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a b s t r a c t

We consider a model of sympatric speciation due to frequency-dependent competition, in which it was
previously assumed that the evolving traits have a very simple genetic architecture. In the present study,
we numerically analyze the consequences of relaxing this assumption. First, previous models assumed
that assortative mating evolves in infinitesimal steps. Here, we show that the range of parameters for
which speciation is possible increases when mutational steps are large. Second, it was assumed that the
trait under frequency-dependent selection is determined by a single locus with two alleles and additive
effects. As a consequence, the resultant intermediate phenotype is always heterozygous and can never
breed true. To relax this assumption, here we add a second locus influencing the trait. We find three
new possible evolutionary outcomes: evolution of three reproductively isolated species, a monomorphic
equilibrium with only the intermediate phenotype, and a randomly mating population with a steep
unimodal distribution of phenotypes. Both extensions of the original model thus increase the likelihood
of competitive speciation.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Sympatric speciation has long been a hotly debated topic. The
reason is that speciation processes of this kind are both difficult to
analyze theoretically and hard to demonstrate empirically. On the
empirical side, the few clear cases rely on fortuitous circumstances
that rule out alternative scenarios (for reviews, see Coyne and Orr,
2004; Bolnick and Fitzpatrick, 2007). One of the most widely cited
examples is the speciation of cichlids in small and isolated crater
lake environments (Schliewen et al., 1994). On the theoretical
side, models to explain sympatric speciation necessarily contain
a multitude of environmental and genetic factors (for reviews,
see Via, 2001; Kirkpatrick and Ravigné, 2002; Gavrilets, 2004;
Bolnick and Fitzpatrick, 2007). This complexitymakes it difficult to
understand the observed behavior or to analyze more than a tiny
part of the large parameter space.

One widely studied scenario for sympatric speciation is com-
petitive speciation (Rosenzweig, 1978), where intraspecific com-
petition for resources induces frequency-dependent disruptive
selection, which in turn favors the evolution of assortative mat-
ing. The basic idea, which already goes back to Darwin (1859), is
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that extreme phenotypes gain increased fitness by specializing on
underutilized resources. In such a setting, mating between differ-
ent extreme types produces intermediate offspring with reduced
fitness. Hence, females can increase their offspring’s fitness bymat-
ing with males of like phenotype. If assortative mating is suffi-
ciently strong, it will result in isolated phenotypic clusters and
sympatric speciation.

Dieckmann and Doebeli (1999) used numerical analyses to
conclude that sympatric speciation is theoretically plausible and
even quite easy. Their model has been criticized for making
unrealistic choices for some of the biological parameters, such
as a high mutation rate, the absence of costs for being choosy
(Matessi et al., 2001) or unnaturally polymorphic initial conditions
(Gavrilets, 2005). Responses to these points were provided by
Doebeli and Dieckmann (2005). It has also been pointed out
that speciation is not the only possible evolutionary response to
disruptive selection (Waxman and Gavrilets, 2005; Rueffler et al.,
2006). Other possibilities include the evolution of dominance (van
Dooren, 1999; Peischl and Bürger, 2008; Peischl and Schneider,
2010) or sexual dimorphism (Bolnick and Doebeli, 2003; van
Dooren et al., 2004). During the past decade, many models have
been published that come to partly contradictory conclusions
(reviewed by Bolnick and Fitzpatrick, 2007). The problem is that
most of these conclusions are based on limited numerical analyses
and that it is often not clear how the results may be affected by
specific assumptions.
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To resolve this problem, several studies have recently devel-
oped simplified models, which are analytically tractable and have
helped explain some of the controversial results from previous
numerical studies (Matessi et al., 2001; de Cara et al., 2008;
Pennings et al., 2008; Kopp and Hermisson, 2008; Otto et al.,
2008; Ripa, 2009). To achieve analytical tractability, however, the
new models needed to rely on simplifying genetic assumptions:
Typically, it is assumed that assortativemating evolves in infinites-
imal (i.e., infinitely small) steps (making it possible to use fitness-
gradient techniques) and that the ecological trait (i.e., the trait
under frequency-dependent disruptive selection) is determined by
a single locus with two alleles. These assumptions are unlikely to
be met in natural situations, but their effects on the model results
remain unclear.

In this study, therefore, we take a combined approach. We
use a discrete-time version of the analytically well-understood
model by Pennings et al. (2008) as a basis, but extend the analysis
by targeted numerical simulations to remove the most severe
restrictions of the analytical approach. Our focus is on how the
genetic architecture of the ecological trait and of female choosiness
influence the evolution of reproductive isolation. In particular, we
study the evolution of assortative mating in large steps, and we
extend the genetic basis of the ecological trait from one to two loci.
Below we provide further background on these two extensions.

The analytical models by Pennings et al. (2008) and others
(see above) explicitly or implicitly assumed that female choosiness
evolves in very small steps. In many cases, this assumption will
be innocuous. In particular, if assortative mating is cost-free, the
conditions for invasion of large and small choosiness modifiers are
identical, as long as they point into the same direction (Pennings
et al., 2008; Otto et al., 2008; Durinx andVanDooren, 2009). But for
modifiers with large effect, invasion does not ensure fixation, and
the further course of evolution cannot be predicted from invasion
analysis alone (Geritz et al., 2002). Peischl (2010) finds that the size
of the effect ofmodifiers for dominance and assortativemating can
indeed influence the model outcome. Matessi et al. (2001) showed
that assortative mating, if it evolves from random mating in small
steps, can ‘‘get stuck’’ at intermediate levels of choosiness resulting
in only partial isolation, even if complete isolation is locally stable
and could be reached if choosiness is initially high. In other words,
the evolution of choosiness in this model may have two stable
equilibria: an intermediate equilibrium with partial isolation and
a high equilibrium with complete isolation. These results were
later confirmed by Pennings et al. (2008), Otto et al. (2008), and
Ripa (2009), who showed that the bistability is a consequence
of positively frequency-dependent sexual selection. For small
mutational step sizes, the intermediate equilibrium forms a barrier
against speciation. But could this barrier be overcome by means
of a large mutation, which would bring the population into
the domain of attraction of the alternative, complete-isolation
equilibrium? Limited simulations by Pennings et al. (2008) suggest
that such a jump is indeed possible, but the underlying conditions
are not well understood. Here, we confirm these earlier results
and provide a detailed mechanistic explanation of why and when
mutations leading to a large increase in choosiness will go to
fixation. More generally, we show that the evolution of assortative
mating depends on the genetic architecture of thematingmodifier
locus, and that complete isolation evolves most easily if it can be
reached in a single large mutational step.

The models by Pennings et al. (2008), de Cara et al. (2008),
Otto et al. (2008), and Ripa (2009) are based on the simplifying
assumption that the ecological trait is determined by a single locus
with two alleles and additive effects. Such simplifications, which
are made to achieve mathematical tractability, can be problematic
if they introduce a bias or if they rule out important outcomes.
A potential problem with the one-locus two-allele model is that

the intermediate phenotype is always heterozygous. Even if it
has the highest fitness, it can reach at most a frequency of 50%,
simply because heterozygotes will always have 50% homozygous
offspring. Here, we analyze the simplest model that allows the
intermediate phenotype to be homozygous. In this model, the
ecological trait is controlled by two diallelic loci with equal and
additive effects. As we shall show, this extension allows additional
outcomes, in particular the evolution of three species and the
maintenance of a single monomorphic species with intermediate
phenotype.

2. Model and methods

Our model builds on the approach by Pennings et al. (2008)
and Kopp and Hermisson (2008), which in turn is based on the
so-called Roughgarden model of intraspecific competition (May
andMacArthur, 2001; Roughgarden, 1972). As such, it corresponds
to the one-allele version of the model in Dieckmann and Doebeli
(1999), but with a simplified genetic architecture.

2.1. Ecological assumptions

We consider a sexually reproducing population, whose individ-
uals are diploid and hermaphroditic. For simplicity, we refer to
hermaphrodites in female or male roles as females or males. The
individuals have two traits of interest: an ecological trait X and a
mating trait M , with the latter determining the degree of female
choosiness.

The ecological trait X determines specialization on a certain
type of resource (for example, prey of different size) and can
take values between −1 and 1. It is subject to two sources of
natural selection: (1) resource availability, which is measured by
a phenotype-specific carrying capacity function, and (2) density-
and frequency-dependent competition among individuals with
similar phenotypes, which is measured by a phenotype-specific
competition function.

For the carrying-capacity function K(X), we assume a general-
ized Gaussian shape,

K(X) = K0 exp


−
1
2
X2


σ 2
K


=: K0(1 − k)X

2
, (1)

where K0 is the carrying capacity of the phenotype X = 0. We use
the parameter k := 1 −

K(1)
K0

(where := is the definition sign) to
measure the strength of the selection component resulting from
the shape of K . For positive k < 1, selection is stabilizing and
K(X) is a standard Gaussian with variance σ 2

K = −1/(2 ln(1 −

k)). However, we will also consider negative k. In this case, the
intermediate phenotype has the lowest carrying capacity and
selection is disruptive.

Individuals experience competition with other individuals.
The amount of competition experienced by phenotype X can be
expressed by an ecologically effective population size, given by

C(X) =

−
Y

γ (|X − Y |)N(Y ). (2)

Here, N(Y ) is the number of individuals with phenotype Y , and
γ (|X − Y |) measures the strength of competition between phe-
notypes X and Y . In accordance with previous work (e.g., Rough-
garden, 1972; Dieckmann and Doebeli, 1999), we assume that γ is
a Gaussian function of the phenotypic distance, with variance σ 2

γ ,

γ (|X − Y |) = exp


−
1
2
(X − Y )2


σ 2

γ


=: (1 − c)(X−Y )2 . (3)

This competition induces frequency-dependent disruptive selec-
tion, and we will use the parameter c := 1 − γ (1) to measure the
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strength of this frequency dependence. Note that c is also an in-
verse measure of an individual’s ‘‘range of competition or ‘‘niche
width’’ (Bolnick et al., 2003): large c means that competition is
short-ranged and operates only between very similar phenotypes.
In consequence, different phenotypes can coexist by occupying dif-
ferent niches, and the number of available niches increases with c .
The competition and carrying capacity functions are combined in
the phenotype-specific death rate,

d(X) =
C(X)

K(X)
, (4)

which summarizes the action of natural selection in our model
(Roughgarden, 1972). In addition, individuals are also affected by
sexual selection due to assortative mating by females, as described
below.

