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Mapping tori of free group automorphisms,
and the Bieri–Neumann–Strebel invariant of graphs

of groups

Christopher H. Cashen and Gilbert Levitt
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Abstract. Let G be the mapping torus of a polynomially growing automorphism of
a finitely generated free group. We determine which epimorphisms from G to Z have
finitely generated kernel, and we compute the rank of the kernel. We thus describe all pos-
sible ways of expressing G as the mapping torus of a free group automorphism. This
is similar to the case for 3-manifold groups, and different from the case of mapping
tori of exponentially growing free group automorphisms. The proof uses a hierarchical
decomposition ofG and requires determining the Bieri–Neumann–Strebel invariant of the
fundamental group of certain graphs of groups.

1 Introduction

Given an automorphism ˛ of a group F , one may form its mapping torus

G˛ D F Ì˛ Z D hF; t j t�1f t D ˛.f /i

and obtain an exact sequence 1! F ! G˛ ! Z! 1. Geometrically, any fibra-
tion over the circle leads to such an exact sequence, with F the fundamental group
of the fiber and ˛ induced by the monodromy. If the fiber is compact, then F
and G˛ are finitely generated.

Conversely, any epimorphism 'WG ! Z yields a split exact sequence

1! ker' ! G ! Z! 1;

but in general G finitely generated does not imply that ker' is finitely gener-
ated. We will say that 'WG ! Z (or any multiple of ') comes from a fibration
if ker' is finitely generated. We then call F D ker' the fiber, and we define the
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192 C. H. Cashen and G. Levitt

monodromy as the element ˆ 2 Out.F / determined by the action of the generator
of Z. The group G is isomorphic to the mapping torus G˛ of any ˛ 2 Aut.F /
representing ˆ.

With this terminology, one may ask, given G, which maps 'WG ! Z come
from a fibration. This was answered by Thurston [31] when G is a 3-manifold
group, or equivalently when the fiber is a surface group. The question is more
subtle when F is a free group. Indeed, the class of free-by-cyclic groups remains
largely mysterious, in spite of results such as [6, 11, 14].

Recent work by Dowdall, Kapovich, and Leininger [9,10] studies mapping tori
of exponentially growing automorphisms of free groups. We study the opposite
case, when monodromies are polynomially growing automorphisms.

Theorem 1.1 (see Theorems 5.2 and 6.1). LetG DG˛ D FnÌ˛Z for ˛ 2 Aut.Fn/
polynomially growing, with n � 2. There exist elements t1; : : : ; tn�1 in G (not
necessarily distinct), and k � 1, such that, given an epimorphism 'WG ! Z, the
following hold:

� If some '.ti / is 0, then ker' virtually surjects onto F1 (an infinitely generated
free group).

� If no '.ti / is 0, then ker' is a finitely generated free group whose rank is

r D 1C
1

k

n�1X
iD1

j'.ti /j:

Freeness of ker' when finitely generated was proved in [15, Remark 2.7].
Any ' such that no '.ti / is 0 expresses G as the mapping torus of an automor-
phism of a finitely generated free group. It is known [24] that this automorphism
is polynomially growing, with the same degree of growth as the original ˛.

It follows from the theorem that any homomorphism 'WG ! R may be
approached by fibrations, and ker' virtually maps onto F1 if it is not finitely
generated. We will also see that G cannot be written as the mapping torus of an
injective, non-surjective, endomorphism of a finitely generated free group. None of
these properties holds for mapping tori of arbitrary automorphisms of free groups.

We prove Theorem 1.1 by induction, using the fact that G admits a hierarchy:
it may be iteratively split along cyclic groups until vertex groups are Z2. The
inductive step requires us to understand fibrations of fundamental groups of graphs
of groups. We do so in the more general context of the Bieri–Neumann–Strebel
(BNS) invariant.

Recall [3, 29] that the BNS invariant †.G/ (or †1.G/, in the notation of [29])
of a finitely generated group G is a certain open subset of the sphere S.G/ of pro-
jective classes Œ'� of non-zero homomorphisms 'WG ! R. The connection with
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Mapping tori and BNS invariant 193

the previous discussion is that 'WG� Z is a fibration if and only if †.G/ con-
tains Œ'� and Œ�'�.

We investigate the BNS invariant of graphs of groups in Section 2. So far, no
systematic such study has appeared in print; after receiving a preliminary version
of this paper, Ralph Strebel sent us the unpublished monograph [4], whose Theo-
rem II.5.1 is very similar to our results.

Say that a graph of groups is reduced if no edge carries a trivial amalgam
A �A B , and define the class & as consisting of all finitely generated groups H
such that †.H/ D S.H/ (this condition is equivalent to ŒH;H� being finitely
generated).

Theorem 1.2 (Corollaries 2.9 and 2.10). LetG be the fundamental group of a finite
reduced graph of groups � , with G finitely generated. Assume that � is not an
ascending HNN-extension. Consider a non-zero map 'WG ! R.

� If edge groups are in & , then Œ'� 2 †.G/ if and only if ' is non-trivial on every
edge group and Œ'jGv � 2 †.Gv/ for every vertex group Gv.

� If vertex groups are in & , then Œ'� 2 †.G/ if and only if ' is non-trivial on
every edge group. In particular, †.G/ D �†.G/ is the complement of a finite
number of rationally defined subspheres.

The second assertion applies in particular to graphs of virtually polycyclic
groups. In Section 3 we specialize it to GBSn groups, defined as fundamental
groups of finite graphs of groups with every vertex and edge group isomorphic
to Zn. If G is a non-solvable GBSn group, then Œ'� 2 †.G/ if and only if '.H/ is
not 0, where H is any edge group. When G is unimodular (i.e. virtually Zn � Fk
for some k � 2), or n D 1, this is equivalent to '.Z/ ¤ 0 with Z the center of G.

In Section 4 we extend Theorem 1.2 further to hierarchies, and we study the
isomorphism type of ker' through its action on trees. We apply these results in
Section 5 to compute the Bieri–Neumann–Strebel invariant for mapping tori of
polynomially growing free group automorphisms: with the notations of Theo-
rem 1.1, a non-zero 'WG ! R represents an element of †.G/ if and only if no
'.ti / equals 0, so †.G/ is the complement of a finite union of codimension 1
spheres.

In Section 6 we compute the rank of ker' when it is finitely generated, thus
completing the proof of Theorem 1.1. Another approach to this computation is to
use the Alexander norm (see the discussion in [9, Section 1.6]).

In Section 7 we consider mapping tori of finite order automorphisms of free
groups Fn, with n � 2. These groups are exactly the non-solvable GBS1 groups
having a non-trivial center [23] (a GBS1 group with trivial center has †.G/
empty). Given such aG, we determine for which values of n and k one can viewG
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194 C. H. Cashen and G. Levitt

as the mapping torus of an element of order k in Out.Fn/, and also for which n; k
there is a subgroup G0 � G of index k, isomorphic to Fn � Z, and containing the
center of G. In particular, we show that the set of ranks of fibers is an arithmetic
progression.

2 The BNS invariant of a graph of groups

We first recall the definition and some properties of the BNS invariant †.G/.
See [3] and [29] for details.

Given a finitely generated group G, let S.G/ be the sphere consisting of pro-
jective classes of non-zero homomorphisms 'WG ! R. We write Œ'� for the class
of ', so that Œ'� D Œ � if and only if ' D � with � > 0. The dimension of S.G/
is b1.G/ � 1, with b1.G/ the first Betti number. If X � †.G/, let �X be the set
of classes Œ�'� for Œ'� 2 X .

