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Wagner et al.1 have recently introduced much-needed data to the
debate on how complexity of the genotype–phenotype map affects
the distribution of mutational effects. They used quantitative trait
loci (QTLs) mapping analysis of 70 skeletal characters in mice2 and
regressed the total QTL effect on the number of traits affected (level
of pleiotropy). From their results they suggest that mutations with
higher pleiotropy have a larger effect, on average, on each of the
affected traits—a surprising finding that contradicts previous
models3–7. We argue that the possibility of some QTL regions con-
taining multiple mutations, which was not considered by the authors,
introduces a bias that can explain the discrepancy between one of the
previously suggested models and the new data.

Wagner et al.1 define the total QTL effect as
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where N measures pleiotropy (number of traits) and Ai the normal-
ized effect on the ith trait. They compare an empirical regression of T
on N with predictions from two models for pleiotropic scaling. The
Euclidean superposition model3,4 assumes that the effect of a muta-
tion on a given trait is independent of its effect on other traits. It
predicts independence of Ai and N and therefore a square-root scal-
ing of T with N. The total effect model5–7 assumes that the total effect
T is independent of the number of affected traits N. As their data
show a roughly linear dependence of T on N, the authors reject both
models. They conclude that not only the total effect, but, surprisingly,
even the effect per trait increases with pleiotropy.

Although the authors address several problems in interpreting
QTL data, there is one confounding factor not considered that could
explain the most surprising part of their results. Crucially, whereas
models address pleiotropy of single mutations, the data presented by
Wagner et al.1 are on QTL pleiotropy. As QTLs correspond to rela-
tively large genomic regions, they can contain more than a single
mutation. The pleiotropic QTLs in this study correspond to regions
of 3–50 centimorgans (ref. 2). Major QTLs can break down into the
contributions of several genes8 and even multiple mutations in a
single gene9, sometimes affecting different traits10. Multiple-muta-
tion QTLs are likely in the present study1,2, for several reasons: first,
the data are based on F2 mapping, which has limited power to resolve
the effects of linked loci2. Second, as pleiotropy is the null-model2,
there is a bias for grouping several QTLs into a single one. There is
evidence that this may indeed be the case for all highly pleiotropic
QTLs2. Third, for a single trait, a small number of QTLs is the null-
model and indeed the study does not allow for more than two QTLs
per trait on the same chromosome2. Last, fixation of different muta-
tions at the same gene in the high- and low-selection lines seems
plausible.

How would multiple mutations in some QTLs affect the results of
the paper? The finding of low levels of pleiotropy is conservative.
Indeed, pleiotropy of the single mutations can only be lower than
pleiotropy of the QTLs. The effect on the scaling behaviour is more
involved. Even if the effects of single mutations (and single-mutation
QTLs) strictly follow the square-root scaling predicted by the super-
position model, this is generally not true for QTLs with several muta-
tions (Fig. 1). The predicted square-root dependency is reproduced
only if the sets of traits affected by the different mutations in a QTL
are non-overlapping. Overlapping sets of traits may produce an
almost linear relationship of N and T, and thus an apparent deviation
from the superposition model (Fig. 1).

Overlaps among sets of traits affected by different mutations in a
single QTL are likely, particularly if each mutation affects many
traits. Vice versa, QTLs with multiple mutations will (on average)
affect a larger number of traits. We therefore expect the largest
deviations from an overall square-root relation for data points with
large N. This possibly explains the large deviations for the four QTLs
with N . 25 of Wagner et al.1. For example, a two-mutation QTL
where both mutations affect ,20 traits could reproduce the
observed results.

The T–N regression is less affected by multiple-mutation QTLs if T
is measured in the linear Manhattan metric1, T~

X
i

Aij j:Here, the
superposition model predicts a linear regression. Overlaps in the trait
sets of multiple-mutation QTLs lead to reduced N, but do not affect
T. Indeed, the deviation of the data from a linear regression line
appears to be small1.

Could multiple-mutation QTLs even reconcile the total effect
model with the observed data? The answer is, in principle, yes, but
only under extreme assumptions. In fact, we would have to explain
the entire increase in T with N as solely due to ever-larger numbers of
mutations in more pleiotropic QTLs.

Thus the data1 provide evidence against the total effect model, but
not against the Euclidean superposition model. It therefore seems
premature to accept a linear regression of the total mutational effect
on the degree of pleiotropy or to ponder why mutations with higher
pleiotropy should have a larger effect on each affected trait.
Eventually, data from QTL fine-scale mapping will help resolve these
issues by determining the number of mutations per QTL and the
correlation among sets of traits affected by mutations in the same
QTL region.

