

An investigation of polyhedral deformation in two mixed-metal diarsenates: SrZnAs₂O₇ and BaCuAs₂O₇

Sabina Kovač, Ljiljana Karanović and Tamara Đorđević

Acta Cryst. (2015). C71, 330–337

IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Received 21 January 2015 Accepted 18 March 2015

Edited by A. L. Spek, Utrecht University, The Netherlands

Keywords: diarsenates; strontium–zinc; barium–copper; hydrothermal synthesis; X-ray diffraction; crystal structure; polyhedral deformation.

CCDC references: 1054886; 1054885

Supporting information: this article has supporting information at journals.iucr.org/c

© 2015 International Union of Crystallography

An investigation of polyhedral deformation in two mixed-metal diarsenates: $SrZnAs_2O_7$ and $BaCuAs_2O_7$

Sabina Kovač,^a* Ljiljana Karanović^a and Tamara Đorđević^b

^aUniversity of Belgrade, Faculty of Mining and Geology, Laboratory of Crystallography, Dušina 7, 11000 Belgrade, Serbia, and ^bUniversität Wien, Institut für Mineralogie und Kristallographie, Althansstrasse 14, A-1090 Vienna, Austria. *Correspondence e-mail: sabinakovac@yahoo.com

Two isostructural diarsenates, $SrZnAs_2O_7$ (strontium zinc diarsenate), (I), and $BaCuAs_2O_7$ [barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of cornersharing $M2O_5$ (M2 = Zn or Cu) square pyramids and diarsenate (As_2O_7) groups. Each As_2O_7 group shares its five corners with five different $M2O_5$ square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinated M1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of the $M1O_9$, $M2O_5$ and As_2O_7 groups of known isostructural diarsenates, adopting the general formula $M1^{II}M2^{II}As_2O_7$ ($M1^{II} = Sr$, Ba, Pb; $M2^{II} = Mg$, Co, Cu, Zn) and crystallizing in the space group $P2_1/n$, are presented and discussed.

1. Introduction

The structural properties of divalent cation diphosphates and diarsenates, $M_2^{II} X_2^{V} O_7 (M^{II} = \text{divalent cation}; X^{V} = P, As)$ (Weil et al., 2009; Edhokkar et al., 2012), mixed-valence cation diphosphates and diarsenates, $M1^{I}M2^{III}X^{V}{}_{2}O_{7}$ (Kolitsch, 2004; Schwendtner & Kolitsch, 2004; Horchani-Naifer & Férid, 2007; Ouerfelli et al., 2007; Rousse et al., 2013) and $M1_2^{II}M2^{II}X_2^{V}O_7$ (Faggiani & Calvo, 1976; Marzouki *et al.*, 2012), and mixed-cation diphosphates with the general formula $M1^{II}M2^{II}P_2O_7$ ($M1^{II} = Ca, Sr, Ba, Pb; M2^{II} = Mg, Cr, Mn, Fe$, Co, Ni, Cu, Zn, Cd; references are given in the footnotes of Table 1) have been broadly investigated and described. Yet, reports on the $M1^{II}M2^{II}As_2O_7$ diarsenates are rather rare. Prior to this study, the structural data for only seven diarsenates have been reported, namely SrCuAs₂O₇ (Chen & Wang, 1996), SrCoAs₂O₇ (Horng & Wang, 1994), PbCuAs₂O₇ (Pertlik, 1986), BaCuAs₂O₇ (Wardojo & Hwu, 1995; Chen & Wang, 1996), BaMgAs₂O₇ and BaCoAs₂O₇ (Mihajlović et al., 2004), and BaZnAs₂O₇ (Đorđević, 2008).

All known diphosphate and diarsenate $M1^{II}M2^{II}X_2O_7$ compounds, crystallizing in the monoclinic space group $P2_1/n$ with comparable pseudo-orthorhombic unit-cell dimensions $a \simeq 5.2-5.7$, $b \simeq 8.2-8.9$, $c \simeq 12.5-13.3$ Å and $\beta \simeq 90^\circ$, show a structural similarity to the α -Ca₂P₂O₇ structure (Calvo, 1968). The structure of α -Ca₂P₂O₇ is characterized by two crystallographically distinct eight-coordinated cationic sites occupied by Ca1 and Ca2. In the α -Ca₂P₂O₇ isotype compounds $M1^{II}M2^{II}X_2O_7$, the $M1^{II}$ cation of larger radius occupies the Ca1 site, whereas the smaller $M2^{II}$ cation occupies the Ca2 site. The coordination numbers of $M1^{II}$ and $M2^{II}$ may vary Table 1

Comparison of the unit-cell parameters (Å, °) for $M1^{II}M2^{II}X_2O_7$ compounds ($M1 = Ba^{2+}, Sr^{2+}, Pb^{2+}, Ca^{2+}; M2 = Cu^{2+}, Mg^{2+}, Zn^{2+}, Ni^{2+}, Co^{2+}, Cr^{2+}; X = As^{5+}, P^{5+}$).