A class Œ'� 2 S.G/ is discrete if every homomorphism in the class has discrete
image, which is equivalent to saying that Œ'� contains a surjection onto Z.

For H � G, let S.G;H/ denote the subsphere ¹Œ'� 2 S.G/ j H � ker'º. Its
complement in S.G/ is denoted S.G;H/c . Let �H WH ,! G denote the inclusion
map, and let ��H WS.G;H/

c ! S.H/ be the restriction map Œ'� 7! Œ'jH �.
Let Cay.G;G / be the Cayley graph of G with respect to a finite generating

set G . We identify its vertex set with G. Given 'WG ! R, let Cay.G;G /Œ0;1/

denote the induced subgraph of Cay.G;G / containing the vertices in '�1.Œ0;1//.
One of the several equivalent definitions of †.G/, see [29], is that Œ'� 2 S.G/
belongs to †.G/ if and only if Cay.G;G /Œ0;1/ is connected for some, equiva-
lently, for every, finite generating set G of G. The set †.G/ is open in S.G/. See
[3, 7, 21, 26, 29] for alternate definitions.

In [3, Theorem B1] the following is stated: if N C G, with G=N abelian, then
N is finitely generated if and only if S.G;N / � †.G/. Applied to N D ŒG;G�,
this shows that †.G/ D S.G/ if and only if ŒG;G� is finitely generated. When
N D ker', with 'WG� Z, then S.G;N / D ¹Œ'�;�Œ'�º, so ker' is finitely gen-
erated for discrete Œ'� if and only if both Œ'� and �Œ'� are in †.G/.

As shown in [3, Corollary F], results of Thurston [31] imply that, ifG is the fun-
damental group of a compact 3-manifold, then †.G/ D �†.G/ and is a disjoint
union of finitely many open convex rational polyhedra in S.G/.

By a splitting of a group G, we will mean a one-edge splitting, i.e. a decom-
position of G as an amalgam G1 �A G2 or an HNN-extension G1�A. We denote
by �Gi the natural inclusion from Gi into G.

The following lemma says that, if 'WG ! R does not vanish on A, and its
restriction to each Gi represents an element of †.Gi /, then Œ'� is in †.G/.

Unauthenticated
Download Date | 5/20/16 3:02 PM



Mapping tori and BNS invariant 195

Lemma 2.1. The following statements hold.

(1) Let G be an amalgamated free product G1 �A G2, with G1; G2 finitely gener-
ated. Then

S.G;A/c \ .��G1/
�1.†.G1// \ .�

�
G2
/�1.†.G2// � †.G/:

(2) Let G be an HNN-extension hG1; t j t�1at D �.a/ for a 2 Ai with finitely
generated base group G1, subgroup A < G1, and injection � WA ,! G1. Then

S.G;A/c \ .��G1/
�1.†.G1// � †.G/:

Proof. Case (1) is an immediate corollary of [29, Lemma B1.14]. We prove
case (2), which is very similar. Assume Œ'� 2 S.G;A/c \ .��G1/

�1.†.G1//.
Take a finite generating set for G1 and append t to get a finite generating set

for G. Consider the corresponding Cayley graph. Since Œ'� 2 .��G1/
�1.†.G1//, it

follows trivially from the definitions that for every g 2 G and b1; b2 in G1 there
exists a path from gb1 to gb2 in gG1 such that every vertex x along the path
satisfies '.x/ � min.'.gb1/; '.gb2//.

An element g 2 G can be expressed g D b0t"1b1 � � � t"mbm with "i D ˙1 and
bi 2 G1. The minimal suchm is called the syllable length of g. We prove by induc-
tion on the syllable length that if '.g/ � 0, then there exists a '-non-negative path
from 1 to g, i.e. a path such that every vertex x on the path satisfies '.x/ � 0. This
claim implies Œ'� 2 †.G/.

The claim is true for syllable length 0 by the hypothesis that Œ'jG1 � 2 †.G1/.
Now suppose g has syllable length m > 0 and '.g/ � 0, and suppose that the
claim is true for shorter syllable length. Let

g D b0t
"1b1 � � � t

"mbm and g0 D b0t
"1b1 � � � t

"m�1bm�1:

Since Œ'� … S.G;A/, we can choose a 2 A such that

'.a/ � max.�'.g0/;�'.g0t"m//:

If "m D 1, then g D g0aa�1tbm D g0at�.a�1/bm, where '.g0a/ and '.g0at/
are non-negative and g0a has syllable length < m. By the induction hypothesis
there is a '-non-negative path from 1 to g0a. Concatenating the t -edge gives
a '-non-negative path from 1 to g0at . Finally, the remark of the second para-
graph implies that we can concatenate this path with a path in g0atG1 from g0at

to g D g0at�.a�1/bm to get a '-non-negative path from 1 to g.
If "m D �1, the argument is similar using the relation g D g0t�1aa�1bm D

g0�.a/t�1a�1bm and the fact that '.�.a// equals '.a/. The path passes through
g0�.a/ and g0�.a/t�1.
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196 C. H. Cashen and G. Levitt

Corollary 2.2. Let G be the fundamental group of a finite graph of groups, with
every vertex group finitely generated. Let 'WG ! R be a homomorphism. Assume:

(1) ' is non-trivial on every edge group,

(2) Œ'jGv � belongs to †.Gv/ for every vertex group Gv.

Then Œ'� 2 †.G/.

Proof. By induction on the number of edges, writing G as an amalgam or an
HNN-extension of groups which are fundamental groups of graphs of groups with
fewer edges.

We now study the converse, so we assume Œ'� 2 †.G/ and we consider
restrictions of ' to edge and vertex groups. To deduce (1), we simply need some
non-degeneracy assumptions.

Definition 2.3. A graph of groups � is said to be reduced if, given an edge e with
distinct endpoints v1; v2, the inclusions Ge ,! Gvi are proper.

In particular, an HNN-extension is always reduced. An amalgam G1 �A G2 is
reduced if and only if it is non-trivial (A ¤ G1; G2).

If � is not reduced, we may make it reduced by iteratively collapsing edges
making it non-reduced. This does not introduce new vertex groups since the group
Gv1 �Gv1 Gv2 is isomorphic to Gv2 .

Definition 2.4. An HNN-extensionG D hG1; t j t�1at D �.a/ for a 2 Ai is said
to be ascending if A D G1 and descending if �.A/ D G1. It is strictly ascending
if it is ascending and not descending.

Replacing the stable letter t by its inverse reverses ascending/descending. We
say that a graph of groups � is not an ascending HNN-extension if it is not an
HNN-extension (it has more than one edge or more than one vertex), or it is an
HNN-extension but both A and �.A/ are proper subgroups of G1.

Proposition 2.5. Let G be the fundamental group of a finite reduced graph of
groups � , withG finitely generated. Assume that � is not an ascending HNN-exten-
sion. If Œ'� 2 †.G/, then ' is non-trivial on every edge group.

Proof. The special case when � has a single edge is [29, Proposition C2.13].
Given any edge e of � , collapse all other edges. The resulting graph of groups
is not an ascending HNN-extension because � is reduced, so we may apply the
special case to conclude that ' is non-trivial on Ge.
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Remark. The proposition is wrong in the case of an ascending HNN-extension
(see Remark 2.11). Rather than assuming that � is reduced and not an ascending
HNN-extension, one could assume that its Bass–Serre tree is minimal and irre-
ducible.