METHODS

Assume that all trait-specific mutational effects are equal to some constant a. The

total effect t of a mutation affecting n traits is:

t~a
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n
p

For single-mutation QTLs, N 5 n and T 5 t, and data points follow the square-

root relation predicted by the superposition model (Fig. 1, black filled circles).

The total effect T of a multiple-mutation QTL n1,n2, . . .f g follows the same
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Figure 1 | Impact of multiple mutations on the total QTL effect, T. For all
mutations, strict scaling according to the Euclidean superposition model is
assumed. Black filled circles, single-mutation QTLs. Open circles, QTLs with
two mutations that affect non-overlapping traits. Red filled circles, total
effects of double-mutant QTL with overlapping trait ranges (see Methods).
Arrows, shift due to the overlap.
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square-root law only if N~
X

i
ni , that is, trait sets affected by the different

mutations are non-overlapping (open circles in Fig. 1 for QTL {20,10}, {20,20}).

For overlapping trait sets, Nv

X
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. For a two-mutation

QTL with overlap n12, N 5 n1 1 n2 2 n12 and T~a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
. Red filled

circles in Fig. 1 show T and N of all two-mutation QTLs with

n1§n2[ 5,10,15,20f g. The assumed overlap is n12 5 p(n1)?n2 with p(n1) 5 0.6,

0.5, 0.4, 0.3 for n1 5 20, 15, 10, 5, respectively.
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Wagner et al. reply
Reply to: J. Hermisson & A. P. McGregor Nature 456, doi:10.1038/nature07452 (2008)

In our paper on pleiotropic scaling and the cost of complexity1, we
presented evidence for three findings: first, most genes affect a small
number of traits (the degree of pleiotropy is low); second, the total
effect of a quantitative trait locus (QTL) increases with the degree of
pleiotropy, refuting the constant total effect model2,3; and third, the
increase in total effect (defined as T~

P
i

A2
i , where Ai is the effect on

character i, that is, half the difference between the genotypic values of
the homozygous genotypes) seems to be stronger than predicted by
the superposition model4,5 of pleiotropic effects. Hermisson and
McGregor6 point out that the last result could be due to multiple
mutations being mapped to the same QTL, but only if these muta-
tions affect overlapping sets of traits. We agree that this is a possibility
that we could not address with the data at hand.

Hermisson and McGregor6 also point out that the total effect, if
measured using a Manhattan metric, t~

P
i

Aij j, is not affected by

double mutations at a QTL, unlike the Euclidian metric we adopted.
This is an important observation, as it can be used to estimate the
overlap between the set of traits affected by the QTLs and their
average pleiotropy. Applying this method to the four QTLs in our
data set with the highest degrees of pleiotropy and which deviate

most strongly from the superposition model (see Supplementary
Note 6 in ref. 1), we obtain the results shown in Table 1.

It follows from the final column of Table 1 that a double mutation
model implies that the mutations at each double mutant-QTL have to
have quite high degrees of pleiotropy (about 19 on average), which is
unlikely given the distribution of pleiotropic effects in the rest of the
data (P 5 0.002). Hence the double mutation model, although plaus-
ible, is not closely compatible with our data. Resolution of the issue of
whether we are faced with multiple mutations or a biological effect
clearly requires data from more fine-grained QTL mapping experiments
(J.M.C. et al., manuscript in preparation). But for now we agree with
Hermisson and McGregor6 that the superposition model is a reasonable
assumption about the pleiotropic scaling of mutation effects.
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Table 1 | Analysis of the four highly pleiotropic QTLs

n̂n t ~nn n12 �nn

26 9.19 41 15 21

28 7.35 33 5 17

29 8.35 37 8 19

30 8.69 39 9 20

This analysis assumes that the effects of these QTLs are due to the combined effect of two
mutations in each QTL. Here n̂n is the number of affected traits, t is the total effect, when
measured as Manhattan distance, ~nn is the sum of the number of effects of both mutations based
on the assumption that the effects per trait are invariant (~nn~n̂n=0:2236, where the denominator
is the regression coefficient of t on n̂n), n12 is the overlap of the trait sets affected by the two
mutations (n12~~nn{n̂n), and �nn~~nn=2 is the average number of traits affected by the two
mutations (average degree of pleiotropy).
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