Compound	а	b	С	β	$V(\text{\AA}^3)$	ICSD (2014) reference
SrCuAs ₂ O ₇ ¹	5.550(1)	8.299 (2)	12.858 (2)	91.75 (3)	592.0 (2)	82624
$SrCoAs_2O_7^2$	5.520(1)	8.391 (2)	13.083 (3)	90.90 (2)	605.9 (2)	74545
SrZnAs ₂ O ₇ ³	5.5114 (11)	8.3524 (17)	13.106 (3)	91.01 (3)	603.2 (2)	
$PbCuAs_2O_7^4$	5.553 (1)	8.404 (1)	13.011 (2)	91.61 (2)	606.95 (16)	61339
BaCuAs ₂ O ₇ ¹	5.736 (1)	8.458 (2)	13.044 (3)	91.16 (3)	632.7 (2)	82625
BaCuAs ₂ O ₇ ³	5.7343 (11)	8.4722 (17)	13.071 (3)	91.12 (3)	634.9 (2)	
BaCuAs ₂ O ₇ ⁵	5.740 (5)	8.475 (3)	13.090 (3)	91.24 (4)	636.6 (6)	80329
BaMgAs ₂ O ₇ ⁶	5.620(1)	8.629 (2)	13.344 (3)	90.20 (3)	647.1 (2)	
BaCoAs ₂ O ₇ ⁶	5.649(1)	8.577 (1)	13.278 (2)	90.014(1)	643.3 (2)	
BaZnAs ₂ O ₇ ⁷	5.6260 (10)	8.557 (2)	13.317 (3)	90.01 (3)	641.1 (2)	260061
CaCuP ₂ O ₇ ⁸	5.2104 (4)	8.0574 (5)	12.344 (1)	91.356 (6)	518.08 (7)	68510
α -Ca ₂ P ₂ O ₇ ⁹	5.315 (5)	8.542 (8)	12.66 (1)	90.3 (1)	574.8 (9)	22225
SrNiP ₂ O ₇ ¹⁰	5.2691 (5)	8.2674 (8)	12.6140 (13)	90.246 (9)	549.48 (9)	411740
SrCuP ₂ O ₇ ¹¹	5.369(1)	8.129(1)	12.455 (2)	90.59 (1)	543.56 (15)	74445
$SrMgP_2O_7^{12}$	5.3046 (8)	8.3053 (13)	12.700 (2)	90.502 (3)	559.48 (15)	280782
SrCoP ₂ O ₇ ¹³	5.3165 (4)	8.2574 (5)	12.6755 (7)	90.133 (5)	556.46 (6)	69578
SrZnP ₂ O ₇ ¹⁴	5.3143 (2)	8.2080 (3)	12.7250 (6)	90.192 (4)	555.06 (4)	
SrZnP ₂ O ₇ ¹⁵	5.30906 (2)	8.21392 (3)	12.73595 (5)	90.1573 (3)	555.390 (5)	160198
SrFeP ₂ O ₇ ¹⁶	5.370 (2)	8.268 (4)	12.693 (3)	90.37 (2)	563.5 (4)	280078
SrCrP ₂ O ₇ ¹⁷	5.422 (2)	8.3254 (19)	12.542 (4)	90.39 (3)	566.1 (3)	280309
SrCdP ₂ O ₇ ¹⁸	5.414 (1)	8.615 (3)	12.878 (5)	90.01 (3)	600.6 (4)	72672
$Sr_{1.34}Pb_{0.66}P_2O_7^{19}$	5.433 (4)	8.944 (6)	13.183 (6)	90.12 (5)	640.6 (7)	75000
$PbCuP_2O_7^{20}$	5.381 (1)	8.194 (2)	12.569(1)	90.39 (1)	554.18 (18)	79996
$PbCoP_2O_7^{20}$	5.322 (1)	8.292 (2)	12.777 (2)	90.18 (1)	563.85 (19)	79994
$PbMnP_2O_7^{20}$	5.393 (1)	8.461 (2)	12.848 (3)	90.00 (3)	586.3 (2)	79995
BaMgP ₂ O ₇ ²¹	5.483 (1)	8.561 (3)	12.626 (2)	91.32 (2)	592.5 (3)	39398
BaMnP ₂ O ₇ ²²	5.5537 (6)	8.633 (2)	12.825 (2)	90.08 (1)	614.90 (18)	78657