The following example shows that some more serious restriction is necessary in
order to deduce the statement Œ'jGv � 2 †.Gv/ (item (2) in Corollary 2.2) from the
assumption Œ'� 2 †.G/.

Example 2.6. View G D F2 � F2 as the amalgam of F2 � Z D ha; bi � hci with
F2 � Z D ha; bi � hd i over F2 D ha; bi. If 'WG ! R kills d but none of a; b; c,
then Œ'� 2 †.G/ but Œ'jGv � … †.Gv/ forGv D ha; bi � hd i (see [3, Theorem 7.4]
or [29, Proposition A2.7] for † of a direct product). This may be generalized to
groups of the form A � F2 with †.A/ ¤ S.A/.

Proposition 2.7. Let G be the fundamental group of a finite graph of groups � ,
with all edge and vertex groups finitely generated. Assume that Œ'� 2 †.G/, and
Œ'jGe � 2 †.Ge/ for every edge group Ge (in particular, '.Ge/ ¤ 0). Then we
have Œ'jGv � 2 †.Gv/ for every vertex group Gv.

Proof. As in the proof of Corollary 2.2, it suffices to prove the result when � has
a single edge: G D G1 �A G2 or G D hG1; t j t�1at D �.a/ for a 2 Ai. Since '
does not vanish on A, it does not vanish on Gi , so Œ'jGi � 2 S.Gi /.

First suppose G D G1 �A G2. Fix a finite generating set A of A, and choose
finite generating sets Gi forGi extending the respective images of A, with GinA �

Gi n A. Their union G D G1[G2 is a finite generating set for G.
Take two vertices g and h in Cay.G1;G1/Œ0;1/. We have to join them by a path

contained in Cay.G1;G1/Œ0;1/.
There exists a path p joining them in Cay.G;G /Œ0;1/, since Œ'� 2 †.G/. Write

labels along p as g1g2 : : : gk with gi 2 G . If every gi is in G1, then p is contained
in Cay.G1;G1/ and we are done. Otherwise, by standard facts about free products
with amalgamation, there exists a subpath giC1 : : : gj containing an edge with
label in G2 nA and representing an element of A.

Since G1 is an extension of A, and Cay.A;A/Œ0;1/ is connected because Œ'jA�
is an element of †.A/, we may replace the subpath giC1 : : : gj of p by a subpath
contained in Cay.A;A/Œ0;1/ � Cay.G1;G1/Œ0;1/. This reduces the number of
labels of p not in G1.

Repeat this process until all labels of p are in G1. This gives a path from g to h
in Cay.G1;G1/Œ0;1/, so Œ'jG1 � 2 †.G1/. The same argument applies to G2.

In the HNN-extension case, choose a finite generating set G1 of G1 extending
A [ �.A/. Let G D G1 [ ¹tº, and apply the same argument as in the amalgamated
product case (using Britton’s lemma) to conclude Œ'jG1 � 2 †.G1/.
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Propositions 2.5 and 2.7 do not provide a complete converse of Corollary 2.2,
because Proposition 2.5 only guarantees '.Ge/ ¤ 0, not Œ'jGe � 2 †.Ge/. This
motivates the following definition.

Definition 2.8. Let & be the class of finitely generated groups G with the property
that †.G/ D S.G/.

Equivalently, & is the class of finitely generated groups with finitely generated
commutator subgroup [3].

Recall that a group is slender if every subgroup is finitely generated. Slender
groups belong to & . Examples of slender groups include finitely generated virtually
abelian groups and virtually polycyclic groups.

Corollary 2.2 and Propositions 2.5 and 2.7 now imply:

Corollary 2.9. Let G be the fundamental group of a finite reduced graph of
groups � , with G finitely generated and edge groups in & . Assume that � is not
an ascending HNN-extension. Then Œ'� 2 †.G/ if and only if ' is non-trivial on
every edge group and Œ'jGv � 2 †.Gv/ for every vertex group Gv,

†.G/ D
\
e2E�

S.G;Ge/
c
\

\
v2V�

.��Gv /
�1.†.Gv//:

Note that all vertex groups are finitely generated, so †.Gv/ is defined.

Corollary 2.10. Let G be the fundamental group of a finite reduced graph of
groups � , with every vertex group in & . Assume that � is not an ascending
HNN-extension. Then Œ'� 2 †.G/ if and only if ' is non-trivial on every edge
group. In particular,

†.G/ D �†.G/ D
\
e2E�

S.G;Ge/
c

is the complement of a finite number of rationally defined subspheres.

This applies in particular to graphs of virtually polycyclic groups.

Remark 2.11. If the group G D hG1; t j t�1at D �.a/ for a 2 G1i is an ascend-
ing HNN-extension, then S.G;Ge/ consists of two points, the projective classes
containing '˙WG ! Z defined by '.G1/ D 0 and '.t/ D ˙1. WhenG1 is finitely
generated, †.G/ contains Œ'C�, and contains Œ'�� if and only if the extension is
not strictly ascending ([3, Proposition 4.4]). In particular, †.G/ ¤ �†.G/ if G is
a strictly ascending HNN-extension with finitely generated base group.

We thus have the following.
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Corollary 2.12. If †.G/ ¤ �†.G/, in particular if G is a strictly ascending
HNN-extension with finitely generated base group, then every decomposition of
G as the fundamental group of a finite reduced graph of groups with vertex groups
in & is a strictly ascending HNN-extension.

3 Generalized Baumslag–Solitar groups

LetG be as in Corollary 2.10. Assume furthermore that all the inclusionsGe ,!Gv
map Ge onto a finite index subgroup (this is equivalent to the Bass–Serre tree of
� being locally finite). Then all edge and vertex groups are commensurable (the
intersection of any two has finite index in both), so †.G/ D S.G;H/c with H
any vertex or edge group. Moreover, a homomorphism 'WG ! R represents an
element of S.G;H/ if and only if it factors through the topological fundamental
group of � . We thus get:

Corollary 3.1. Let G be as in Corollary 2.10, with all edge and vertex groups
commensurable. If H is any vertex or edge group, then †.G/ D S.G;H/c is the
complement of a rationally defined subsphere whose dimension is b � 1, with b
the first Betti number of the graph � .

In particular, a rank n generalized Baumslag–Solitar group, or GBSn group,
is the fundamental group G of a finite graph of groups � all of whose edge and
vertex groups are isomorphic to Zn. When n D 1, we simply say that G is a GBS
group.

If � is an ascending HNN-extension, G is solvable, so we obtain:

Corollary 3.2. If G is a non-solvable GBSn group, then †.G/ D S.G;H/c with
H any edge or vertex group.

In certain cases, we may relate †.G/ to the center Z.G/.

Proposition 3.3. Let G be a non-solvable GBS group. Then

†.G/ D S.G;Z.G//c :

If the center is trivial, †.G/ D ;. If not, †.G/ is the complement of a codimen-
sion 1 rationally defined subsphere.

The solvable GBS groups are Z and the Baumslag–Solitar groups

BS.1; k/ D ha; t j t�1at D aki:

Proof. This follows from [22, Propositions 2.5 and 3.3]. If the center is trivial,
edge groups have finite image in the abelianization of G so †.G/ D ;. If there is
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a center, it is infinite cyclic, contained in every edge group, and maps injectively
into the abelianization.

Going back to arbitrary n, suppose that G D Zn � Fk for some k � 2. Then
all edge and vertex groups are equal to the Zn factor, which is the center, and
†.G/ D S.G;Z.G//c . This may be generalized to GBSn groups which are virtu-
ally Zn � Fk (such groups are called unimodular, see below).

