section. For the purpose of energy

minimization, however, it is not necessary. One can therefore

replace Equation (4) by

M2
kn ¼ min

k<u<n
ðMku + Mu+1‚nÞ‚ ð7Þ

and reinterpret M2 as the contribution of segments with at least two

branches in a multiloop. As a consequence, the M1 array does not

need to be stored and the memory requirements of the minimum free

energy folding are the same as in the linear case up to a the auxiliary

array M2 of size n.

4 PARTITION FUNCTION

It is straightforward to translate the recursions (2–5) into recursions

for the partition function because they already provide a partition

of the set of all secondary structures that can be formed by the

sequence x. In the following we suppress the factor 1/RT in the

Boltzmann factors of the energy parameters, i.e. we assume that the

energy parameters are already scaled relative to the thermal energy.

Equation (2–5) then become

ZM2
kn ¼

X
u

ZM1
ku Z

M1
u+1‚n

Z
*

H ¼
X
p<q

ZB
pqe�Hðq‚pÞ

Z
*

I ¼
X

k<l<p<q
ZB
kl Z

B
pqe�Iðk‚ l‚p‚qÞ ð8Þ

Z
*

M ¼
X
k

ZM
1‚ k Z

M2
k+1‚nea

Z
* ¼ Z

*

H + Z
*

I + Z
*

M:

The probability Pkl of a base pair kl can be represented, in the

simplified version of the Nussinov algorithm (Nussinov et al.,
1978), as

Pkl ¼ P
*

kl +
X

p<k;q>l
Ppq

Zp+1‚ k�1Z
B
k‚ lZk+1‚q�1

ZB
pq

e�x: ð9Þ

See Figure 4. Here P
*

kl is the probability of that kl is a closing pair

contained in the exterior loop. This is the only term that differs from

the linear case. For the full energy model we can use the same logic,

but we need to consider the individual loop types separately. In

detail we obtain (MacCaskill, 1990):

Pkl ¼ P
*

kl +
X

p<k;q>l
Ppq

ZB
k‚ l

ZB
p‚q

n
e�Iðp‚q‚ k‚ lÞ

+
� X

p<u<k
ZM
p+1‚u Z

M1
u+1‚ k�1

�
e�ða+ðq�l�1ÞcÞ

+
� X

l<u<q
ZM
l+1‚uZ

M1
v+1‚q�1

�
e�ða+ðk�p�1ÞcÞ

+ ZM
p+1‚ k�1Z

M
l+1‚q�1

o
: ð10Þ

The first term covers the case where p, q and k, l delimit an interior

loop. The remaining three terms cover the multi-loop case with the

three sub-cases that kl delimits the most 30, the most 50 or an

intermediate branch, respectively.

The contribution P
*

kl covers the cases in which the basepair kl is

part of the ‘exterior’ loop. In the linear case we have simply

Plin
kl ¼ Z1‚ k�1Z

B
klZk+1‚n

Z1n
: ð11Þ

Fig. 4. Backward recursion. In order to compute Pkl we have to consider all

configurations in which the pair kl is immediately interior to a pair pq. This

basepair in turn is formed with probability Ppq.

Circular RNA folding
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In the circular case we have to consider the three possible loop types

for the ‘exterior’ loop separately. This yields:

Pk̊l ¼
ZB
kl

Zcirc

(
e�Hðl;kÞ|fflfflffl{zfflfflffl}
hairpin

þ

X
p;q;p<q<k<l

ZB
pqe�Iðq;p;l;kÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interior left

þ

X
p;q;l<l<p<q

ZB
pqe�Iðp;q;l;kÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Interior right

þ
ZM

1;k�1Z
M
lþ1;ne�a|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Multi middle
þ

X
j<k

ZM
1j Z

M1
jþ1;k�1e�ðaþðn�qÞcÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Multi left

þ

X
j>l

ZM1
lþ1;jZ

M
jþ1;ne�ðaþðk�1ÞcÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
)
:

Multi right

For given k and l this expression can be evaluated in linear time

without additional memory requirements. It follows that the base

pairing probability matrix P� for the case of circular RNAs can be

computed with a constant additional factor in CPU time and neg-

ligible additional memory requirements.

5. CONCLUDING REMARKS

Circular RNA folding is being added as an additional feature to the

Vienna RNA Package. The energy minimization is already

available via cvs, the implementation of the circular version of

RNAalifold (Hofacker et al., 2002) is in progress. This tool

computes the consensus structure of a set of aligned RNA

sequences. Algorithmically, it is very similar to the energy minim-

ization described above.

The main applications for these features are a more syste-

matic analysis of viroid structures and circular snoRNAs. In

conjunction with alignment algorithms for circular sequences

(Gregor and Thomason, 1993; Maes, 1990) one can use circular

RNAalifold to obtain consensus structures. The alidot

tool (Hofacker et al., 1998; Hofacker and Stadler, 1999) can be

applied without changes to the problem of identifying evoluti-

onarily conserved RNA secondary structure motifs in otherwise

structurally variable RNA motifs. The circular version of

RNAsubopt (Wuchty et al., 1999) will be of particular interest

for a detailed understanding of the structural changes in viroid

RNAs.
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