References: (1) Chen & Wang (1996); (2) Horng & Wang (1994); (3) this work; (4) Pertlik (1986); (5) Wardojo & Hwu (1995); (6) Mihajlović et al. (2004); (7) Đorđević (2008); (8) Riou & Goreaud (1990); (9) Calvo (1968); (10) El Bali et al. (2001); (11) Moqine et al. (1993); (12) Tahiri et al. (2002); (13) Riou & Raveau (1991); (14) Höppe et al. (2007); (15) Yuan et al. (2007); (16) Le Meins & Courbion (1999); (17) Maass & Glaum (2000); (18) Alaoui El Belghiti et al. (1991); (19) Elmarzouki et al. (1994); (20) Elmarzouki et al. (1995); (21) Murashova et al. (1991); (22) Adams et al. (1995).

from 7 to 9 for $M1^{II}$ and from 5 to 9 for $M2^{II}$. The X^{V} is the smallest tetrahedrally coordinated cation. The $X_2 O_7^{4-}$ anion consists of two XO₄ tetrahedra sharing an O atom, denoted O_b , with a bridging bond angle $X - O_b - X$ of approximately 125°. Therefore, the structure of $M1^{II}M2^{II}X_2O_7$ compounds can be described as ionic with $M1^{II}$ and $M2^{II}$ as the cations and $X_2 O_7^{4-}$ as the anion. Alternatively, the structure can be described as the complex compound $\{M1[M2(X_2O_7)]\}_n$, with M2 as a central metal cation surrounded by five X_2O_7 ligands. M1 serves as a counter-cation in order to produce electroneutrality. The structures of diarsenates $M1^{II}M2^{II}As_2O_7$ are characterized by a three-dimensional open framework formed from corner-sharing M2O₅ square pyramids and As₂O₇ groups. The framework contains two types of tunnels, viz. smaller pentagonal tunnels along the [100] direction and larger tunnels along the [010] direction, in which arrays of $M1^{II}$ cations are located.

The present article reports the hydrothermal synthesis and crystal structures of $SrZnAs_2O_7$ and $BaCuAs_2O_7$ based on single-crystal X-ray diffraction data. $SrZnAs_2O_7$ is a compound with a new chemical composition and the structure of $BaCuAs_2O_7$ has been redetermined. The lattice parameters obtained for $BaCuAs_2O_7$ have lower s.u. values and deviate somewhat from the values reported earlier by Wardojo & Hwu (1995) and Chen & Wang (1996). In $SrZnAs_2O_7$ and $BaCuAs_2O_7$, the alkaline earth Sr and Ba atoms occupy the $M1^{II}$ site [coordination number (CN) = 9], whereas Zn and Cu

atoms occupy the $M2^{II}$ site (CN = 5). To investigate how cations of different type, size and coordination characteristics are accommodated and how As_2O_7 groups are adopted, we have studied the distortion of the coordination polyhedra and the conformation of the As_2O_7 group.

2. Experimental

2.1. Synthesis

Single crystals of both SrZnAs₂O₇ and BaCuAs₂O₇ were obtained as reaction products from the following mixtures (using an approximate 1:1:1 molar ratio in both cases) and distilled water. SrZnAs₂O₇ was obtained from a mixture of ZnO (Sigma-Aldrich, 99.99%), Sr(OH)₂·8H₂O (Sigma-Aldrich, 95%) and As₂O₅ (Alfa Products, >99.9%), and BaCuAs₂O₇ was obtained from a mixture of Ba(OH)₂·8H₂O (Fluka, >97%), Cu(NO₃)₂·H₂O (Sigma–Aldrich, >98%) and As₂O₃ (Alfa Aesar, >99.9%). The initial pH of both mixtures was 3. The Teflon vessels were enclosed in stainless steel autoclaves and both mixtures were heated under autogenous pressure. The first mixture was heated from room temperature to 493 K over a period of 4 h, held at that temperature for 72 h and cooled slowly to room temperature over a period of 72 h. The second mixture was heated from room temperature to 473 K over a period of 4 h, held at that temperature for 52 h and cooled slowly to room temperature over a period of 152 h.

research papers

Table 2Experimental details.