Females may prefer to mate with males whose ecological
phenotype is similar to their own.We assume amating probability
µ(|X − Y |) that depends on the phenotypic distance, and, once
again, has a Gaussian shape,

µ(|X − Y |) = exp


−
1
2
(X − Y )2


σ 2

µ


=: (1 − m)(X−Y )2 . (5)

In particular, the parameter m := 1 − µ(1) is the probability that
a female rejects a male with a phenotypic distance of 1. Similarly,
m′

:= 1 − (1 − m)4 is the rejection probability for phenotypes
with a distance of 2. Both parameters take values between 0
and 1. The value m = 0 means that the female is not choosy
at all, corresponding to random mating at the population level.
Conversely, m = 1 means that females mate exclusively with
males of their own ecological phenotype. At the population level,
this corresponds to complete isolation. Finally, intermediate values
ofm correspond to partial isolation.

In contrast to k and c,m (and m′) are not fixed parameters
of the model, but instead serve as the phenotypic values of the
mating traitM . Only females are choosy, and the mating genotype
is not expressed in males. Based on the mating probabilities, we
can assign mating rates φ(X) to different ecological phenotypes.
In particular, the mating rate of phenotype X is the average of the
female and male mating rates, φ(X) = (φfemale(X) + φmale(X))/2,
where

φfemale(X) =

−
Y

N(Y )µ(|X − Y |)Q (X)

φmale(X) =

−
Y

N(Y )µ(|X − Y |)Q (Y ). (6)

Here, Q (X) is a standardization factor, which can be interpreted as
the mating activity of females with phenotype X (Pennings et al.,
2008). If females pay no cost for being choosy,Q (X) is defined such
that φfemale(X) = 1 (Dieckmann and Doebeli, 1999),

Q (X) =
1∑

Y
N(Y )µ(X, Y )

. (7)

Even though all females have equal mating rate, this is not true
for males (φmale(X) ≠ 1 if females are choosy). More precisely,
female choosiness induces sexual selection against males with
rare ecological phenotypes (Dieckmann and Doebeli, 1999). In
Appendix C, we also consider models in which females experience
a cost of choosiness (Kopp and Hermisson, 2008; Doebeli and
Dieckmann, 2003, 2005).

From the death rate in Eq. (4) and themating rates in Eq. (6), we
now construct the total invasion fitnessW (X) of a phenotype X . As
a discrete-time version of the continuous-time fitness function in
Pennings et al. (2008), we use a Ricker model (Ricker, 1954)

W (X) = φ(X) exp(ρ(1 − d(X))), (8)

where exp(ρ) is the intrinsic growth factor. After viability
selection but before reproduction, the number of individuals with
phenotype X is thus given by

Ñ(X) = N(X) exp(ρ(1 − d(X))), (9)

and the number of newborns with phenotype X (i.e., N(X) in the
next generation) is

B(X) =

−
Y ,Z

Ñ(Y )Ñ(Z)µ(Y , Z)Q̃ (Z)RYZ→X , (10)

where RYZ→X is the probability that a mating between phenotypes
Y and Z results in phenotype X . All mated individuals are assumed
to produce the same average number of offspring. We will use
ρ = 2 log 2, for which the resultant domain boundaries for the
discrete-time model correspond well to those for the continuous-
time model by Pennings et al. (2008) and Kopp and Hermisson
(2008) (see Appendix A).

2.2. Genetic assumptions

The discrete-time version of themodel by Pennings et al. (2008)
will be used as our baseline model and thus as a reference for
comparisons. This model assumes a minimal genetic architecture.
In particular, the ecological trait X is determined by a single diploid
locus with two alleles, and the mating trait M is modeled by
sequential rare invasions of mutant alleles with very small effect
into an otherwise monomorphic resident population. The main
aim of this study is to compare the baseline model to an extended
model in which two of its key assumptions are relaxed in several
ways.

For the ecologic trait, we compare genetic architectures with
one and two diploid loci and with two or more alleles per locus.
Our main focus will be on the case of two identical diallelic loci.
All alleles are additive and their effects equally spaced (see below).
The total phenotype range is always the interval [−1, 1]. As a
consequence, the phenotype range covered by a single locus scales
inversely with the number of loci. In particular, for a single locus
with two alleles, + and −, there are three ecological genotypic
values: −1 (genotype −−), 0 (genotype −+), and 1 (genotype
++). With two diallelic loci, there are five possible ecological
genotypic values:−1,−0.5, 0, 0.5, and 1.We ignore environmental
contributions to the phenotype and equate genotypic values with
phenotypic values (with the latter usually being referred to simply
as phenotypes).

The mating trait M is determined by a single locus. This
reflects the assumption that evolution of female choosiness occurs
by invasion and potential fixation of rare modifier alleles with
additive effect and, therefore, is effectively a single-locus problem.
In the extended model, we relax the assumption of infinitesimal
mutational steps that is made in the baseline model. Instead, we
assume that the M locus has a given finite number of equally
spaced alleles chosen so that the resulting phenotypes span the
range [0, 1]. For example, three alleles would take the values 0,
0.25, and 0.5.With additive genetics (i.e., no dominance), this leads
to five diploid phenotypes with values 0, 0.25,0.5, 0.75, and 1.
We will refer to these phenotypes as m-values, which determine
the degree of choosiness, and to the alleles as m-alleles. Finally,
we assume free recombination between the mating locus and the
ecological loci, and also among the ecological loci.

2.3. Additional assumptions for numerical analysis

To address questions about these models that cannot be
answered analytically, we numerically iterate the dynamics of
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genotype frequencies, using modified versions of Eqs. (1)–(10), in
which phenotypes have been replaced by genotypes. This works in
twomodes. In the deterministicmode, all effects of genetic drift are
ignored. If recurrentmutation is included, a fixed proportion of the
total population is designated as newmutants in every generation.
In the stochastic mode, there is an additional sampling step in
each generation, so as to include genetic drift throughmultinomial
sampling from the expected genotype distribution. Since we want
to link our results to analytical predictions,which all ignore genetic
drift, most of the analysis will use the deterministic mode.

Each generation starts with natural selection. Death rates for
all genotypes are calculated according to Eq. (4) and selection
occurs according to Eq. (9). The genotype frequencies in the
next generation are calculated using Eq. (10) (the function RYZ→X
captures the effects of recombination). Mutation at the mating
locus follows a stepwise mutation model with steps in m of equal
size (see above). In most simulations with recurrent mutations, we
use a step size of 0.25 (four steps, or five alleles). In each generation,
a fixed proportion (given by the mutation rate u) of each mating-
allele class is shifted one step up or down, for example, fromm = 0
to m = 0.25; if the mutant occurs in a homozygote for the m = 0
allele, the (diploid) phenotype then changes tom = 0.125.

For the highest level of choosiness, corresponding to complete
isolation, we usually use a value slightly less than m = 1, such as
m = 0.99 orm = 0.999999, whichwe indicate by the symbolm =

1−. The reason is that the casem = 1 differs from the limitm → 1,
leading to an anomaly: due to sexual selection, (male) invaders
into an empty phenotype class (e.g., heterozygotes) usually suffer
a cost of rarity. For m = 1, however, they will always find a mate,
since all females of the same class are forced to mate within this
class, even if there are infinitely more mating partners outside it
(Pennings et al., 2008). Note, however, that too low a value for
the maximum m can prevent speciation, if reproductive isolation
between neighboring phenotypes is too weak (see Results).

Our criterion for concluding that a simulation has reached
complete isolation is the virtual absence of heterozygotes, defined
in terms of heterozygote frequencies that drop below 0.01. In
the two-locus case, we call an outcome ‘‘two species’’ if the
frequencies of the three intermediate phenotypes are all <0.01
and ‘‘three species’’ if only the frequencies of the two heterozygous
phenotypes are<0.01.We call an outcome ‘‘partial isolation’’ if the
mean m > 0.1 and the frequencies of heterozygotes are >0.01,
and we call an outcome ‘‘random mating’’ if the mean m < 0.1.
Finally, we call an outcome ‘‘monomorphic’’ if all phenotypes but
one have a frequency <0.01.

Since we are mainly interested in whether assortative mating
can evolve from random mating, we usually start our simulations
with a population at m = 0. To analyze local stability of complete
isolation, we also perform simulations with initial choosiness set
to m = 1−. The initial allele frequencies at the ecological loci
are chosen to be either almost monomorphic or nearly symmetric
(with frequencies 0.51 and 0.49, to avoid artifacts caused by
exact symmetry in the deterministic simulations). If not stated
otherwise, the simulations are run until complete isolation is
reached (see above) or for a maximum of 10,000 or 50,000
generations for the one-and two-locus model, respectively. Each
plot like Fig. 2 is based on about 2000 simulations to cover the
whole parameter range of k and c.

3. Results

We consider the evolution of assortative mating (or female
choosiness), determined by the value m of the mating trait, for
given ecological conditions and trait architectures. The ecological
conditions are specified by the (fixed) parameters k and c for the

strength of natural selection and for the frequency dependence of
competition, respectively.