Proposition 3.4. If the GBSn group G is non-solvable and unimodular (i.e. G is
virtually Zn � Fk with k � 2), then †.G/ D S.G;Z.G//c .

Proof. Consider the action of G on the Bass–Serre tree T of � (we may assume
that this action is minimal: there is no proper invariant subtree). By a standard
argument, the center of G acts as the identity on T (it is elliptic because T is
not a line, and its fixed subtree is G-invariant), so a ' that does not vanish on
the center is in †.G/. We have proved S.G;Z.G//c � †.G/ (this also follows
from [29, Proposition A2.4]).

Let G0 D Zn � Fk have finite index in G. It acts minimally on T , and as above
its centerZ.G0/ D Zn acts as the identity on T . We deduce that the set of elements
of G acting as the identity on T is a normal subgroup N isomorphic to Zn; it has
finite index in every edge stabilizer, and contains Z.G0/ with finite index.

If Œ'� 2 †.G/, then ' does not vanish on edge stabilizers, so there is an element
x 2 Z.G0/with '.x/ ¤ 0. This x has finitely many conjugates inG, all contained
in the abelian group N , and the product of these conjugates is a central element
of G which is not killed by '. This proves †.G/ � S.G;Z.G//c .

We may interpret these results in terms of the modular representation � of G.
LetG be a non-solvable GBSn group, and letGe Š Zn be an edge group. If g 2G,
conjugation by g induces an isomorphism

g�1Geg \Ge ! Ge \ gGeg
�1

between finite index subgroups of Ge. We define �.g/ as the class of this iso-
morphism in the abstract commensurator of Ge (isomorphic to GLn.Q/). The
groups of Proposition 3.4 are those for which the image �.G/ is a finite subgroup
of GLn.Q/.

SinceGe Š Zn, we may view� as an action ofG on the vector spaceGe ˝Q.
The codimension of S.G;Ge/ is the dimension of the space of invariant vectors
for the action on the dual space. The rank of the center ofG is the dimension of the
space of invariant vectors for the action on the space itself. Unfortunately, these
dimensions may be different when n > 1, so the analogue of Proposition 3.3 can
not be true in general.
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4 Hierarchies

The goal of this section is to study†.G/, and ker' for 'WG ! R, whenG admits
a suitable hierarchical decomposition.

Definition 4.1. A P -hierarchy for a groupG is an iterated splitting over subgroups
in the class P .

More precisely, a hierarchy may be viewed as a finite rooted tree. Each ver-
tex ˛ carries a group G.˛/, with the root carrying G. If ˛ is not a leaf, it carries
a non-trivial splitting of G.˛/ as an amalgamated product or HNN-extension over
a group in the class P , called an edge group of the hierarchy. Moreover, ˛ has one
descendant ˇ for each factor group in the splitting (so ˛ has one or two descen-
dants), and G.ˇ/ is the corresponding factor.

The groups carried by the leaves are called the leaf groups of the hierarchy. The
number of splittings in the hierarchy is equal to the number of non-leaf vertices.

A P -hierarchy is a good P -hierarchy if all groups G.˛/ are finitely generated,
and no splitting in the hierarchy is an ascending HNN-extension. Recall that & is
the class of finitely generated groups H with †.H/ D S.H/.

Theorem 4.2. Suppose G admits a good & -hierarchy, with splittings over sub-
groups ¹Ai j i 2 Iº, and leaf groups ¹Hj j j 2 Jº. Then

†.G/ D
\
i2I

S.G;Ai /
c
\

\
j2J

.��Hj /
�1.†.Hj //:

Proof. The proof is by induction on the number of splittings in the hierarchy. If
there are no splittings thenG itself is a leaf group and the result is clear. Otherwise,
consider the first splitting in the hierarchy, which is of the form G D G1 �A G2
or G D G1�A. Since A 2 & and the splitting is not an ascending HNN-extension,
by Corollary 2.9,

†.G/ D S.G;A/c \
\
k2K

.��Gk /
�1.†.Gk//;

where K D ¹1; 2º in the amalgamated product case and K D ¹1º in the HNN
case. For each k, consider the vertex carrying Gk in the hierarchy for G. Its
descendant subtree is a hierarchy for Gk satisfying the hypotheses of the theorem
and having strictly fewer splittings. The theorem then follows by the induction
hypothesis.

Corollary 4.3. If G admits a good & -hierarchy with leaf groups in & , then the
set †.G/ D

T
i2I S.G;Ai /

c is the complement of a finite number of rationally
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defined subspheres. In particular,†.G/ D �†.G/, soG does not admit a decom-
position as a strictly ascending HNN-extension with finitely generated base group
(see Remark 2.11).

Theorem 4.4. SupposeG admits a good Z-hierarchy with leaf groups ¹Hj j j 2 Jº

belonging to & . Then:

(1) †.G/c is a finite union of rationally defined subspheres.

(2) If Œ'� 2 †.G/, then ker' is a free product of groups, each isomorphic to some
ker'jHj with '.Hj / ¤ 0. If Œ'� is discrete, this is a finite free product.

(3) If Œ'� 2 †.G/c is discrete, and every group in the hierarchy has first Betti
number at least 2, then ker' surjects onto F1 (an infinitely generated free
group).

The first assertion follows from Theorem 4.2. Before proving the others, we
need a simple orbit counting lemma:

Lemma 4.5. Let G act transitively on a set X . Let K be a normal subgroup, with
pWG ! G=K the quotient map. Let x 2 X be arbitrary, with stabilizer Gx . The
number of K-orbits in X equals the index of KGx in G, and also the index of
p.Gx/ in G=K.

Proof. The group G acts transitively on the set of K-orbits, with the stabilizer of
Kx equal toKGx (which is a subgroup becauseK is normal). The map p induces
a bijection between cosets mod KGx in G and cosets mod p.Gx/ in G=K.

Proof of Theorem 4.4. Assertions (2) and (3) are proved by induction on the num-
ber of splittings in the hierarchy. If there are no splittings, then†.G/ D S.G/ and
the result is clear. Otherwise the first splitting in the hierarchy forG corresponds to
either an amalgamated product G D G1 �A G2 or an HNN-extension G D G1�A.
The groups Gi have shorter hierarchies satisfying the hypothesis of the theorem.

Let K D ker', so G=K ' '.G/ is a subgroup of R. We study K through its
action on the Bass–Serre tree T of the first splitting in the hierarchy. Since K is
normal, vertex stabilizers are conjugate toK \Gi D ker'jGi for i D 1 or 2; edge
stabilizers are conjugate to K \ A D ker'jA.

Consider the image in G=K of the stabilizer Gv of a point v 2 T for the action
of G. It is trivial if Gv < K (i.e. if '.Gv/ D 0) and infinite otherwise. Applying
Lemma 4.5 withX D Gv, this implies thatGv splits into infinitely manyK-orbits
if '.Gv/ D 0. The converse is also true if Œ'� is discrete: if '.Gv/ ¤ 0, the number
of K-orbits in Gv is the index of '.Gv/ in '.G/, which is finite since '.G/ ' Z.
In particular, T=K has infinitely many edges if '.A/ D 0, finitely many if Œ'� is
discrete and '.A/ ¤ 0.
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First suppose '.A/ ¤ 0, so '.Gi / ¤ 0. In this case edge stabilizers for the
K-action are trivial (' is injective on A since A Š Z). Thus,K is a free product of
groups isomorphic to ker'jGi (and both factors occur in the case of an amalgam).
Moreover, if Œ'� is discrete then T=K is finite, so this is a finite free product.