SrZnAs ₂ O ₇	BaCuAs ₂ O ₇
SrZnAs ₂ O ₂	BaCuAs ₂ O ₂
414.85	462 72
Monoclinic $P2./n$	Monoclinic $P2_{1/n}$
298	298
5 5114 (11) 8 3524 (17) 13 106 (3)	57343(11) 84722(17) 13071(3)
91.01(3)	01 12 (3)
603.2(2)	634.0(2)
005.2 (2) 4	054.9 (2)
4 Mo Ka	4 Mo Koi
22.60	10.84
23.09 0.16 × 0.02 × 0.02	19.64
0.10 X 0.05 X 0.02	0.00 × 0.03 × 0.02
Nonius KappaCCD diffractometer	Nonius KappaCCD diffractometer
Multi-scan (Otwinowski & Minor, 1997)	Multi-scan (Otwinowski & Minor, 1997)
0.668, 1.000	0.807, 1.000
7055, 1835, 1555	4991, 1298, 1232
0.062	0.025
0.714	0.625
0.032, 0.074, 1.04	0.025, 0.059, 1.20
1834	1297
100	101
1.35, -1.20	2.28, -0.72
	$\label{eq:srZnAs_2O_7} $$ srZnAs_2O_7 $$ 414.85 $$ Monoclinic, $P2_1/n$ $$ 298 $$ 5.5114 (11), 8.3524 (17), 13.106 (3) $$ 91.01 (3) $$ 603.2 (2) $$ 4 $$ Mo $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$

Computer programs: COLLECT (Nonius, 2002), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski et al., 2003), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2015), WinGX (Farrugia, 2012), PLATON (Spek, 2009), ATOMS (Dowty, 2000) and publCIF (Westrip, 2010).

At the end of the reaction, the pH of the first solvent was not measured because the sample was dry, while the pH of the second solvent was again 3. All reaction products were filtered off, washed thoroughly with distilled water and dried in air. SrZnAs₂O₇ crystallized as colourless elongated prismatic crystals (yield *ca* 45%) up to 0.18 mm in length, together with prisms of Sr(AsO₃OH) (Mihajlović & Effenberger, 2006) (yield *ca* 40%) and undissolved ZnO powder. BaCuAs₂O₇ crystallized as prismatic blue–green crystals (yield *ca* 50%) up to 0.08 mm in length, together with a new Ba–Cu arsenate (yield 50%) (results to be published elsewhere).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Selected bond distances and angles are listed in Tables 3 and 4 for $SrZnAs_2O_7$ and $BaCuAs_2O_7$, respectively.

3. Results and discussion

The unit-cell parameters of known isostructural diphosphates and diarsenates with the general formula $M1^{II}M2^{II}X_2O_7$ $(M1^{II} = Ca, Sr, Ba, Pb; M2^{II} = Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn,$ $Cd; <math>X^V = P$, As) are given in Table 1. Generally, the increase of the unit-cell volume directly follows the increase of the ionic radii of the divalent *M*1 and *M*2 cations. The unit-cell volumes for diarsenates are in the range 592.0 (2)–647.1 (2) Å³, while they are smaller than 592 Å³ for diphosphates, except for $SrCdP_2O_7$, $Sr_{1.34}Pb_{0.66}P_2O_7$, $BaMgP_2O_7$ and $BaMnP_2O_7$. It should be noted that the $M2^{II}$ ionic radii (0.65–0.68 Å) for diarsenates listed in Table 1 have very similar values, while the $M1^{II}$ ionic radii for CN = 9 are 1.31, 1.35 and 1.47 Å for Sr, Pb and Ba, respectively. This indicates that the unit-cell volumes for known $M1^{II}M2^{II}As_2O_7$ compounds depend mainly on the size of the M1^{II} ionic radii. Earlier studies (Maass & Glaum, 2000) have shown that the unit-cell parameters of the series of diphosphates SrM2P₂O₇ (M2 = Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd) are dependent on the size of the M2 cation too. It was also found (Brown & Calvo, 1970; Alaoui El Belghiti et al., 1991; Chen & Wang, 1996; Yuan et al., 2007) that there is no strong correlation between the M1 and M2 cation sizes and the structure type of the $M1^{II}M2^{II}As_2O_7$ diarsenates, as was found in the corresponding diphosphates. This is because the As_2O_7 group is adjustable to the bonding requirements of other groups in the structure by tetrahedral distortion, by changing the As-O_b-As angle as well as the dihedral angles O_t-As1 \cdots As2 $-O_t$ between the two AsO₄ tetrahedra (Chen & Wang, 1996).