To discuss and compare the results for the various genetic
architectures, we first introduce some terminology. As described
above, the model populations can reach several qualitatively
different equilibria or outcomes (e.g., random mating, partial
isolation, or complete isolation). We dissect parameter space
into regimes: Here, a regime refers to the set of all parameters
that allow for the same set of stable equilibria (or evolutionary
outcomes). Some regimes are monostable, that is, there is only
one possible outcome. Others are bistable or multistable and the
outcome depends on the initial conditions. We are particularly
interested in the outcomes reached from our standard initial
conditions, that is, random mating and a (slightly asymmetric)
polymorphism at the ecological loci. We will label these outcomes
by an asterisk and refer to the corresponding parameter regions
as their domains (e.g., the C∗ domain is the set of parameters for
which evolution from standard initial conditions leads to complete
isolation). Note thatmonostable regimes are, by definition, subsets
of the corresponding domains. For example, the P∗ domain consists
of the P∗ regime and the P∗/C regime (see below).

3.1. Baseline model

For later reference, we first describe results obtained for our
baseline model, in which the ecological trait is determined by
a single locus and choosiness evolves in infinitesimal steps. As
in the analogous continuous-time model (Pennings et al., 2008),
the equilibrium structure can be determined analytically. The key
result is that (in the absence of costs of choosiness) evolution of
themating traitM is determined by the fitness difference between
heterozygotes and homozygotes,

1w = Whom − Whet

= exp(ρ(1 − dhom))φhom − exp(ρ(1 − dhet))φhet. (11)

A mutant m allele for increased choosiness can invade a
monomorphic resident population if and only if homozygotes are
favored, that is if 1w > 0. Analogously, a mutant that decreases
choosiness can invade if and only if 1w < 0. As pointed out in
the Introduction, this criterion does not depend on the absolute
effect size of the mutant allele, but only on the direction of change
it induces; in ourmodel, the invasion conditions for small and large
mutations pointing into the same direction are identical. However,
only in the limit of small modifiers does invasion imply fixation of
the mutant allele.

The proof of criterion (11) is somewhat technical, but entirely
analogous to the continuous-time case analyzed in Pennings et al.
(2008), and thus is not repeated here. Intuitively, the criterion
arises because females with higher m will more often mate with
their own type and produce more homozygous offspring than
females with lower m. If homozygotes have higher fitness than
heterozygotes, the offspring of a mutant female with increased m
will, therefore, be fitter than the offspring of resident females, and
the mutation will spread. In consequence, we can use the sign of
1w to determine the direction of selection on m. In particular,
random mating is a locally stable equilibrium if 1w < 0 at m =

m′
= 0, and complete isolation is locally stable if 1w > 0 at

m = m′
= 1− (see also Appendix A). Locally stable equilibria with

(monomorphic) intermediatem are characterized by the condition
1w = 0.

For the baseline model, we obtain six different evolutionary
regimes depending on the parameters c and k (see Fig. 1):
Complete isolation (C∗). For small k and intermediate c , evolution of
assortative mating in small steps always leads to the formation of
two reproductively isolated species. From any initial condition, the
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Fig. 1. Evolutionary regimes in the baseline model. The ecological trait is
determined by a single locus, and choosiness evolves in infinitesimal steps. Note
that negative k implies that selection due to the carrying capacity function is
disruptive. C∗: complete isolation; R∗: random mating; P∗: partial isolation; R∗/C:
random mating or complete isolation; P∗/C: partial or complete isolation; M:
monomorphic outcome with only one extreme phenotype. The asterisk indicates
that the outcome is reached from random mating. The boundary for the local
stability of random mating and complete isolation is calculated according to
Appendix A. The boundary of the C∗ regime is calculated numerically using Eq. (11),
and the boundary of the M regime is determined by numerical stability analysis as
in Pennings et al. (2008).

population evolves towards m = 1 and a heterozygote frequency
of phet = 0.
Random mating (R∗). For sufficiently large k, no amount of
assortative mating can evolve. Instead, stabilizing selection is so
strong that random mating (with phet = 0.5) evolves from
arbitrary initial values of m. Note that we do not allow for
disassortative mating.
Partial isolation (P∗). If frequency-dependent selection is very
strong (large c) and stabilizing selection is at most moderate,
a third niche opens up for intermediate phenotypes, which is
filled by heterozygotes. As a consequence, the preferred phenotype
distribution has an intermediate frequency of heterozygotes, 0 <
phet < 0.5, which leads to the evolution of an intermediate level
of choosiness, 0 < m < 1, and hence, to partial reproductive
isolation.
Random mating or complete isolation (R∗/C). For low c and
intermediate k, the outcome depends on the initial condition. If
female choosiness is initially low, natural selection leads to the
evolution of randommating (m = 0). However, if initial choosiness
is high, the dominating force is sexual selection against rare male
heterozygotes, which drives the population towards complete
isolation (m = 1).
Partial isolation or complete isolation (P∗/C). For intermediate c
and k, there is another bistable regime, in which the population
reaches either partial or complete isolation (Matessi et al., 2001).
Starting at random mating, natural selection is disruptive and
favors increased female choosiness (because choosy females have
more homozygous offspring). Choosiness, however, induces sexual
selection, which favors heterozygotes as long as they are common.
If choosiness evolves in small steps, a partial-isolation equilibrium
is reached where natural and sexual selection are balanced
(Pennings et al., 2008). In contrast, if the initial m is already
high, heterozygotes are rare, and sexual selection (and, potentially
but not necessarily, also natural selection) favors homozygotes,
resulting in evolution towards complete isolation. The existence of
the P∗/C regime shows that the instability of random mating and
the stability of complete isolation are not sufficient conditions for
complete isolation to evolve in small steps.
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Fig. 2. Evolution of assortative mating in the single-locus model with large
mutational steps. (a) Single-step model: An isolation mutant with m = 1−

= 0.99
is introduced at frequency p = 10−4 into a resident population with mr = 0.
(b) Stepwise mutation model with five mating alleles (m = 0, 0.25, 0.5, 0.75, 0.99)
and a mutation rate of u = 10−6 (see text). Shades of gray indicate the mean
choosiness m̄ in the population at the end of the simulation (white: m̄ = 1− , black:
m̄ = 0). The continuous line is the boundary of the C∗ regime for infinitesimal
mutational steps, as in Fig. 1. The white area outside this line shows the additional
region where complete isolation is possible via ‘‘jumping’’. Note that the range of k
values shown along the horizontal axis is smaller than in Fig. 1.

Monomorphic equilibrium (M). For small c and k, the ecological
polymorphism is lost, and the population reaches a stable
monomorphic equilibrium with only a single allele. Once such
an equilibrium is reached, all selection for assortative mating
ceases. The domain of attraction of the monomorphic equilibrium
(with respect to the initial frequencies of the ecological alleles)
depends on m. For some m, it may be globally stable, meaning
that the polymorphic equilibrium is unstable. This is the case if
sexual selection and disruptive selection resulting for negative k
are stronger than negative frequency-dependent selection due to
competition. The M area in Fig. 1 shows the range of ecological
parameters for which the ecological polymorphism is lost for at
least some values of m ∈ [0, 1] (see Pennings et al., 2008, for
more details). If evolution of choosiness leads to such an m-value,
the monomorphic equilibrium may be the stable outcome from
random mating. This is the case for sufficiently small k. However,
for larger k, the population may also stay at random mating or
partial isolationwithout losing the polymorphism. (For this reason,
we do notwriteM*; note also that, as we do not resolve the various
possibilities, theMarea does not fully fit our definition of a regime.)
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3.2. Genetic architecture of the mating trait

We now ask to what extent the results of the baseline model
are robust with respect to the genetic architecture of the mating
trait. In particular, we are interested in whether large mutations
can help the population ‘‘jump’’ over the intermediate equilibrium
in the P∗/C regime.

We first study when a randomly mating resident population
can reach complete isolation in a single mutational step. To this
end, we introduce a mutant ‘‘isolation allele’’ (with m = 1−)
at frequency p = 10−4 into a resident population with mating
genotype mr = 0. All further evolution is deterministic, and there
is no recurrent mutation. As in the baseline model, the ecological
trait is determined by a single diallelic locus.

The results of these simulations are shown in Fig. 2(a). In
accordance with predictions from invasion-fitness analysis, the
isolation allele invades in the complete isolation (C∗), partial
isolation (P∗), and bistable partial/complete isolation (P∗/C)
regimes. However, it rises to fixation in only part of this parameter
range. In the P∗ regime and inparts of the P∗/C regime, the outcome
is a stable polymorphism between the two m-alleles, leading to
an intermediate m in the population average. In contrast, in the
C∗ regime and in part of the P∗/C regime close to the C∗ regime,
the isolation allele reaches fixation. We thus see that ‘‘jumping’’
across the stable intermediate equilibrium is indeed possible in
a part of the P∗/C regime. As a consequence, the total parameter
range in which complete isolation is reached from randommating
(C∗ domain) is somewhat extended relative to the case with
infinitesimal mutational steps.

Second, we consider the fate of an initially rare isolation allele
(m = 1−) in a resident population with a non-zero initial level
of choosiness (mr > 0). In a series of simulations (conducted
as described for mr = 0 above), we find that both invasion and
fixation of the isolation allele becomes more difficult when the
resident population has already evolved an intermediate level of
choosiness. For example, when starting at mr = 0.1 instead of
mr = 0, there are some parameter combinations for which the
m = 1− allele no longer goes to fixation. We consistently find
that larger jumps to complete isolation are easier. That is, if the
jump m1 → 1− is possible then this implies that m2 → 1− is
possible for m2 < m1, but not vice versa. In particular, we find
that fixation of the isolation allele is no longer possible in the P∗/C
regime if the resident population is already at (or sufficiently near)
the stable equilibrium point with intermediatemr . Thus, evolution
of assortative mating can indeed get stuck in this regime.