If Œ'� 2 †.G/, its restrictions to Gi belong to †.Gi / by Corollary 2.9, and
the theorem follows by induction. If Œ'� 2 †.G/c , we have Œ'jGi � 2 †.Gi /

c for
some i . If Œ'� is discrete and Betti numbers are � 2, then ker'jGi maps onto F1
by induction, and so does ker'.

Now suppose '.A/ D 0. Then Œ'� 2 †.G/c by Corollary 2.9, so the second
assertion of the theorem is proved.

To complete the proof, we construct a surjection from K to F1, assuming that
Œ'� is discrete, '.A/ D 0, and Betti numbers are � 2.

As explained above, T=K has infinitely many edges. If v is a vertex of T with
'.Gv/ D 0, the valence of v in T=G is the same as in T=K because Gv is conju-
gate to some Gi , and the index of K \ A in K \Gi equals the index of A in Gi
since Gi � K.

We distinguish between the amalgamated product and HNN cases.
In the amalgamated product case, if '.G1/ and '.G2/ are both non-zero, there

are finitely many vertices in T=K (but infinitely many edges). Viewing K as the
fundamental group of the graph of groups T=K, we get a surjection from K onto
F1 by killing all the vertex groups.

If, say, '.G1/ D 0 (and therefore '.G2/ D '.G/ ¤ 0), then T=K is a star with
exactly one vertex of type 2 (carrying a conjugate of G2) and infinitely many
valence 1 vertices of type 1. The groups carried by these terminal vertices are con-
jugates of G1. By hypothesis, G1 has first Betti number at least 2, so there exists
a non-zero map from each terminal vertex group to Z killing the incident edge
group (hence also its normal closure). We map K onto F1 by killing the central
type 2 vertex group, hence all edge groups, and piecing together the surjections
to Z of the resulting quotients of the infinitely many terminal vertices.

In the HNN case, G Š hG1; t j t�1At D �.A/i. If '.G1/ is non-zero, then, as
before, there are finitely many vertices and we get a surjection from K onto F1
by killing all the vertex groups.

If '.G1/ D 0, the image of ' is generated by '.t/. The valence of vertices
in T=K is the same as that in T=G, which is 2, so T=K is a line. Denote its
edges e.i/, for i 2 Z. The vertex stabilizers are conjugates of G1. To map K
onto F1, one should not kill all edge groups Ge.i/ because vertex groups might
be killed too, but one can kill every other edge group Ge.2i/. This mapsK onto an
infinite free product, and we check that each factor may be mapped onto Z.

Such a factor has the form H D B �hci D, where each group B , D is isomor-
phic to the quotient of G1 by an incident edge group (Ge.2i/ or Ge.2iC2/). Again,
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since the first Betti number ofG1 is at least 2, there exist epimorphisms �WB ! Z
and � WD ! Z. If �.c/ D �.c/ D 0, then H maps onto F2. Otherwise, define
a non-zero map from H to Z as �.c/ times � on B and �.c/ times � on D.

5 Mapping tori of polynomially growing free group automorphisms

Given ˛ 2 Aut.Fn/, we denote by G˛ the mapping torus

G˛ D Fn Ì˛ Z D hFn; t j t
�1gt D ˛.g/i:

Up to isomorphism, it only depends on the outer automorphism ˆ 2 Out.Fn/ rep-
resented by ˛, so we often write Gˆ rather than G˛.

Let 'WG˛ ! Z be the map sending Fn to 0 and t to 1. We say that ' (and any
multiple of it) is a fibration with fiber Fn and monodromy ˛ (or ˆ).

Recall that ˛ (or ˆ) is polynomially growing if, for any g 2 Fn, the length
of ˛k.g/ grows polynomially.

Remark 5.1. The automorphism ˛ has a well-defined degree of polynomial
growth d.˛/, which is the maximal degree of growth of the length, with respect to
some fixed word metric on Fn, of the shortest conjugate of ˛k.g/. Macura [24] has
shown that d.˛/ is a quasi-isometry invariant of G˛. In particular, if ˛ 2 Aut.Fn/
and ˇ 2 Aut.Fm/ yield isomorphic mapping tori G˛ ' Gˇ , then d.˛/ D d.ˇ/.

The main result of this section is the following:

Theorem 5.2. Let G D G˛ D Fn Ì˛ Z for ˛ 2 Aut.Fn/ polynomially growing,
with n � 2. There exist elements t1; : : : ; tn�1 in G n Fn (not necessarily distinct),
such that

†.G/ D �†.G/ D
\
i

S.G; ti /
c :

More precisely, for each non-zero 'WG ! R the following hold:
� If some '.ti / is 0, then Œ'� … †.G/. If Œ'� is discrete, then ker' virtually sur-

jects onto F1.
� If no '.ti / is 0, then Œ'� 2 †.G/ \ �†.G/ and ker' is free. If Œ'� is discrete,

then ker' has finite rank.

Corollary 5.3. If the first Betti number of G is at least 2, then

S.G/ n†.G/ D
[
i

S.G; ti /

is a non-empty collection of rationally defined great subspheres; in particular,
†.G/ ¤ S.G/.
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Using Remark 2.11, we also have:

Corollary 5.4. A mapping torus of a polynomially growing free group automor-
phism does not admit a decomposition as a strictly ascending HNN-extension with
finitely generated base group.

These results do not hold for exponentially growing automorphisms, as evi-
denced by the group G constructed by Leary–Niblo–Wise [20]. It is the mapping
torus of an automorphism of F3, and also of an injective, non-surjective, endomor-
phism of F2. It does not satisfy †.G/ D �†.G/, and there exists a discrete Œ'�
such that ker' is a strictly increasing union of 2-generated subgroups, hence is
infinitely generated but does not virtually surject onto F1.

5.1 UPG automorphisms

Recall the natural map � WOut.Fn/! GLn.Z/ recording the action of automor-
phisms on the abelianization of Fn.

Definition 5.5 ([2]). Let UPG.Fn/ be the set of polynomially growing elements
ˆ 2 Out.Fn/ that have unipotent image in GLn.Z/, and bUPG.Fn/ is the preimage
of UPG.Fn/ in Aut.Fn/.

Remark 5.6. If n � 1 andˆ is UPG, then 1 is an eigenvalue of �.ˆ/, and this guar-
antees that Gˆ has first Betti number at least 2. In particular, given any g 2 Gˆ,
there is a non-trivial map from Gˆ to Z killing g.

Lemma 5.7 ([2, Corollary 5.7.6]). Every polynomially growing element of the
group Out.Fn/ has a power in UPG.Fn/.

Lemma 5.8. If ˆ 2 UPG.Fn/ has finite order, then it is the identity.

Proof. Being unipotent and of finite order, �.ˆ/ is trivial, so ˆ 2 ker � . But ker �
is torsion-free [1].

The other relevant fact about unipotent polynomially growing automorphisms
that we need is the existence of invariant free splittings of Fn.

Proposition 5.9. Let n� 2. Everyˆ 2 UPG.Fn/ has a representative ˛ 2 Aut.Fn/
such that one of the following holds:

(1) There exists a non-trivial ˛-invariant splitting Fn D B1 � B2, so ˛ D ˛1 � ˛2
with ˛i D ˛jBi 2 Aut.Bi /.