The tetrahedral distortion can be expressed numerically *via* the quadratic elongation, λ , and the tetrahedral angle variances, σ_{tet}^2 (Robinson *et al.*, 1971); the values were calculated using the *VOLCAL* program (Hazen & Finger, 1982) as implemented in *WinGX* (Farrugia, 2012). Since the bridging (O_b) and six terminal (O_t) O atoms of the As₂O₇ group of $M1^{II}M2^{II}As_2O_7$ are located in general positions, three symmetrically independent dihedral or torsion angles can be distinguished within the group. Similar to tetrahedral angle

Table 3		
Selected geometric pa	rameters (Å,	°) for SrZnAs ₂ O ₇ .

Sr1-O2	2.525 (3)	As1-O1 ⁱⁱⁱ	1.671 (3)
Sr1-O1 ⁱ	2.557 (3)	As1-O4	1.744 (3)
Sr1-O2 ⁱⁱ	2.576 (3)	As2-O5 ^v	1.669 (3)
Sr1-O6 ⁱⁱⁱ	2.602 (3)	As2-O7 ^{iv}	1.679 (3)
Sr1-O3 ⁱⁱ	2.640 (3)	As2-O6	1.682 (3)
Sr1-O7 ^{iv}	2.714 (3)	As2-O4 ⁱⁱ	1.749 (3)
Sr1-O5 ⁱ	2.765 (3)	Zn1-O3	1.973 (3)
Sr1-O1 ⁱⁱⁱ	2.851 (3)	Zn1-O5	2.013 (3)
Sr1-O5 ⁱⁱⁱ	3.268 (3)	Zn1-O6	2.023 (3)
As1-O2 ⁱⁱⁱ	1.654 (3)	Zn1-O7	2.106 (3)
As1-O3 ⁱⁱ	1.670 (3)	Zn1-O1	2.157 (3)
O2-Sr1-O1 ⁱ	93.44 (10)	O2 ⁱⁱ -Sr1-O5 ⁱⁱⁱ	139.81 (9)
$O2-Sr1-O2^{ii}$	155.50(7)	$O6^{iii}$ -Sr1-O5 ⁱⁱⁱ	61.41 (9)
$O1^{i}$ -Sr1- $O2^{ii}$	69.30 (10)	$O3^{ii}$ -Sr1-O5 ⁱⁱⁱ	106.87 (9)
$O2-Sr1-O6^{iii}$	120.91 (10)	O7 ^{iv} -Sr1-O5 ⁱⁱⁱ	60.98 (9)
$O1^{i}$ -Sr1-O6 ⁱⁱⁱ	140.59 (10)	$O5^{i}$ -Sr1- $O5^{iii}$	146.28 (9)
$O2^{ii}$ -Sr1-O6 ⁱⁱⁱ	81.88 (10)	$O1^{iii}$ -Sr1- $O5^{iii}$	50.28 (8)
$O2-Sr1-O3^{ii}$	99.39 (10)	O2 ⁱⁱⁱ -As1-O3 ⁱⁱ	114.79 (16)
$O1^{i}$ -Sr1- $O3^{ii}$	120.53 (10)	O2 ⁱⁱⁱ -As1-O1 ⁱⁱⁱ	113.26 (16)
$O2^{ii}$ -Sr1-O3 ⁱⁱ	76.47 (10)	O3 ⁱⁱ -As1-O1 ⁱⁱⁱ	106.36 (16)
$O6^{iii}$ -Sr1-O3 ⁱⁱ	75.40 (10)	O2 ⁱⁱⁱ -As1-O4	108.51 (17)
$O2-Sr1-O7^{iv}$	98.52 (11)	O3 ⁱⁱ -As1-O4	105.51 (16)
$O1^{i}$ -Sr1-O7 ^{iv}	81.41 (10)	O1 ⁱⁱⁱ -As1-O4	107.95 (15)
$O2^{ii}$ -Sr1-O7 ^{iv}	95.96 (10)	$O5^{v}$ -As2- $O7^{iv}$	118.74 (15)
$O6^{iii}$ -Sr1-O7 ^{iv}	75.32 (9)	$O5^{v}-As2-O6$	111.75 (16)
$O3^{ii}$ -Sr1-O7 ^{iv}	150.51 (10)	O7 ^{iv} -As2-O6	109.62 (15)
$O2-Sr1-O5^{i}$	83.80 (10)	O5 ^v -As2-O4 ⁱⁱ	101.56 (15)
$O1^{i}$ -Sr1-O5 ⁱ	59.01 (10)	O7 ^{iv} -As2-O4 ⁱⁱ	108.69 (15)
$O2^{ii}$ -Sr1-O5 ⁱ	72.49 (10)	O6-As2-O4 ⁱⁱ	105.33 (15)
$O6^{iii}$ -Sr1-O5 ⁱ	136.65 (10)	O3-Zn1-O5	116.04 (13)
$O3^{ii}$ -Sr1-O5 ⁱ	65.08 (9)	O3-Zn1-O6	142.82 (13)
$O7^{iv}$ -Sr1-O5 ⁱ	140.40 (9)	O5-Zn1-O6	98.26 (13)
$O2-Sr1-O1^{iii}$	65.43 (9)	O3-Zn1-O7	85.04 (13)
$O1^{i}$ -Sr1- $O1^{iii}$	156.84 (6)	O5-Zn1-O7	118.29 (12)
$O2^{ii}$ -Sr1-O1 ⁱⁱⁱ	127.02 (9)	O6-Zn1-O7	91.26 (12)
$O6^{iii}$ -Sr1-O1 ⁱⁱⁱ	62.52 (9)	O3-Zn1-O1	87.94 (13)
$O3^{ii}$ -Sr1-O1 ⁱⁱⁱ	58.16 (9)	O5-Zn1-O1	78.02 (12)
$O7^{iv}$ -Sr1-O1 ⁱⁱⁱ	109.88 (9)	O6-Zn1-O1	85.46 (12)
$O5^{i}$ -Sr1-O1 ⁱⁱⁱ	106.95 (9)	O7-Zn1-O1	163.69 (12)
$O2-Sr1-O5^{iii}$	64.66 (10)	As1-O4-As2vi	122.39 (18)
$O1^{i}$ -Sr1- $O5^{iii}$	130.69 (9)		