In a third series of simulations, we consider the evolution of
assortativemating inmultiple steps of finite size. In contrast to the
single-step case, we now assume recurrentmutation at themating
locus and a stepwise mutation model (see model description).
An example with five mating alleles (step size 0.25) is shown in
Fig. 2(b). We see that isolation can still evolve in parts of the P∗/C
regime, but also that the total parameter range is smaller than for a
single jump from randommating to complete isolation. We obtain
similar results with different variations of the genetic architecture
(not shown). Evolution of complete isolation is consistently easier
with larger steps.

So far, no costs have been assigned to the mating alleles. As
discussed in Kopp and Hermisson (2008), however, female choosi-
ness can easily lead to different types of costs. In a fourth step of
our analysis, we therefore consider the evolution of reproductive
isolation under two types of costs (Kopp and Hermisson, 2008;
see also Doebeli and Dieckmann, 2005): (i) mating costs, result-
ing from females having only a finite number of mating trials (i.e.,
choosy females run a risk of remaining unmated); and (ii) viability
costs, resulting from a negative direct physiological effect of in-
creased m-values. Results from simulations with both types of

costs are reported in Appendix C. They generally confirm our basic
conclusion that speciation is facilitated by large mutations at the
mating locus. Two additional findings are noteworthy. First, mat-
ing costs can promote speciation via ‘‘jumping’’, provided they are
primarily paid by heterozygous females (which is the case for large
c , seeDiscussion). In some cases, this has the paradoxical effect that
speciation is possible with costs but not without. Second, for some
types of viability costs, speciation is impossible in the limit of in-
finitesimal steps (see Kopp and Hermisson, 2008), but occurs in a
sizeable parameter range if mutational steps are large.

Finally, we repeat our previous analysis with a sampling step
after each generation to simulate the effects of genetic drift. We
find that drift introduces some stochasticity, but does not lead to
significant shifts in the regime boundaries (not shown). For small
population sizes, newly introduced mutants are often lost, but the
qualitative conclusions from the large-population limit still hold.
A population size of 5000 nearly recovers the deterministic case.

Summarizing these observations, we consistently find that
evolution of complete isolation from random mating is most
difficult for very small step sizes and easiest for a single jump from
mr = 0 to m = 1−. ‘‘Realistic’’ genetic architectures with various
intermediate step sizes show an intermediate behavior.

3.3. Genetic architecture of the ecological trait

We now turn to the genetic architecture of the ecological trait
and its influence on the evolution of reproductive isolation. Our
main focus is on the case of two diallelic loci with equal effect.
In addition, we consider a model with a single ecological locus
and multiple alleles. In all cases, evolution at the mating locus is
modeled using a stepwise mutation model with five equidistant
alleles (implying a step size of 0.25 inhomozygotes) and amutation
rate of u = 10−5. The ecological loci are initiated in a fully
polymorphic state (but with slightly asymmetric allele frequencies
of 0.49 and 0.51, respectively). Note that, for m = 0, full
polymorphism is always the only stable equilibrium if c > 0 and
k > 0. While we cannot exclude the existence of equilibria that
cannot be reached from these initial conditions in allele frequency,
our extensive numerical explorations have not revealed any such
equilibria. Furthermore, potential additional equilibria do not play
a role for our main question, that is, under which conditions
complete isolation can evolve from randommating.

For two identical diallelic loci, the deterministic simulations
exhibit a total of six qualitatively different evolutionary equilibria
(as opposed to merely four for the single-locus model). The
new outcomes are an intermediate monomorphic equilibrium
(in addition to the extreme monomorphic equilibrium already
present in the one-locus model) and a three-species equilibrium
(in addition to the two-species equilibrium). As both the two-
and the three-species equilibrium are locally stable over a large
parameter range, the system is often bi- or even tristable. Indeed,
Fig. 3 reveals no less than thirteen evolutionary regimes with
qualitatively different equilibrium structures (i.e., sets of locally
stable equilibria), as opposed to merely six for the single-locus
model. Instead of enumerating all of these different possibilities,
we will discuss them in terms of four broad categories.
Regimes with stable monomorphic equilibria. Unlike the one-locus
model, the two-locus model has two different monomorphic
equilibria. In addition to the familiar equilibriumwith one extreme
phenotype (ME, x = ±1), there is a second equilibrium in which
only the intermediate phenotype is present (MI, x = 0) and
which does not exist in the one-locus case. Fig. 3 shows that the
two monomorphic equilibria are reached from random mating in
different parameter regions separated by the line k = 0. That is,
an extreme monomorphic equilibrium is only reached if selection
originating from the resource distribution is disruptive (k < 0),
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Fig. 3. Evolutionary regimes for the model with two diallelic ecological loci of
equal effect. Continuous lines and labels with asterisks indicate domains in which
different evolutionary equilibria are reached when simulations are started from
randommating (m = 0). C2∗: two species; C3∗: three species; P∗: partial isolation;
R∗: random mating; ME∗: monomorphic equilibrium with extreme phenotype;
MI∗: monomorphic equilibrium with intermediate phenotype. Shades of gray
indicate the local stability of complete-isolation equilibria with either two or three
species, as determined from simulations started from fully assortativemating (m =

1−
= 0.999999). In the light gray area, only the three-species equilibrium is

locally stable. In the medium gray area, only the two-species equilibrium is locally
stable. In the dark gray area, both the two-and the three-species equilibria are
locally stable. Simulations started with three species in the area in which only two
species are locally stable reach the intermediate monomorphic equilibrium in the
part overlapping with the MI∗ domain and the two-species equilibrium otherwise.
The boundaries of the medium gray and dark gray areas are derived analytically as
described in Appendix B. In particular, the upper boundary (local stability of two
species) is identical to the corresponding line in Fig. 1 and is, indeed, independent
of the genetic architecture of the ecological trait.

while the internalmonomorphic equilibrium is only reached if this
selection component is stabilizing.

In Appendix B, we show that the intermediate monomorphic
equilibrium is locally stable if

exp


ρ


1 −

4


1 − c
1 − k


<

2

1 +
4√1 − m

. (12)

Here, local stability refers to the invasion of additional ecological
alleles at a given value of m. For m = 0, this condition reduces
to k > c. Indeed, for this parameter range, the intermediate
equilibrium is always reached in our simulations, independent of
initial conditions, except in the area in which complete isolation
(with two species) is locally stable due to sexual selection (Fig. 3).
Eq. (12) shows that, for m > 0, the intermediate monomorphic
equilibrium can be locally stable also for c > k (e.g., for m = 1
and ρ = 2 log 2, one obtains c < (15+ k)/16). However, over this
parameter range, this equilibrium is never reached in simulations
when starting at randommating.

Appendix B also gives the conditions for local stability of the
extreme monomorphic equilibrium. In contrast to the intermedi-
ate equilibrium, the extreme equilibrium is not always reached
over the whole parameter range in which it is locally stable for
m = 0. This is because the outcome also depends on the initial
conditions at the ecological loci. In Fig. 3, the upper boundary of
the MI∗ domain is shown for fully polymorphic initial conditions
(ecological allele frequencies close to 0.5).
Regimes with stable random-mating equilibrium. In the two-locus
model, random mating (m ≈ 0) is locally stable in a narrow band
close to the MI∗ domain, where selection still favors an excess
of intermediate phenotypes (R∗ domain in Fig. 3). An analytical
approximation for the upper boundary of this band is derived in
Appendix B. It is based on comparing the fitness of extreme and

intermediate phenotypes (x = ±1 vs. x = 0) and follows the same
logic as Eq. (11). Simulations show that this approximation is very
accurate (not shown). Note that most of the parameter range with
a stable random-mating equilibriumbelongs to bi-or even tristable
regimes, for which also complete isolationwith either two or three
species (or both) is locally stable.

The random-mating equilibrium in the two-locus model differs
from that in the single-locus model in an important way: to
maintain symmetry, the allele frequencies at a single ecological
locus must always be equal to 0.5. With two ecological loci,
however, they are generally shifted away from 0.5 in opposite
directions at the two loci, that is, 0.5 ± α with 0 < α < 0.5. This
leads to a symmetric phenotype distribution with a sharp peak at
x = 0 and an excess of intermediate phenotypes relative to the case
with α = 0. For α → 0.5, the random-mating equilibrium turns
into the MI equilibrium. Indeed, we find that, in the R∗ domain of
Fig. 3, α increases gradually from 0 at the P∗–R∗ boundary to 0.5 at
the R∗–MI∗ boundary (Fig. 5).
Regimes with stable partial-isolation equilibrium. There are two con-
nected parameter ranges for which partial-isolation (0 < m < 1)
is a stable equilibrium of the two-locusmodel (P∗ domain in Fig. 3).
First, for very high c , competition is sufficiently short-ranged to
create (at least) five distinct ecological niches. As a consequence,
all five possible phenotypes coexist, with their relative frequen-
cies being determined by the degree of choosiness. In part of this
range, complete isolation with three species is also locally stable,
owing to sexual selection (see below). Second, in a narrow band
between the R∗ and the C∗ domains, partial isolation is stabilized
by a balance between natural and sexual selection (as in the P∗/C
regime of the single-locusmodel). In this area, natural selection fa-
vors complete isolation with either two or three species, but these
equilibria can only be reached from a high initial value ofm.
Regimes with stable complete-isolation equilibrium. In the two-locus
model, evolution of complete isolation (m ≈ 1) can lead to
the formation of either two or three species. As shown in Fig. 3,
the ranges of local stability of these equilibria are overlapping,
and they extend into the R∗ and the MI∗ domains. However, our
main interest here is in the parameter range over which complete
isolation can evolve from randommating in small steps.Wedenote
the domain where this leads to two species by C2∗ and the domain
where it leads to three species by C3∗ (Fig. 3). The C2∗ domain
corresponds to the C∗ regime of the single-locus model (Fig. 4).
Here, the two extreme phenotypes x = −1 and x = 1 form
two reproductively isolated species, and the three intermediate
phenotypes go extinct. The speciation process takes somewhat
longer than for a single ecological locus (with the difference being
on the order of a few hundred generations, relative to a total time
to speciation of about 1000–3000 generations). In contrast, the C3∗

domain has nodirect correspondence in the single-locus case.With
two loci, three species can evolve due to symmetry breaking at
the individual loci. One of the two +− haplotypes goes extinct,
such that the x = 0 phenotype consists only of one haplotype
and does not produce heterozygous offspring. As a consequence,
the allele frequencies at the ecological loci necessarily deviate
from 0.5 (the rarer allele at each locus has the same frequency as
one of the extreme phenotypes). Since the deviation at both loci
occurs in opposite directions, symmetry at the phenotypic level is
maintained.