(2) There exists a non-trivial splitting FnDB1�hxi, whereB1' Fn�1 is ˛-invar-
iant, and ˛.x/ D xu with u 2 B1. We denote ˛1 D ˛jB1 .
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Proof. This is a consequence of Bestvina, Feighn and Handel’s train track theory
for free group automorphisms. By [2, Theorem 5.1.8], there exists a graph � with
valence at least 2 and fundamental group Fn, a homotopy equivalence f W� ! �

inducing ˆ on the fundamental group, and a filtration

; D �0 � �1 � � � � � �k D �

satisfying several properties. Relevant for us are that f fixes the vertices of � , for
every i the stratum �i n �i�1 is a single edge Ei , and f .Ei / D Eiui where ui is
a loop in �i�1.

The proposition is proven by considering the topmost stratum Ek of the filtra-
tion. If Ek is a separating edge, then we are in case (1), and B1 and B2 are the
fundamental groups of the two components of �k�1. If Ek is a non-separating
edge, then we are in case (2), and B1 is the fundamental group of �k�1.

Lemma 5.10. If ˆ 2 UPG.Fn/, then Gˆ admits a good Z-hierarchy with Z2

leaves and n � 1 splittings. Moreover, each edge group in the hierarchy has triv-
ial intersection with the fiber Fn, and each vertex group has first Betti number at
least 2.

Proof. The lemma is proved by induction on n. If n D 1, then Gˆ D Z2 and we
take the trivial hierarchy, which has n � 1 D 0 splittings. Otherwise, we construct
the first splitting in the hierarchy as follows. Apply Proposition 5.9. In the first
case, we write G˛ D G˛1 �hti G˛2 . In the second case, we have

G˛ D hB1; x; t j t
�1bt D ˛1.b/; t

�1xt D xui D hG˛1 ; x j x
�1tx D tu�1i;

and we consider the HNN-extension G˛ D G˛1�Z (which is not ascending since
G˛1 is the mapping torus of an automorphism of B1 Š Fn�1, so it is not cyclic).

By the induction hypothesis, each G˛i admits a good Z-hierarchy with Z2

leaves. Take the hierarchy for G consisting of the splitting we just constructed,
and then the hierarchies for the G˛i . In the amalgamated product case the number
of splittings is 1C.rank.B1/�1/C.rank.B2/�1/ D n�1. In the HNN-extension
case the number of splittings is 1C .rank.B1/ � 1/ D n � 1.

The claim about edge groups is clear from the way the hierarchy is constructed,
and the Betti number claim follows from Remark 5.6: since Bi as in Proposi-
tion 5.9 is an ˛-invariant free factor of Fn, the restriction ˛i is UPG.

5.2 Proof of Theorem 5.2

We first note that it suffices to prove the theorem for a power of ˛:

Lemma 5.11. If the theorem is true for ˛p with p � 2, then it is true for ˛.
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Proof. Note thatG˛p D hFn; tpi is contained inG˛ with finite index, so ker'jG˛p
is contained in ker' with finite index. By [29, Proposition B1.11], we have that
Œ'jG˛p � 2 †.G˛p / if and only if Œ'� 2 †.G˛/.

Applying the theorem to ˛p yields elements ti in G˛p n Fn, hence in G˛ n Fn.
These elements also work for the automorphism ˛. If ker'jG˛p virtually maps
onto F1, so does ker'. If ker'jG˛p is free, so is ker' because it is torsion-free
and virtually free [30].

By Lemmas 5.11 and 5.7 we may assume that ˆ is UPG. Take the hierarchy
for G provided by Lemma 5.10. Define t1; : : : ; tn�1 as generators of the edge
groups Ai which occur in the hierarchy.

Corollary 4.3 says that †.G/ D
T
i2I S.G;Ai /

c , so Œ'� 2 †.G/ if and only
if no '.ti / equals 0. The elements ti do not belong to Fn by the “moreover” of
Lemma 5.10.

If Œ'� 2 †.G/c is discrete, then Theorem 4.4 says ker' surjects onto F1.
If Œ'� 2 †.G/, then Theorem 4.4 says ker' is a free product whose factors are

isomorphic to groups ker'jHj , where ¹Hj j j 2 Jº are the leaf groups of the hier-
archy and ker'jHj ¤ Hj . In this case, the leaf groups are Z2, so ker'jHj is either
1 or Z. Thus, ker' is a free group, and if Œ'� is discrete then ker' has finite rank.

This completes the proof of Theorem 5.2.

Remark 5.12. Strebel [29, Problem B1.13] notes that † is well behaved upon
passing to finite index subgroups, and asks for examples in which calculating
†.G/ directly is difficult, but G contains a finite index subgroup H for which
†.H/ can be computed. Mapping tori of polynomially growing free group auto-
morphisms provide such examples.

5.3 Examples

Theorem 5.2 claims that S.G/ n†.G/ D
S
i S.G; ti / is the union of n � 1 great

subspheres. These subspheres are not necessarily distinct. For instance, the map-
ping torus of the trivial automorphism of Fn is isomorphic to Fn � Z; in this case
the complement of †.G/ is a single sphere S.G; t/, with t a generator of the Z
factor. On the other hand, the following example shows that n � 1 distinct spheres
may be required.

Example 5.13. Take a graph � that is a circle with vertices v0; : : : ; vn�1 and
edges bi D Œvi�1; vi �, with indices modulo n. At each vertex vi add a loop ai .
Define a relative train track map on this graph fixing each ai and sending each
bi to biai . This induces an outer automorphism ˆ of the fundamental group Fn
of the graph, and we let G D Gˆ. Choosing vi as a basepoint for � defines
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a representative ˛i 2 Aut.Fn/ of ˆ, and there are associated stable letters ti such
that G D Fn Ì˛i Z D hFn; t j tigt�1i D ˛i .g/i. These are the elements featured
in Theorem 5.2.

The mapping torus can be written as a graph of groups with underlying graph
a circle with edges corresponding to the edges bi . The vertex stabilizers are
Z2 D hai ; ti i, because the loops ai are fixed by the automorphism. The edge stabi-
lizers are infinite cyclic. The edge corresponding to bi amalgamates ti�1 to tia�1i .
Since the images of a1; a1a2; : : : ; a1 � � � an�2 in the abelianization of G are lin-
early independent, the spheres S.G; ti / are distinct.

Note the example is a linearly growing automorphism, so the number of spheres
does not correlate to degree of growth.

One might guess that the rank of the fiber blows up near †.G/c . The following
example shows that this is not necessarily true.

Example 5.14. Consider the mapping torus G D Fn � Z D hx1; : : : ; xni � hzi.
Take positive, coprime integers p and q, and define 'p;qWG� Z by 'p;q.xi / D p
and 'p;q.z/ D q. Projection to the Fn factor is injective on ker'p;q , and the image
is an index q subgroup of Fn (consisting of all elements with exponent sum divi-
sible by q), so ker'p;q has rank q.n � 1/C 1. It is a fiber of a fibration (whose
monodromy has order q). Now Œ'p;q� D Œ'1;q=p�, so if we fix any q and let p
grow, the sequence .Œ'p;q�/p � †.G/ converges to Œ'1;0� 2 †.G/c through fibra-
tions with constant fiber rank.

6 The rank of the fiber

Let G D G˛ D Fn Ì˛ Z be the mapping torus of a polynomially growing auto-
morphism ˛ 2 Aut.Fn/, with n � 2. By Theorem 5.2, there exist elements ti ,
i D 1; : : : ; n � 1, in G n Fn (not necessarily distinct), such that, given any sur-
jection 'WG˛� Z, either some '.ti / is 0 and ker' is infinitely generated, or no
'.ti / is 0 and ker' is free of finite rank.