Symmetry codes: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (iii) x - 1, y, z; (iv) -x + 1, -y + 1, -z; (v) -x + 2, -y + 1, -z; (vi) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}.$

variances, $\sigma_{\text{tet}}^2 = \Sigma(\theta_i - 109.47)^2/5$, i = 1, 2, 3, 4, 5, 6], the formula $\sigma_{dih}^2 = \Sigma(\theta_i - 60)^2/3$ (*i* = 1, 2, 3) was used to calculate the dihedral angle variances and the dihedral angles were calculated using the program PLATON (Spek, 2009). Diarsenate groups in $M1^{II}M2^{II}As_2O_7$ compounds involve two crystallographically non-equivalent AsO₄ tetrahedra (Fig. 1). In the structures of SrZnAs₂O₇ and BaCuAs₂O₇, nearly identical average (As1-O) bond lengths were found (Table 5). The mean (As2-O) distances in SrZnAs₂O₇ and BaCuAs₂O₇ are also almost identical and longer than the corresponding values for (As1-O), which correlate with the distinct angular distortions in the As1O₄ ($\sigma_{tet}^2 = 14.24$ and 14.96) and As2O₄ $(\sigma_{\text{tet}}^2 = 34.26 \text{ and } 34.80)$ tetrahedra (Table 5 and Fig. 2). The longest As-O bonds are to the bridging O4 atom. The As1-O4-As2 bond angles are 122.39 (18) and 125.3 (2) $^{\circ}$ in SrZnAs₂O₇ and BaCuAs₂O₇, respectively, which compare well with the same bridging angles of 122.7 (3)° in $SrCoAs_2O_7$ (Horng & Wang, 1994), 122.7 (3)° in SrCuAs₂O₇ (Chen & Wang, 1996), as well as values of 125.9 (3) (Wardojo & Hwu, 1995) and 124.7 (6)° (Chen & Wang, 1996) in two different forms of BaCuAs₂O₇. In SrZnAs₂O₇ and BaCuAs₂O₇, two AsO₄ tetrahedra of the diarsenate group form a staggered conformation [dihedral angles O1-As1···As2-O7, O2-As1···As2-O6 and O3-As1···As2-O5 of 36.50 (15), 40.93 (16) and 69.86 (19)°, respectively, for SrZnAs₂O₇, and 42.7 (2), 48.1 (2) and 74.0 (3)°, respectively, for BaCuAs₂O₇]. The dihedral angle variances, σ_{dih}^2 , are 337.71 and 212.30 for SrZnAs₂O₇ and BaCuAs₂O₇, respectively. This points to a greater As₂O₇ angular deviation from the ideal value of 60° in SrZnAs₂O₇ than in BaCuAs₂O₇ (Table 5 and Fig. 2).