The formation of three species requires a very high degree of
female choosiness (usually m > 0.999, as opposed to m > 0.95
for the two-species regime). The reason is that the three species
are phenotypically closer than the two species, so that female
choosiness must be highly effective to prevent hybridization. If the
maximal possiblem is too small, symmetry breakingwill not occur
and evolution will stop at a state of partial isolation, for which the
frequency of heterozygotes is still relatively high (between 0.02
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Fig. 4. Comparison of the one-and two-locus models. The continuous lines are
the domain boundaries for the two-locus model (delineating the outcomes from
randommating), as shown in Fig. 3. The dashed lines are the domain boundaries for
the one-locus model, as shown in Fig. 1.
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Fig. 5. Frequency of the intermediate phenotype in the two-locus model, when
simulations are started from randommating. Shades of gray indicate the frequency
of the phenotype x = 0, ranging from 0 (black) to 1 (white). The upper continuous
line shows the border between the R∗ and P∗ domains, while the lower continuous
line shows the border between the R∗ and the MI∗ domains. Across the R∗ domain,
the frequency of the intermediate phenotype increases from 0.5 (at the boundary
to the P∗ domain) to 1 (at the boundary to the MI∗ domain). This is achieved by an
increasing asymmetry of the allele frequencies at the ecological loci, 0.5 ± α, with
α increasing from 0 to 0.5.

and 0.05). This is true even in the presence of genetic drift (not
shown).
Dynamics underlying the formation of three species. The formation
of three species is illustrated in Fig. 6. Notably, this process in-
volves a phase transition, i.e., a fast change after a period of appar-
ent stasis. The typical sequence of evolutionary events is as follows.
First, themean choosiness rapidly evolves to a relatively high value
(Fig. 6(a)), for which the population attains a state of partial isola-
tion, typically with a low frequency of the intermediate phenotype
(Fig. 6(b)). In all cases observed, there is a polymorphism involving
the highest and the lowest availablemating alleles (for example, in
Fig. 6(a), the high-frequency phenotypes are the m = 1 homozy-
gote and the m = 0/1 heterozygote). At this stage, the allele fre-
quencies at the ecological loci are still symmetric (Fig. 6(c)). In the
deterministic simulations, this transient state can last formany (up
to about 4000) generations without conspicuous changes. Then,
the transition to speciation is initiated by symmetry breaking at
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Fig. 6. Evolution of three species, in a stepwise-mutation model with five mating
alleles. (a) Evolution of mating phenotypes and mean choosiness. Shades of gray
depict the frequencies of the nine mating phenotypes (with white indicating a
frequency of 0 and with black indicating a frequency of 1). The continuous line
shows the mean choosiness m. (b) Evolution of ecological phenotypes. Shades of
gray depict the frequencies of the five ecological phenotypes (withwhite indicating
a frequency of 0 and with black indicating a frequency of 0.5). (c) Evolution of the
frequencies of the two alleles at one ecological locus. Parameters: k = 0.05, c =

0.6, and u = 10−5 .

the ecological loci (compare Fig. 6(c) and (b)). Only after one of the
mixed haplotypes (+− or −+) has gained dominance, does the
meanm quickly increase up to (almost) 1, the allele frequencies at
the ecological loci reach their final values, and speciation occurs.
These two-stage dynamics, with an extended transient phase, do
not depend on choosing symmetric initial conditions. Even if the
initial allele frequencies at the ecological loci deviate strongly from
0.5, symmetry is rapidly restored within the first few generations,
before it is broken again at the transition point. When genetic drift
is included, the transient phase tends to be shortened, but, for pa-
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rameters close to the P∗ domain, the populationmay also get stuck
at partial isolation (Appendix D).
Comparison with the single-locus model. Fig. 4 shows how the intro-
duction of a second ecological locus changes the regimeboundaries
relative to the single-locus case. Four main observations are worth
highlighting:

1. Stability of randommating (m = 0). The boundary for the local
stability of random mating (upper boundary of the R∗ domain)
is only slightly tilted by the introduction of a second ecological
locus. The main difference is that, in the two-locus model, a
large part of the former R∗ domain is taken up by the MI∗
domain.

2. Stability of partial isolation (intermediate m). The parameter
region featuring a stable partial-isolation equilibrium (P∗

domain) is strongly restricted in the two-locus model, mainly
due to the new three-species equilibrium.

3. Stability of complete isolation (m = 1). Similarly, the parameter
region implying local stability of complete isolation (gray areas
in Fig. 3) extends to much higher values of c in the two-
locus model than in the single-locus model. This is entirely
due to the new three-species equilibrium. Indeed, local stability
of the two-species equilibrium is independent of the genetic
architecture (Appendix B).

4. Two-species equilibrium. Finally, it is remarkable that the upper
boundary of the parameter regions where two species can
evolve from random mating are almost identical in the two
models (C∗ domain with one locus, C2∗ domain with two
loci; compare the middle continuous and dotted lines in the
left-hand part of Fig. 4). This is because the three-species
equilibrium in the two-locusmodel exists only in the parameter
range of the former P∗ domain, but not of the former C∗ domain.

One locus with multiple alleles. To complement the diallelic two-
locus model, we consider a single-locus model with multiple
alleles. For the cases we tested, no new phenomena occurred.With
three or five alleles, the intermediate alleles go extinct in the C∗

domain and in part of the P∗ domain, recovering outcomes already
observed for the diallelic single-locus model. Thus, evolution of
three species does not occur. In the MI∗ domain of the two-locus
model, only the intermediate allele remains in the population.
Genetic drift. Finally, including genetic drift does not significantly
change the results of deterministic simulations (Appendix D).

4. Discussion

We have investigated how the evolution of reproductive
isolation in a model of competitive speciation depends on the
genetic architectures of the ecological trait and of the mating
trait that determines female choosiness. Our main results are that
speciation is easiest if choosiness can evolve through a single large
mutational step and that additional ecological loci enlarge the
number of evolutionary outcomes. Compared to models with one
ecological locus and infinitesimal mutations for the mating trait
(Pennings et al., 2008; Kopp andHermisson, 2008; Otto et al., 2008;
de Cara et al., 2008; Ripa, 2009), both effects increase the range of
parameters for which speciation is possible.

4.1. Genetic architecture of the mating trait

For the single-locus model, we have shown that, in part of the
bistable P∗/C regime, complete reproductive isolation can evolve
through a single large mutational step, but not through a series
of small steps. In this regime, there are two stable equilibria,
partial and complete isolation, and evolution of assortative mating

from random mating in small steps always leads to the partial-
isolation equilibrium. In contrast, a large mutation can lead to
the complete-isolation equilibrium, by ‘‘jumping’’ over the partial-
isolation equilibrium, and thus to speciation.
Role of sexual selection. To understand this result, it helps to
first consider the case of mating evolution through small steps,
assuming that all individuals carry the samem-allele and therefore
express the samedegree of choosiness. Assume that the population
is at the intermediate equilibrium. As detailed in the Results
section, the intermediate equilibrium is maintained by a balance
between natural and sexual selection (Pennings et al., 2008; Otto
et al., 2008; Ripa, 2009). In particular, sexual selection favors
heterozygotes (and thus a decrease in choosiness), because they
constitute the largest phenotypic group.

Let us now imagine a population with the same genotype
distribution at the ecological locus and the same mean m, but
consisting of individuals with m = 0 alleles and m = 1− alleles.
We assume that the ecological locus and the mating locus initially
are at linkage equilibrium. The important point is that this situation
cannot be stable. Since offspringwithm = 1− aremore likely to be
homozygous than offspring with m = 0, the m = 1− mutants will
accumulate disproportionally in the homozygotes. The resulting
linkage disequilibrium between the polymorphic m-allele and
the diploid ecological genotype increases sexual selection for
homozygotes (and decreases sexual selection for heterozygotes)
relative to the scenario with monomorphic m. Put simply, if the
linkage disequilibrium is strong enough, sexual selection favors
homozygote males, because only part of the female population
is choosy, but most of the choosy females are homozygotes.
Furthermore, the level of linkage disequilibrium is proportional to
the allelic step size at the mating locus. This explains why a single
step fromm = 0 tom = 1− is most conducive to speciation.

In most of the P∗/C regime, the m = 1− allele goes to fixation
when introduced into a population with m = 0. In a small
parameter rangewith large c or k, however, fixation does not occur,
and the two alleles are maintained at a stable polymorphism. In
this parameter range, as the number of homozygotes increases,
natural selection against them becomes strong enough to offset
the effect of sexual selection in their favor. This is also the range
in which, when mutational steps are small, the basin of attraction
of the complete-isolation equilibrium is very small (Kopp and
Hermisson, 2008).

Under some conditions, speciation via ‘‘jumping’’ may be
further facilitated if females have only a limited number of mating
trials (i.e., choosiness incurs mating costs). The reason is that the
risk of remaining unmated is largest for choosy females with a
rare ecological phenotype. If frequency-dependent competition is
strong (large c), most individuals are homozygotes, and mating
costs are primarily paid by heterozygous females. This additional
source of sexual selection can combine with sexual selection
against heterozygous males, promoting fixation of the high-m
allele.