The main result of this section is the following.

Theorem 6.1. Let ˛ 2 Aut.Fn/ be polynomially growing, and let G˛ be its map-
ping torus. There exist elements t1; : : : ; tn�1 2 G˛ n Fn as in Theorem 5.2 such
that, if 'WG˛� Z is a surjection such that no '.ti / D 0, the rank of the free
group ker' is

r D 1C
1

k

n�1X
iD1

j'.ti /j

with k the least positive integer such that ˛k 2 bUPG.Fn/.
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Example 6.2. IfG D Fn � Z is as in Example 5.14, one may take all ti equal to z,
and r D 1C .n � 1/j'.z/j. In particular, the rank of ker'p;q is 1C .n � 1/q. See
Section 7 for groups which are virtually Fn � Z.

Corollary 6.3. Fibers with UPG monodromy have minimal rank.

Proof. Suppose ˛ 2 Aut.Fn/ is UPG. If 'WG˛� Z has kernel Fr , we have

r D 1C

n�1X
iD1

j'.ti /j � n

since k D 1 and j'.ti /j � 1 for all i .

Corollary 6.4. If G is the mapping torus of a polynomially growing automorphism
of a non-abelian free group, and the first Betti number of G is at least 2, then G
admits fibrations with fibers of unbounded rank.

Proof. Since the Betti number is � 2, we may find 'WG� Z with no '.ti / equal
to 0, and '.t1/ arbitrarily large.

The rank of the fiber can alternatively be calculated as the degree of the
Alexander polynomial of G relative to ' (see [8, 27]). McMullen [25] determined
the Alexander invariants for 3-manifolds. Button [8] gives an algorithm for com-
puting the relative Alexander polynomial of a group admitting a deficiency 1
presentation, including mapping tori of free group automorphisms, using Fox Cal-
culus. By generalizing McMullen’s arguments, he is able to give lower bounds
for the Betti number of the kernel, in particular proving Lemma 6.4 without the
polynomial growth hypothesis, using the fact that the Alexander polynomial of the
mapping torus is non-constant [8, Theorem 3.4].

We prove Theorem 6.1 without using the Alexander invariants by computing
the kernel from the hierarchical structure of the mapping torus.

Proof of Theorem 6.1. We will consider restrictions of ' to subgroups. Since they
are not necessarily surjective, we rewrite the formula in a homogeneous way.

For ' real-valued but with cyclic image, and H < G˛, define ŒG˛ W H�' as
the index Œ'.G˛/ W '.H/�. We write ŒG˛ W ti �' rather than ŒG˛ W hti i�' . With this
notation, we have to prove

r � 1 D
1

k

n�1X
iD1

ŒG˛ W ti �' :

First consider the UPG case. As in the proof of Theorem 5.2, we argue by induc-
tion on the number of splittings in a hierarchy provided by Lemma 5.10. In the
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proof of Theorem 4.4 we showed that K D ker' decomposes as the fundamental
group of a graph of groups �K with trivial edge groups. The rank ofK is therefore
the first Betti number of the graph �K plus the sum of the ranks of the vertex
groups. The ranks of the vertex groups are computed inductively.

The proposition is true if the hierarchy is trivial. If not, we consider the first
splitting in the hierarchy. We denote by t1 a generator of the edge group of this
splitting, and by t2; : : : ; tn�1 generators associated to the other edge groups of the
hierarchy.

There are two cases. First consider the HNN caseG˛ DG1�ht1i. By Lemma 4.5,
�K has ŒG˛ W G1�' vertices, each carrying a free group of rank 1C

Pn�1
iD2 ŒG1 W ti �'

by the induction hypothesis, and ŒG˛ W t1�' edges. The first Betti number of the
graph is

1 � ŒG˛ W G1�' C ŒG˛ W t1�' ;

so

r D 1 � ŒG˛ W G1�' C ŒG˛ W t1�' C ŒG˛ W G1�'

 
1C

n�1X
iD2

ŒG1 W ti �'

!
;

yielding

r D 1C ŒG˛ W t1�' C

n�1X
iD2

ŒG˛ W ti �' D 1C

n�1X
iD1

ŒG˛ W ti �' :

The computation in the amalgam case is similar, except that there are two types
of vertices.

If ˛ is not UPG, letGk denoteG˛k , which is an index k subgroup ofG˛. Let 'k
be the restriction of ' to Gk , and let rk the rank of ker'k . We may take the same
elements ti for ˛ and ˛k (see the proof of Lemma 5.11), and

Œker' W ker'k�.r � 1/ D rk � 1 D
n�1X
iD1

ŒGk W ti �' :

Considering the exact sequence

1! ker' ! G˛ ! R

and restricting to Gk , which has index k in G˛, we see that

k D ŒG˛ W Gk�' Œker' W ker'k�;

so multiplying by ŒG˛ W Gk�' yields

k.r � 1/ D ŒG˛ W Gk�'

n�1X
iD1

ŒGk W ti �' D

n�1X
iD1

ŒG˛ W ti �' :
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7 Finite order automorphisms and GBS groups with center

We now suppose thatG is the mapping torus of a finite order elementˆ 2Out.Fn/,
for some n � 2. By [23, Proposition 4.1], this is equivalent to G being a GBS
group with non-trivial center, and being non-elementary (i.e. not isomorphic to Z,
Z2, or the Klein bottle group). It has a finite index subgroup isomorphic to Fm � Z
for some m � 2. The main results of this section (Theorem 7.3 and Theorem 7.4)
will give quantitative versions of these facts.

We refer to [12, 13, 22, 23] for basic facts about GBS groups. In terms of the
modular map �WG ! Q� of Section 3, a non-elementary GBS group has non-
trivial center if and only if � is trivial.

The group G acts on a tree T with infinite cyclic edge and vertex stabilizers
(as usual, we assume that the action of G on T is minimal). Elements of G fixing
a point in T are called elliptic. The set of elliptic elements does not depend on the
choice of T , and consists of finitely many conjugacy classes of cyclic subgroups
(because T=G is a finite graph).

The center of G, denoted by Z, is infinite cyclic and equals the set of elements
acting as the identity on T (see [22, Proposition 2.5]). This implies that, if a sub-
groupH < G acts on T minimally, in particular ifH has finite index, or is normal
and non-central, its centralizer is equal to Z.

The quotient G=Z acts on the tree T with finite stabilizers, so is virtually free.
If L < G=Z is free, its preimage is isomorphic to L � Z because it is a central
Z-by-free extension.

Definition 7.1. Given a non-elementary GBS group G with non-trivial center Z,
we define numbers � and � as follows:

� � is the lcm of orders of torsion elements of G=Z,

� � C 1 is the smallest rank of a free subgroup of finite index L < G=Z.

The group G=Z is the fundamental group of a finite graph of groups whose
vertex groups are finite cyclic groups, and � is the lcm of their orders. If L � G=Z
is a free subgroup of finite index, it is well known that its index is divisible by �
(each vertex group acts freely on the set of cosets modulo L), and � is the smallest
index of a free subgroup of G=Z (Serre [28, Section II.2.6, Lemma 10] defines
a map ofG=Z into permutations of � elements so that the vertex groups act freely;
the preimage of any point stabilizer is a free subgroup of index �).

It follows that there exist free subgroups of index p� for every p � 1. An Euler
characteristic argument shows that the rank is p� C 1 if the index is p�.

