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ABSTRACT
Epidemic spreading is a common approach to mitigate fre-
quent link disruptions and to support content-centric infor-
mation dissemination in opportunistic networks. Stochastic
models, often used to characterize epidemic processes, in-
troduce assumptions which, on one hand, make them ana-
lytically tractable, while on the other, ignore attested char-
acteristics of human mobility. We investigate the fitness
of a simple stochastic model for content dissemination by
comparison with experimental results obtained from real-life
mobility traces. We examine four mobility datasets and con-
sider content delivery delay as a performance metric. Our
finding is that a homogeneous model is unable to capture
the performance of content dissemination with respect to
content delivery delays.
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1. INTRODUCTION
In opportunistic networks, highly dynamic network topol-
ogy and intermittent connectivity make routing a challenge.
A large body of algorithms for opportunistic networking em-
ploy epidemic spreading principle. Adopting the principles
of epidemic modeling from the field of mathematical biology,
stochastic modeling has become a method commonly used
in networking. However, for the sake of analytical tractabil-
ity, models often assume identical mobility and contact pat-
terns for all nodes in the network. Recently, studies which
consider heterogeneous networks have been emerging; yet,
it is debatable whether there are savings in complexity and
increased understanding from using the models compared to
simulations.

In this poster, we present an empirical study of epidemic
content spreading by using real-world mobility traces. Then,
we consider an analytic model proposed in [3], and investi-
gate if a homogeneous model can be utilized to evaluate the
performance of opportunistic networks when the assump-
tions on network homogeneity are relaxed.

2. OPPORTUNISTIC CONTENT DISTRIBU-
TION: MODEL AND EVALUATION

The application scenario we consider is that of disseminat-
ing information by utilizing opportunistic contacts, based
on user interest. Sharing local news, traffic and tourist in-
formation in public areas, public announcements at mas-
sive events, or mobile advertisements are common examples

where this distribution scheme can be used. We are inter-
ested in evaluating the performance of spreading in terms of
delivery delays.

Epidemic model
We consider a homogeneous set of N mobile nodes, moving
in a confined area and exchanging information through in-
termittent contacts. Initially, a single node carries a piece of
information (a content item) and N −1 nodes are interested
in obtaining the contents. We assume that the mobility of
nodes is such that inter-contact times between any two nodes
can be modelled by identical, independent and exponen-
tially distributed random variables with rate λ. This allows
analysis of the epidemic process with a stochastic model
based on a continuous-time Markov chain, described in [3].

To characterize the performance, we look at two metrics: the
time until the information has reached all the N nodes in
the network, denoted by overall delivery time Todt, and the
individual delivery time Tidt , defined as the time until an
arbitrary node has obtained the contents. Their expected
values, E[Todt] and E[Tidt] can be found from expressions
given in Tab. 1.

Table 1: Expected delivery times
Overall delivery time E[Todt]

2
Nλ

HN−1

Individual delivery time E[Tidt]
1

λ(N−1)
HN−1

Hn =
∑n

i=1 1/i is the n-th harmonic number

Mobility Traces
To cover various scenarios, we use four experimental datasets,
diverse in time granularity, number of participants in the
experiments and in the experiment duration. The datasets
report direct pair-wise contacts between users moving in rel-
atively restricted areas: a conference venue, a university, or
a company building. We briefly describe the contexts where
the traces were collected and the acquisition methods used,
and our methodology of pre-processing the traces.

• Infocom traces [5], obtained at Infocom 2006, report
contacts between 78 experiment participants carrying
iMote devices during four days. The scanning interval
was 120 seconds.

• Humanet traces [1] describe human mobility in an
office scenario, reporting proximity traces of 52 partici-
pants during one working day. The users were carrying
Bluetooth customized devices, which were scanning every
5 seconds to capture direct contacts with other devices.

• Supsi dataset [2] comprises of contacts in a group of
39 participants, from three institutes, located in two build-
ings. The participants were carrying sensor nodes with
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Figure 1: CDFs of the contents delivery times (a). Comparison of the overall (b) and individual delivery
times (c).

a transmission range of 5 meters and a scanning cycle of
10 milliseconds.