Each diarsenate group shares its five corners with five different $M2O_5$ square pyramids. This leaves one corner free (O2 in SrZnAs₂O₇ and BaCuAs₂O₇) and this participates in the coordination of the $M1^{II}$ cation. The M2 position is characterized by a square-pyramidal geometry and a 4 + 1 bond

Figure 1

Polyhedral views of the framework in the $SrZnAs_2O_7$ structure (*a*) along the [100] direction (the *c* axis is vertical) and (*b*) along the [010] direction (the *c* axis is vertical). A trace of the unit cell is drawn for reference. AsO₄ tetrahedra are dark grey, ZnO₅ pyramids are light grey and Sr atoms are represented by black spheres.

distance scheme. The average lengths of the four basal M2-Obonds are 2.029 (3) and 1.977 (4) Å, and the fifth axial bond is longer, *i.e.* 2.157 (3) and 2.382 (4) Å, for $SrZnAs_2O_7$ and BaCuAs₂O₇, respectively. The mean $\langle Zn-O \rangle$ and $\langle Cu-O \rangle$ distances are 2.054 (3) and 2.060 (4) Å. They can be compared to the (M2-O) distances of 2.062 Å found in BaZnAs₂O₇ (Đorđević, 2008) and 2.035 Å found in SrCuAs₂O₇ (Chen & Wang, 1996). In both structures, the M2 atom deviates from the least-squares basal plane [0.4683 (5) and 0.2411 (7) Å forZn and Cu, respectively] towards the axial O atom. As reported previously (Riou & Raveau, 1991; Horng & Wang, 1994; Wardojo & Hwu, 1995), the M2 atoms tend to be located close to the centre of the M2O₅ pyramid, unlike Cu atoms, which are located closer to the square basal plane, leading to a long Cu-O apical distance. This is in agreement with the Jahn–Teller effect of the Cu^{II} cation.

Considering the bond distances in $SrZnAs_2O_7$ and $BaCuAs_2O_7$, the coordination of the Sr/Ba-hosting site *M*1 with CN = 9 is approximately 3 + 3 + 3 and can be described as a distorted tricapped trigonal prism. The average $\langle Sr - O \rangle$ and $\langle Ba - O \rangle$ bond distances are 2.722 (3) and 2.821 (4) Å, which compare well with the average $\langle Sr - O \rangle$ and $\langle Ba - O \rangle$ bond distances of 2.705 Å in $SrCuAs_2O_7$ (Chen & Wang, 1996) and 2.829 Å in $BaCoAs_2O_7$ (Mihajlović *et al.*, 2004). It should be

Figure 2

Distortion parameters *versus* average $\langle M1-O \rangle$ distances in $M1^{II}M2^{II}As_2O_7$ ($M1^{II} = Sr$, Ba, Pb; $M2^{II} = Mg$, Co, Cu, Zn) compounds. Framed symbols are for SrZnAs₂O₇ and BaCuAs₂O₇.

1.685 (4)

1.744 (4)

1.650 (4)

1.685 (4)

Selected geometric parameters (Å, °) for BaCuAs₂O₇.