Large mutations also enable speciation if choosiness incurs
absolute viability costs (Appendix C; Fig. A.2). With this type
of cost, speciation is impossible in small steps, because, as
heterozygotes become very rare, the costs outweigh any potential
benefit of being even choosier. However, speciation is still possible
if a modifier inducing complete isolation invades a population in
which heterozygotes are still common.
Limiting scenarios. As a consequence of the considerations above,
evolution of assortative mating through infinitely small steps can
be considered the ‘‘worst-case scenario’’ for speciation, and evo-
lution in a single large step the ‘‘best-case scenario’’. Any realistic
genetic architecture will lie in between these two extremes. We
have demonstrated this for a single locus with intermediate step
sizes (Fig. 2(b)), but the same conclusion should also apply more
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generally to polygenicmating traits. In agreementwith our results,
previous studies have consistently found that speciation is easier
(and faster) if the mating trait is determined by a small number of
loci with large individual effects than if it depends on a large num-
ber of loci with small effects (e.g., Dieckmann and Doebeli, 1999;
Gavrilets et al., 2007; Gavrilets and Vose, 2007). This is true even in
the monostable C∗ regime (and thus holds independent of ‘‘jump-
ing’’), simply because large-effect alleles are under stronger selec-
tion. Our results reveal a second independent advantage of large
step sizes at the mating locus, as such sizes facilitate the estab-
lishment of the linkage disequilibrium necessary for ‘‘jumping’’.
On the other hand, if mutation rates are high such linkage dise-
quilibriummay readily build up between polymorphic loci, so that
multiple small mutations may combine to yield a larger step. At
the far end of this scale, Doebeli et al. (2007) showed that the evo-
lution of complete isolation occurs rather easily if the choosiness
trait shows continuous quantitative genetic variation and popula-
tion sizes are sufficiently large (under these assumptions, the so-
called infinitesimal model applies, which becomes exact when the
evolving trait is based on an infinite number of loci with infinitely
small effects).Whether quantitative variation facilitates ‘‘jumping’’
when population sizes are finite is an open question that deserves
further study.

For modeling purposes, detailed knowledge about real trait
architectures will usually not be available. As an alternative
strategy, it therefore seems advisable to cover the range of
possibilities by considering the extreme cases, both of which are
relatively easy to treat. For our present model of intraspecific
competition, the differences between these limiting scenarios turn
out to be relatively modest.

4.2. Genetic architecture of the ecological trait

Arguably the strongest assumption of the analytical models by
Pennings et al. (2008), de Cara et al. (2008), Otto et al. (2008) and
Ripa (2009) is that the ecological trait that underlies competition
and mate choice is determined by a single diallelic locus. Here, we
have studied the effect of adding a second locus for the ecological
trait in the competitive-speciation model of Pennings et al. (2008).
This additional locus creates enhanced flexibility for shaping
the distribution of phenotypes. In addition to the evolutionary
equilibria that are already known from the single-locus model,
we therefore find three new outcomes: (1) a monomorphic
equilibrium featuring only the intermediate phenotype, (2) a
strongly peaked unimodal phenotype distribution with random
mating, and (3) a three-species equilibrium.
Intermediate monomorphic equilibrium. Our analytical and numer-
ical results show that a monomorphic equilibrium at the inter-
mediate phenotype is a stable evolutionary outcome if and only
if net selection under random mating (m = 0) is stabilizing, that
is, if the stabilizing component of natural selection is stronger than
frequency-dependent disruptive selection due to competition (k ≥

c). In this parameter range, there is only a single ecological niche,
and evolutionary branching (which requires net disruptive selec-
tion) is not possible. In part of this range, complete isolation can
be maintained by sexual selection, but can never evolve from ran-
dommating, irrespective of the details of the genetic architecture.
In contrast, for k < c , evolutionary branching can occur, and the
intermediate monomorphic equilibrium does not play a role, at
least in the deterministic case. With genetic drift, the monomor-
phic equilibrium is sometimes reached close to the low-c border
of the C2∗ domain.
High frequency of the intermediate phenotype. For k < c , the in-
termediate monomorphic equilibrium is no longer stable. How-
ever, close to this parameter region, polymorphic equilibria still

have a phenotype distribution with a high frequency of interme-
diate phenotypes. In the two-locus model, such a distribution can
be achieved by an asymmetric shift of the allele frequencies at the
ecological loci. Since this shift is exactly opposite at the two eco-
logical loci, the resulting phenotype distribution is symmetric. This
highlights the increased flexibility of the two-locus model relative
to the single-locus model, for which the frequency of the interme-
diate phenotype cannot exceed0.5 in the absence of dis-assortative
mating.
Three species. In the two-locus model, three species evolve over
nearly the whole parameter range for which the one-locus model
predicts partial isolation. This is because short-range competition
creates three ecological niches. In the one-locus model, the
intermediate niche can be filled only by heterozygotes (whose
frequency is determined by the degree of assortative mating).
In the two-locus model, in contrast, the only way to achieve a
symmetric solutionwith three phenotypic clusters (instead of five)
is via complete isolation. Partial isolation evolves only over a small
parameter range with very strong frequency dependence (c near
1), inwhich five phenotype clusters are favored over three, orwhen
partial isolation is stabilized by sexual selection). The formation
of three species also fails if the maximal possible m is too low
to ensure reproductive isolation between neighboring species. In
this sense, speciation is easier in the two-than in the three-species
domains.

In contrast to the two-species equilibrium, evolution of three
species requires symmetry breaking: while one intermediate
haplotype (i.e.,+− or−+) goes extinct, the other one is preserved
and constitutes the third species. As described inmore detail in the
Results section, this can lead to the delayed evolution of complete
isolation, with an extended ‘‘pre-speciation’’ phase during which
all haplotypes are still present in the population. Similar threshold
phenomena have also been described in othermodels of speciation
(e.g., Bolnick, 2006; Heinz et al., 2009), although it is not clear
whether the underlying mechanism is the same in each case. In
our model, the long stagnation phase can be explained by the
fact that the population passes close to a saddle point. Near such
a point, selection is very weak, and it only becomes stronger
again once the population has moved on into a new dimension
of state space. This escape requires symmetry breaking, which
takes a long time in a deterministic system, but can easily occur
due to stochastic fluctuations. Therefore, genetic drift enables
the system to leave the neighborhood of the saddle point faster.
Bolnick (2006) speculates that, in his model, the stagnation phase
is used for a process of genotype sorting (into groups that breed
true). In our model, however, this sorting is not a lengthy process,
but rather a sudden event that is observable only directly before
the symmetry breaking. Once one of the mixed haplotypes has
gained dominance, it quickly spreads through the population by a
positive feedback (because themore frequent haplotype has fewer
heterozygous offspring and this advantage increases as it becomes
more frequent).

While all new possibilities for shaping the phenotype distribu-
tion are realized in our two-locus model, none of these changes
the evolutionary outcomes over the parameter range in which two
species evolve from random mating. Indeed, we find that the C2∗

domain remains remarkably stable with respect to the genetic ar-
chitecture of the ecological trait. Given appropriate ecological pa-
rameters, two clusters at the edges of the phenotype range are
favored. In our model, a sexual and recombining population can
reach such a phenotype distribution only by evolving complete iso-
lation. This result is complemented by the finding that local stabil-
ity of the two-species equilibrium does not depend on the genetic
architecture of the ecological trait as long as the total range of pos-
sible phenotypes remains constant (Appendix B).
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4.3. Other genetic architectures

Competitive speciation results from a combination of fac-
tors. Most importantly, the ecological conditions must induce
frequency-dependent disruptive selection. With a restricted phe-
notype range (as assumed here), such selection favors the extreme
phenotypes. All loci that contribute to spanning this range main-
tain polymorphism. However, under random mating, recombina-
tion and segregation produce intermediate phenotypes. Finally,
selection against these intermediates entails selection for assorta-
tivemating (unless frequency dependence is strong enough to cre-
ate a large number of niches, in which intermediates are protected
from competition).

Since more polymorphic loci contributing to the ecological
trait lead to more intermediates, we then expect selection for
assortative mating to occur over a larger parameter range. Indeed,
this is what we see if we compare the models with one and two
diallelic loci. In the two-locus model, the two-species domain
is complemented by a three-species domain, in which evolution
of complete isolation is driven by selection against additional
heterozygotes (which do not exist in the one-locus model). With
even more polymorphic loci and sufficiently strong frequency
dependence, we can expect additional equilibria with four ormore
species, as observed by Bolnick (2006).

On the other hand, increasing the number of ecological loci may
also entail effects that oppose speciation. In particular, with more
loci, neighboring phenotypes become more similar to each other,
and female choosiness needs to evolve to higher levels before gene
flow is effectively stopped. Indeed, the level of choosiness required
to maintain three species is very high (see above). Furthermore,
also in the two-species domain, speciation takes longer in the two-
locus model than in the one-locus model.

Of course, there aremanymoreways to increase the complexity
of the trait architecture than just increasing the number of loci.
An obvious extension is to vary the number of alleles per locus. To
cover this case, we performed numerical tests with one ecological
locus and three to five equally spaced alleles. The three-allele
case, in particular, interestingly complements the diallelic two-
locus model, since it produces the same set of diploid phenotypes.
Somewhat counter-intuitively, however, the three-allele model
does not have a three-species regime. Instead, in the relevant
parameter range, the intermediate allele goes extinct, and the
population evolves to a partial-isolation equilibrium, as in the P∗

regime of the one-locus two-allele model. The reason is that, at
randommating, the intermediate allele is selected against, because
the intermediate niche is already occupied by heterozygotes
carrying the two extreme alleles. Note also that, unlike the two-
locus two-allele model, the one-locus three-allele model has two
different ways of producing three coexisting phenotypes: either
with three alleles and complete isolation or with two alleles and
partial isolation. In simulations starting at random mating, the
initial low fitness of the intermediate allele steers the population
towards the second solution. The intermediate allele also goes
extinct in the C2∗ regime, after which the population evolves
to complete isolation between two species. This is in line with
results by Schneider (2007), who showed analytically that, in a
general multilocus model, all intermediate alleles go extinct if the
fitness function is quadratic (which, assuming that phenotypes are
bounded from above and below, may be regarded as a suitable
approximation for situations with exactly two niches). Indeed, in
our model, three alleles were maintained only in simulations with
very high values of c , in which short-ranged competition creates
more than three niches.