• Milano dataset [4] was obtained by 44 participants. Con-
tacts were logged by customized radio devices, operating
with a transmission range of 10 meters and a configurable
scanning interval of one second.

The duration of the experiments varies from a single day
(Humanet) to several weeks (Supsi); to obtain inter-contact
times, we consider only the days when a considerable num-
ber of contacts were recorded, and observe only the contact
events that occurred during work hours (usually from 9:00
to 18:00).

Evaluation
We want to assess the capability of a homogeneous epidemic
model to capture the process of epidemic content spreading
in real-life scenarios. First, we simulate the epidemic process
in four scenarios, and plot the CDFs of the contents delivery
times in Fig. 1(a). For each of the traces, we choose a
single day when the nodes were most active, seen as the
number of contacts recorded during that day. The analytic
model can be seen as a simple and efficient tool to estimate
the performance; its simplicity stems from the fact that it
requires only two input parameters: the number of nodes in
the network and the node contact rate. In order to validate
the analytic model, we compute the same metrics, overall
and individual delivery times, given by the expressions in
Tab. 1.

As a first evaluation, we assume that node interactions can
be well described by the aggregate inter-contact time distri-
butions, that is, the empirical distribution of inter-contact
times estimated over all possible node pairs. From the
aggregate distribution we find the contact rate as the re-
ciprocal of average inter-contact time. Figs. 1 (b) and (c)
depict the simulation results and the expected delivery times
(denoted by modela). Clearly, this method significantly
underestimates the delivery delays, calling for more careful
investigation of pair-wise node interactions. Therefore, we
propose the second method to estimate the contact rate for
a set of nodes. First, for every pair of nodes which reported
contacts we find the average contact rate. Then, we find
the empirical distributions of those contact rates and per-
form curve fitting. In all four cases, log-normal distribution
seems to provide the best fit for the contact rate distribu-
tions. Next, we find the average contact rates from the fitted
distributions and calculate the expected delivery times. Bars
denoted by modelb in Fig. 1 correspond to this case. With a
slight improvement from the previous method, the

discrepancies between the analytic and simulation results
are still significant. Acknowledging the fact that contacts
for many node pairs are not observable from the traces (from
9% in the Infocom to almost 70% in the Supsi trace), we pro-
pose the third method to estimate average contact rate over
all node pairs, by compensating for the missing node pairs.
To all node pairs which have not recorded any contacts—
the two nodes which haven’t met during the experiment—
we assign the same value for the average inter-contact time
(for the delays in Fig. 1 that value equals the duration of
the full trace), find the average contact rate over all pairs,
and compute the delivery times. These results are denoted
by modelc. We observe that this method gives better esti-
mation than the previous two. However, the inconsistency
(in some scenarios the method underestimates delivery de-
lays, while in other vastly overestimates), makes it imprac-
ticable for use in general.

3. SUMMARY
We studied the performance of epidemic content distribution
in opportunistic networks and empirically evaluated the con-
tent delivery delays by using four mobility datasets, chosen
to represent a small system of users moving in a bounded
area. We proposed three methods of treating the statistical
data obtained from the traces, and showed that the homo-
geneous model is unable to accurately capture the epidemic
process of the real-life scenarios. For our future work, we
will aim at modeling epidemic spreading in heterogeneous
systems by using other types of stochastic models.

4. REFERENCES
[1] J. M. Cabero, V. Molina, I. Urteaga, F. Liberal, and J. L.

Martin. CRAWDAD data set Tecnalia Humanet (v. 2012-06-12),
June 2012.

[2] A. Förster, K. Garg, H. A. Nguyen, and S. Giordano. On context
awareness and social distance in human mobility traces. In
Proc.ACM, MobiOpp ’12, New York, NY, USA, 2012.

[3] O. Helgason, F. Legendre, V. Lenders, M. May, and G. Karlsson.
Performance of opportunistic content distribution under
different levels of cooperation. In Proc. European Wireless
Conference (EW), 2010.

[4] P. Meroni, S. Gaito, E. Pagani, and G. P. Rossi. CRAWDAD
data set unimi/pmtr (v. 2008-12-01), Dec. 2008.

[5] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and
A. Chaintreau. CRAWDAD trace
cambridge/haggle/imote/infocom2006, May 2009.