Going back to G, we may view � as the smallest integer such that a� 2 Z for
every elliptic element a 2 G. We also have the following lemma.
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Lemma 7.2. Let E � G be the (normal) subgroup generated by all elliptic ele-
ments. If 'WG ! R is a homomorphism such that '.Z/ ¤ 0, then

� D Œ'.E/ W '.Z/�:

Since any elliptic element has a power in Z, the restriction of ' to E is unique
up to a multiplicative constant.

Proof. Let z be a generator of Z. It acts as the identity on T , so if a generates
a vertex stabilizer there exists �a such that z D a�a . The number � is the lcm of
the numbers �a, while '.E/ is generated by the numbers '.z/=�a. The lemma
follows.

Theorem 7.3. LetG be a non-elementary GBS groupG with non-trivial centerZ.
Given positive integers k and n, the following are equivalent:

(1) .k; n � 1/ is an integral multiple of .�; �/.

(2) G=Z has a subgroup of index k isomorphic to Fn.

(3) G has a subgroup G0 of index k isomorphic to Fn � Z, with Z � G0.

(4) G has a subgroup G0 isomorphic to Fn � Z whose index is finite and equal
to k ŒZ W G0 \Z�.

Proof. We already know that (1) and (2) are equivalent. For p � 1, letL ' Fp�C1
have index p� inG=Z. Its preimage inG containsZ, has index p�, and is isomor-
phic to Fp�C1 � Z. This proves that (1) implies (3), and (3) trivially implies (4).
Conversely, if G0 is as in (4), the Z factor is contained in Z (it centralizes G0,
which acts minimally on T , so it acts trivially on T ). The image of G0 in G=Z is
free of rank n and has index k D ŒG W G0�=ŒZ W G0 \Z�, so (2) holds.

We now consider fibrations of G.

Theorem 7.4. Let G be a non-elementary GBS group G with non-trivial center.
Let k and n be positive integers.

(1) If the first Betti number of G is 1, there exists an element ˆ 2 Out.Fn/ of
order k such that G ' Gˆ if and only if .k; n � 1/ D .�; �/.

(2) If the first Betti number ofG is at least 2, there exists an elementˆ 2 Out.Fn/
of order k such that G ' Gˆ if and only if .k; n � 1/ is an integral multiple
of .�; �/.

The first Betti number b1.G/ of G is equal to 1C b1.�/, with � the quotient
graph T=G (see [22, Proposition 3.3]), and G=E is free of rank b1.�/ (this is
a general fact about graphs of groups). In particular, b1.G/ D 1 is equivalent to �
being a tree, and to E D G.
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Corollary 7.5. If the first Betti number of G is at least 2, then ranks of fibers are
an arithmetic progression: there is an exact sequence 1! Fn ! G ! Z! 1 if
and only if n is of the form p� C 1 with p � 1.

Before proving the theorem, we note:

Lemma 7.6. IfG D Gˆ, withˆ 2 Out.Fn/ of order k, and 'WG� Z is the asso-
ciated fibration, then '.Z/ D kZ and '�1.kZ/ ' Fn � Z.

Proof. Let ˛ 2 Aut.Fn/ be a representative of ˆ, let t be the associated stable
letter, and let z be a generator of Z. Writing z D gtq with g 2 Fn, we show
jqj D jkj. Since z centralizes Fn, the automorphism ˛q is inner, so q is a multiple
of k. On the other hand, since ˆ has order k, some htk , with h 2 Fn, central-
izes Fn hence belongs to Z (because Fn is normal so acts minimally on T ). This
implies that k is a multiple of q, and therefore jqj D jkj. The extension

1! Fn ! '�1.kZ/! kZ! 1

is trivial because '�1.kZ/ contains z˙1.

Proof of Theorem 7.4. SupposeG D Gˆ, withˆ 2 Out.Fn/ of order k. It follows
from Lemma 7.6 that '�1.kZ/ is a subgroup of index k isomorphic to Fn � Z and
containing Z, so .k; n � 1/ is a multiple of .�; �/ by Theorem 7.3. If b1.G/ D 1,
we have seen that E D G, so k D � by Lemma 7.2. We have proved the “only if”
direction in both assertions of the theorem.

For the converse, first recall how to construct maps 'WG ! R with '.Z/ ¤ 0
(see [22, Proposition 3.3]). View G as the fundamental group of a graph of infinite
cyclic groups. Consider a standard generating set, consisting of generators of ver-
tex groups and stable letters; the number of stable letters is the first Betti number of
the graph � D T=G, equal to b1.G/ � 1. One first defines ' on E (as mentioned
above, 'jE is unique up to scaling). One must then choose the image of the stable
letters. Non-triviality of the center ensures that any choice yields a well-defined
map 'WG ! R.

If b1.G/ � 2, there is at least one stable letter and one may construct an epi-
morphism 'pWG� Z such that 'p.E/ D pZ for any p � 1. If b1.G/ D 1, there
is no stable letter, E D G, and we only obtain '1.

We have 'p.Z/ D p�Z by Lemma 7.2, and letGp be the preimage '�1p .p�Z/.
It is a normal subgroup of index p� containing Z and ker'p.

Consider the projection � WG ! G=Z. The groupsGp and ker'p have the same
image, and � is injective on ker'p. Since every elliptic element a 2 Gp belongs
to Z (because ha;Zi is cyclic), the image of Gp in G=Z is torsion-free. It is a free
subgroup of index p�, and its rank is p� C 1. We therefore have ker'p ' Fp�C1.
By Lemma 7.6, the associated monodromy ˆ has order p�.
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Remark 7.7. The proof shows that G has a normal subgroup of index � isomor-
phic to Fn � Z and containingZ, andG=Z has a normal free subgroup of index �.

One might ask whether the monodromies of fibrations with fiber of minimal
rank � C 1 for a fixed GBS group G must be conjugate in Out.F�C1/, or whether
this must be true for fibrations in the same component of †.G/. The answer to
both questions is ‘no’ once n D � C 1 � 4.

For n D 2, Bogopolski, Martino, and Ventura [5] show that mapping tori of
Œ˛1�; Œ˛2�2Out.F2/ are isomorphic if and only if Œ˛1� is conjugate to Œ˛2� or Œ˛2��1

in Out.F2/.
An example of Vikent’ev [32] shows this statement is not true in general for

n D 3, but Khramtsov [16] showed it is true for finite order outer automorphisms.
For n D 4, Khramtsov [16] gives the following example. Let G be the GBS

group ha; b; t j a4 D b2; Œb; t � D 1i. Consider 'i WG� Z defined by '1.a/ D 1,
'1.b/ D 2, '1.t/ D 0 and '2.a/ D 1, '2.b/ D 2 and '.t/ D 1. These surjections
give fibrations ofG with fiber of rank 4 and monodromy of order 4 in Out.F4/. The
minimal fiber rank for G is n D � C 1 D 4, by Theorem 7.4, since k D � D 4. In
this example, †.G/ Š S1 n S0 consists of classes of homomorphisms not killing
the element a. Thus, Œ'1� and Œ'2� are in the same component of †.G/, since they
both send a to a positive number. Khramtsov gives an ad hoc argument to show
the monodromies are non-conjugate. This can also be verified using a solution to
the conjugacy problem for finite order elements of Out.Fn/. Such solutions follow
from work of Krstić [18], and are explained in [17] or [19].

Acknowledgments. The authors thank Ilya Kapovich for his interest and encour-
agement, Goulnara Arzhantseva for translating Khramtsov’s example, and Ralph
Strebel for useful comments.
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