Our model does not consider epistasis and dominance, but
these can potentially have important effects. In particular, com-
plete dominance can prevent the production of intermediate phe-
notypes in heterozygotes. Therefore, evolution of dominance has

been suggested as an alternative to the evolution of assortative
mating in diploid sexual populations (Durinx and Van Dooren,
2009). A recent study by Peischl and Schneider (2010) shows that
this is sometimes possible, but the detailed analysis is complex.
Similarly, epistasis generally leads to an evolving trait architec-
ture. Two studies (Kopp and Hermisson, 2006; van Doorn and
Dieckmann, 2006) show that disruptive selection will usually fa-
vor a trait architecture with only few polymorphic loci of large
effect, such that few intermediate heterozygote phenotypes are
produced. In the light of these studies, assuming a small number
of polymorphic loci may be more realistic than extensive poly-
morphism at many loci with small individual effects. Indeed, for
situations with two or three niches, the models by van Doorn and
Dieckmann (2006) and Kopp and Hermisson (2006) predict evo-
lution towards only a single diploid polymorphic locus. However,
this result rests on the assumption that there are no constraints
on the effect a single locus can have. Therefore, if a one-locus ar-
chitecture is prevented by an upper limit on individual locus ef-
fects, a two-locus architecture, as studied here, is the logical next
alternative. More generally, evolution of genetic architecture and
evolution of assortative mating are alternative responses to the
challenge presented by frequency-dependent disruptive selection
against intermediate phenotypes (Rueffler et al., 2006). Often, evo-
lution of one of these responses will weaken the selection pressure
for the other (Durinx and Van Dooren, 2009; but see Peischl and
Schneider, 2010). In the three-species regime, for example, evolu-
tion of a one-locus architecture (if possible) relaxes selection on the
mating trait to a degree that full isolation no longer evolves. If, in
addition, the range of allelic effects at this locus is unconstrained,
selection pressure on the mating locus may be reduced even fur-
ther (Ripa, 2009). In this sense onemight conclude that evolution of
assortativemating is driven by constraints on the genetic architec-
ture of the ecological trait. Interestingly, with regard to the ‘‘prob-
lem’’ of intermediate phenotypes, a two-locus model turns out to
be more constrained than a one-locus model with the same total
phenotypic range because, with randommating, two polymorphic
additive loci inevitably produce three intermediate phenotypes.

4.4. Conclusions

We have investigated how competitive speciation depends on
the genetic architecture of both an ecological under frequency-
dependent disruptive selection and of a mating trait regulating
female choosiness. Our analyses have revealed a pattern of op-
posite effects: in general, speciation is easiest if allelic effects are
small for the ecological trait and large for the mating trait. This
contrast arises because these traits are under different forms of
selection: frequency-dependent disruptive (and eventually poten-
tially stabilizing) selection on the ecological trait as opposed to di-
rectional (and eventually potentially stabilizing) selection on the
mating trait. More specifically, frequency-dependent disruptive
selection tends to maintain polymorphism at multiple loci, which
in turn creates low-fitness intermediate phenotypes (due to seg-
regation and recombination). Eliminating these phenotypes by
means other than assortative mating becomes more difficult if the
genetic architecture is complex. In contrast, no widespread poly-
morphism is maintained at the mating trait. Here, large muta-
tions are under stronger (directional) selection, and in addition,
they allow the population to reach complete isolation by ‘‘jump-
ing’’ over an alternative partial-isolation equilibrium. Finally, the
original motivation for our study was to test the robustness of pre-
vious analytical models, which assumed a single ecological locus
and evolution of choosiness in infinitesimal steps. It turns out that
both of these assumptions are conservativewith respect to the pos-
sibility of competitive speciation.
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Appendix A. Derivations for single-locus model

In this Appendix, we derive the conditions for local stability of
randommating and complete isolation in the discrete-time single-
locus model.

Stability of random mating

According to condition (11), random mating is stable if Whet >
Whom at m = 0. Since there is no sexual selection with random
mating, all mating rates are φ(X) = 1 in this case. All differences
in the fitness values (8) are therefore due to differences in the death
rates (4). In particular, random mating is stable if dhom > dhet, and
thus
(1 + (1 − c)4)Nhom + (1 − c)Nhet

K0(1 − k)
>

2(1 − c)Nhom + Nhet

K0
.

With Nhet
Nhom

= 2 for random mating, this leads to

k >
1 − (1 − c)4

4 − 2c
,

which is identical to the condition in the continuous-time model
(Pennings et al., 2008) with a Gaussian shape of the competition
function.

Stability of complete isolation

Complete isolation is stable if Whet < Whom at m = 1. We can
assume Nhet → 0. As µ for complete isolation is 0 (5), Eq. (6) gives
us φmale = 0. From Eq. (8), we thus get

Whet = exp(ρ(1 − dhet))
1
2

< exp(ρ(1 − dhom))
1 + NhomQhom

2
= Whom.

As dhom at equilibrium is 1 and Qhom =
1

Nhom
according to Eq. (7),

we can simply write exp(ρ(1 − dhet)) < 2 or dhet > 1 −
log(2)

ρ
.

Using Eq. (4), dhet =
2(1−c)Nhom

K0
, where Nhom =

K0∗(1−k)
1+(1−c)4

, that is

2(1 − c)(1 − k)
1 + (1 − c)4

> 1 −
log(2)

ρ
.

This leads to the condition

k < 1 −
1 −

log(2)
ρ

(1 + (1 − c)4)

2(1 − c)
.

With the choice ρ = 2 log(2), this again matches the condition in
the continuous-time model (Pennings et al., 2008),

k <
3 − 4c + (1 − c)4

4 − 4c
.

Appendix B. Derivations for multi-locus model

In this Appendix, we summarize several analytical results for
models inwhich the ecological trait is influenced by either two loci
or an arbitrary number of loci.

Stability of monomorphic equilibria

The stability of the monomorphic equilibria can be calculated
for an arbitrary genetic basis of the ecological trait. Only the
monomorphic states of the intermediate phenotype x = 0 (MI)
and the extreme phenotypes x = ±1 (ME) are of interest. The
equilibrium is stable if and only if no mutant with a different
phenotype can invade. Since the fitness of rare mutants is
necessarily dominated by the heterozygotes, this is equivalent to
the condition that the fitness of all heterozygote single mutant
invaders into the monomorphic resident population is less than
one. Let us assume that the phenotypic effect of a given mutant
is 1/n. In particular, this is the effect of a single mutant in a
model with n identical diallelic loci spanning the phenotype range
[−1; 1]. For n = 1 and n = 2, this covers the models considered in
the bulk of the paper.

For the internal monomorphic equilibrium MI with N(0) = K0
and N(x) = 0 for x ≠ 0, the mating rate of a rare mutant with
phenotype 1/n is given by φ(1/n) = (1 + (1 − m)1/n

2
)/2, and its

fitness follows from (8) as

W 1
n

= exp
[
ρ


1 −

1 − c
1 − k

1/n2] 1 + (1 − m)1/n
2

2
,

which leads to the stability condition

exp


ρ


1 −

1 − c
1 − k

 1
n2


<

2

1 + (1 − m)
1
n2

.

For m = 0, the MI equilibrium is stable for k > c , independent of
the genetic architecture of the mating trait.

For the extreme monomorphic equilibrium ME at x = 1, we
have N(1) = K0(1 − k) and N(x) = 0, x ≠ 1. For a mutant with
phenotype 1−1/n, the conditionW1−1/n < 1 leads to the stability
condition

exp

ρ

1 − (1 − c)(1/n

2)(1 − k)(2n−1)/n2


<
2

1 + (1 − m)1/n
2 .

Form = 0, the right-hand side is 1, and the extrememonomorphic
equilibrium is stable for

c < 1 −
1

(1 − k)2n−1
.

In particular, the equilibrium is never stable at m = 0 if k ≥ 0. For
negative k, the domain of stability increases with increasing n, that
is, with decreasing mutational effect. This shows that the stability
of the ME equilibrium depends on the largest mutation that is
possible for the ecological trait. It is, therefore, not necessarily true
that the equilibrium is more stable for a polygenic trait, unless
the genetic architecture excludes (even occasional)mutationswith
large effect.

Stability of random mating

Unlike in the single-locus model, we were not able to
derive an analytical condition for the stability of the random
mating equilibrium. The reason is that the simple criterion (11),
which compares the fitness values of two phenotypic classes
(homozygotes and heterozygotes), can no longer be applied when
the number of classes increases. Nevertheless, the following
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heuristic leads to a quite accurate analytical approximation for the
two-locus case:

Assume that mutants with non-zero choosiness segregate at
low frequency in linkage equilibrium with the ecological loci. As
in the single-locus case, these mutants will, on average, produce
offspring with more extreme phenotypes (in particular, more
offspring with phenotypes ±1 and fewer with phenotype 0).
Suppose that among residents W (±1) > W (±0.5) > W (0).
Then the offspring of rare mutants will be fitter than the residents,
and the mutation will spread. In the opposite case, W (±1) <

W (±0.5) < W (0), mutant offspring are less fit, and the
mutation will decrease in frequency. Unfortunately, this heuristic
is inconclusive if the fitness values are notmonotonic. However, for
a resident population at randommating (mr = 0), it turns out that
the fitness values are monotonic in almost the entire parameter
space spanned by c and k. In fact, the conditions W (±1) = W (0)
andW (±0.5) = W (0) lead to boundaries in the c–k plane that are
almost indistinguishable by eye.We can use the fact that, atm = 0,
differences in fitness are only due to differences in the death rates.
From d(±1) = d(0), we derive

k(c) =
1 − 4(1 − c)(1/4) + 6(1 − c) + 4(1 − c)(9/4) + (1 − c)4 + 1

2(4 − c) + 8(1 − c)(1/4)
,

which is the boundary line used in Fig. 3.

Stability of complete isolation

Also the limit m → 1 allows for further analytical derivations.
Note, first, that the condition for local stability of the two-species
equilibrium with respect to invasion of rare heterozygotes with
phenotype x = 0 is the same as in the single-locus case.
An analogous calculation shows that invasion of mutants with
phenotype x > 0 is always more difficult and can thus be ignored.
We can conclude that the boundary for local stability of two species
with complete isolation is independent of the genetic architecture
of the ecological trait, as long as the total phenotypic range is kept
constant.

For the three-species equilibrium, the equilibrium frequencies
can be obtained from the condition that all three phenotypes must
have equal fitness. Since the mating rates are necessarily equal at
m = 1, this condition reduces to equal death rates, d(x = ±1) =

d(x = 0). Using Eq. (4), we obtain d(0) = 1 − c + p0c and
d(±1) = ((1 − p0)(1 + (1 − c)4) + 2p0(1 − c))/(2 − 2k), where
p0 is the frequency of the third species at x = 0. The above system
of equations evaluates to

p0 = 1 −
2(c − k)

2c(c − k) + c2(2 − c)2
. (B.1)

We find that p0 < 1 for c > k, which is consistent with the finding
that the intermediate monomorphic equilibrium (i.e., p0 = 1) is
always stable for c < k. The condition p0 > 0 leads to

k > c


1 −

c(2 − c)2

2(1 − c)


. (B.2)

For smaller k, only a two-species equilibrium is (locally or globally)
stable. Finally, a condition for invasion of phenotypes at x =

(±0.5) into the three-species equilibrium can be formulated, but
leads to higher order polynomials that can only be analyzed
numerically.

Note that the stability results depend on the scaling of the locus
effects chosen in our model, which leaves the total phenotype
range invariant when going from one to two loci. An alternative
scaling, which keeps the single-locus effects constant, would result
in a doubling of the phenotype range with two loci. Compared to

the single locus case, the emerging species at the boundaries of
this range have much more extreme phenotypes. We can obtain
the corresponding regime picture by a simple rescaling k → 1 −

(1 − k)4 and c → 1 − (1 − c)4 of the model (not shown). Since an
enlarged phenotype range increases the effective strength of both
stabilizing and frequency-dependent selection, the areawhere two
species are stable shifts to smaller values of k and c.

Appendix C. Costs of choosiness

Until now, we have assumed that assortative mating does not
affect female mating success or viability, that is, there are no
costs of choosiness. This may be not realistic if, for example,
rare choosy females have problems of finding an acceptable mate
or if choosiness increases the death rate. In this Appendix, we
investigate how costs of choosiness affect our conclusions from
the main text, focusing on the effect of mutational step size at the
mating locus in the model with a single ecological locus.

We model costs according to Kopp and Hermisson (2008),
distinguishing between mating costs and viability costs. With
mating costs, a female has only a finite number (T ) of mating trials
in a breeding season. This affects the female mating rate according
to

φfemale(X) = 1 −


1 −


1
N

−
Y

N(Y )µ(X, Y )

T

. (C.1)

The sumon the right-hand side is the probability that an encounter
of a female with a random male leads to mating. Mating costs are
frequency-dependent and will most strongly affect females with a
rare phenotype, which need many trials to find a matching male.
They are, therefore, an example of relative costs (Otto et al., 2008;
Kopp and Hermisson, 2008).

Other types of costs are absolute and do not depend on the
number ofmating trials. These can occur, for example, if choosiness
comeswith a physiological cost and, thus, reduces female viability.
Absolute viability costs can be included as an extra term in the
death rate,

d(X) =
C(X)

K(X)
+ fδ(m − m̄), (C.2)

where fδ is a costs function that depends only on the difference
between the mutant choosiness m and the mean resident
choosiness m̄. The latter assumption implies soft selection, which
can arise if costs do not affect the carrying capacity. In this case,
costs are only paid by mutants, and their magnitude depends on
themutational step size. For example, we can assume a linear costs
function

fδ = δ(m − m̄) + δ′(m′
− m̄′), (C.3)

where δ and δ′ are the costs linked tom and m′, respectively.

Evolution of complete isolation

We investigate how (relative) mating costs and (absolute)
viability costs affect the conditions underwhich complete isolation
can evolve from randommating in large steps.
Mating costs. To test the effect of mating costs, we performed sim-
ulations with costs of choosiness modeled according to Eq. (C.1).
Other than restricting the number of mating trials to T = 10 and
T = 5, respectively, we used the same assumptions as in the sim-
ulations without costs. The results are shown in Fig. A.1. The pa-
rameter range where complete isolation can evolve (C∗ regime)
is shifted towards lower values of k compared to the simulations
without costs (compare Fig. A.1 to Fig. 2), but it is still larger with
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Fig. A.1. Evolution of assortative mating in the single-locus model with mating costs, assuming a single large mutational step. The number of mating trials per female is
T = 10 in (a) and T = 5 in (b). Shades of gray indicate the equilibrium frequency (black: 0, white: 1) of an ‘‘isolation allele’’ with m = 1−

= 0.99 introduced at the low
frequency p = 10−4 into a randomly mating resident population with mr = 0. The continuous lines show the corresponding boundaries of the complete-isolation regime
for infinitesimally small steps (calculated as in Kopp and Hermisson, 2008).

one step and costs thanwith infinitesimal steps and costs. Further-
more, mating costs appear to facilitate ‘‘jumping’’ near the high
c-boundary of the C∗ regime (where it is almost absent without
costs, see Fig. 2), to the point that there are some parameter com-
binations for which complete isolation can only evolve in the pres-
ence of (moderate) costs. As detailed in the Discussion, this result
arises becausemating costs induce sexual selection against rare fe-
males (Kopp andHermisson, 2008). Ifmostmales (and females) are
homozygous due to strong frequency-dependent competition, this
effect combines with sexual selection against heterozygous males
to facilitate fixation of the high-m allele.

Viability costs. With absolute viability costs and soft selection
(Eq. (C.2)), evolution of complete isolation in infinitesimal steps
is impossible for costs functions fδ(m − m̄) with a positive first
derivative at m − m̄ = 0 (as is the case for the linear costs
function Eq. (C.3)). The reason is that, for m → 1, heterozygotes
disappear from the population, and the invasion fitness gradient
(which measures the selection pressure for increasingm) vanishes
even in the absence of costs. Unless the derivative of the costs
function vanishes, too, the invasion fitness gradient becomes
negative, which precludes evolution of complete isolation (Kopp
and Hermisson, 2008).

However, the above reasoning applies only to infinitesimal
steps. With large steps, an m = 1− isolation mutant can
invade while heterozygotes are still frequent, such that a fitness
advantage for homozygote offspring can potentially offset the
negative effect of costs. Whether this is easier for (finitely) small
or large mutations depends on the details of the costs function
(C.2). Recall that this function depends only on the difference
between the mutant and resident m. If costs are low for small
differences but high for large differences, small steps will be
preferred. But if costs for small differences are sizeable and costs
for large differences are only moderate, evolution of complete
isolation might be possible only in large steps. In summary, it is
possible to construct costs functions that favor either finitely small
or large steps, but evolution of complete isolation via infinitesimal
small costly steps is always impossible.

Fig. A.2 demonstrates evolution of reproductive isolation in a
single large step, using as an example the linear cost function
(C.3) with δ = 0.01 and δ′

= 0. The parameter range where
complete isolation evolves is quite large. This is true even though
the boundary for the stability of random mating is shifted slightly
towards lower k as compared to the boundary for infinitesimal
steps. Note, however, that since the invasion fitness gradient at
m → 1 is negative (see above), the whole C∗ regime is susceptible
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Fig. A.2. Evolution of assortative mating in the single-locus model with absolute
viability costs and a single large mutational step (see Fig. A.1 for more details).
Shades of gray indicate the equilibrium frequency (black: 0, white: 1) of an
‘‘isolation allele’’ with m = 1−

= 0.99 introduced at the low frequency p =

10−4 into a randomly mating resident population with mr = 0. The figure shows
simulation results for the linear cost function (C.3) with δ = 0.01 and δ′

=

0. Note that, with this costs function, evolution of complete isolation through
infinitesimally small mutational steps is always impossible.

to invasion by small (but not large) modifiers for lower m. It is,
therefore, possible that nearly complete reproductive isolation is
reached in a large step, but then decreases again slightly due to
invasion and fixation of alleles with small negative effect.

Appendix D. Genetic drift in the two-locus model

Including genetic drift in the two-locus model yields roughly
the same results as the deterministic model. In the three-species
domain C3∗, the stagnation phase described in the main text is
shorter and, during this phase, the polymorphism is not between
the m = 1 and the m = 0 allele but between the m = 1 allele and
the lowest m allele that is still present in the population (usually,
the m = 0 has died out at this point, something which is not
possible in the infinite population limit). Near the border to the P∗

domain, the formation of three species sometimes fails altogether,
and the population gets stuck at partial isolation. Note that this
may be a transient state, however, and the phase transition to three
species might still occur eventually. Near the boundary of the C2∗
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domain, evolution from randommatingwith drift sometimes leads
to the formation of two species instead of three. Furthermore, in
the presence of drift, the intermediate monomorphic equilibrium
MI sometimes evolves also with parameters pertaining to the R∗

or C2∗ domain, and the extreme monomorphic equilibrium ME is
reached in a larger parameter range, too.
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