Table 4

Ba1-O1"	2.803 (4)	As2-O/m	1.698 (4)
Ba1–O3 ⁱ	2.850 (4)	As2–O4 ⁱ	1.752 (4)
Ba1–O5 ^{iv}	2.904 (4)	Cu1-O3	1.932 (4)
Ba1—O1 ⁱⁱ	2.938 (4)	Cu1-O7	1.976 (4)
Ba1—O5 ⁱⁱ	3.008 (4)	Cu1-O6	1.983 (4)
As1-O2 ⁱⁱ	1.654 (4)	Cu1-O1	2.025 (4)
As1-O3 ⁱ	1.663 (4)	Cu1-O5	2.382 (4)
$O2-Ba1-O2^{i}$	153.81 (10)	O6 ⁱⁱ -Ba1-O5 ⁱⁱ	65.41 (12)
O2–Ba1–O6 ⁱⁱ	125.38 (13)	O7 ⁱⁱⁱ -Ba1-O5 ⁱⁱ	63.22 (12)
O2 ⁱ -Ba1-O6 ⁱⁱ	76.68 (13)	O1 ^{iv} -Ba1-O5 ⁱⁱ	131.40 (12)
O2-Ba1-O7 ⁱⁱⁱ	104.89 (14)	O3 ⁱ -Ba1-O5 ⁱⁱ	106.90 (12)
O2 ⁱ -Ba1-O7 ⁱⁱⁱ	91.88 (14)	O5 ^{iv} -Ba1-O5 ⁱⁱ	151.54 (11)
O6 ⁱⁱ –Ba1–O7 ⁱⁱⁱ	80.15 (13)	O1 ⁱⁱ -Ba1-O5 ⁱⁱ	53.01 (11)
$O2-Ba1-O1^{iv}$	90.97 (13)	O2 ⁱⁱ -As1-O3 ⁱ	115.9 (2)
O2 ⁱ -Ba1-O1 ^{iv}	71.47 (13)	O2 ⁱⁱ -As1-O1 ⁱⁱ	112.0 (2)
O6 ⁱⁱ -Ba1-O1 ^{iv}	142.42 (13)	$O3^i - As1 - O1^{ii}$	105.5 (2)
O7 ⁱⁱⁱ –Ba1–O1 ^{iv}	81.45 (12)	$O2^{ii}$ -As1-O4	108.5 (2)
O2–Ba1–O3 ⁱ	96.66 (13)	$O3^i - As1 - O4$	106.6 (2)
O2 ⁱ -Ba1-O3 ⁱ	76.64 (13)	O1 ⁱⁱ -As1-O4	108.0 (2)
O6 ⁱⁱ –Ba1–O3 ⁱ	70.14 (13)	O5 ^v -As2-O6	115.4 (2)
O7 ⁱⁱⁱ –Ba1–O3 ⁱ	149.83 (13)	O5 ^v -As2-O7 ⁱⁱⁱ	117.7 (2)
O1 ^{iv} -Ba1-O3 ⁱ	119.53 (12)	O6-As2-O7 ⁱⁱⁱ	108.5 (2)
O2-Ba1-O5 ^{iv}	83.98 (14)	$O5^{v}$ -As2-O4 ⁱ	104.0 (2)
O2 ⁱ -Ba1-O5 ^{iv}	70.11 (13)	$O6-As2-O4^{i}$	104.5 (2)
O6 ⁱⁱ -Ba1-O5 ^{iv}	129.47 (13)	$O7^{iii}$ -As2-O4 ⁱ	105.4 (2)
O7 ⁱⁱⁱ –Ba1–O5 ^{iv}	136.35 (12)	O3-Cu1-O7	87.90 (19)
O1 ^{iv} -Ba1-O5 ^{iv}	55.40 (12)	O3-Cu1-O6	158.73 (19)
O3 ⁱ -Ba1-O5 ^{iv}	65.93 (12)	O7-Cu1-O6	89.01 (18)
O2—Ba1—O1 ⁱⁱ	70.08 (13)	O3-Cu1-O1	91.48 (18)
O2 ⁱ -Ba1-O1 ⁱⁱ	121.67 (12)	O7-Cu1-O1	172.97 (17)
O6 ⁱⁱ –Ba1–O1 ⁱⁱ	58.97 (12)	O6-Cu1-O1	89.03 (18)
O7 ⁱⁱⁱ —Ba1—O1 ⁱⁱ	113.44 (12)	O3-Cu1-O5	109.54 (17)
O1 ^{iv} –Ba1–O1 ⁱⁱ	158.02 (6)	O7-Cu1-O5	113.23 (17)
O3 ⁱ -Ba1-O1 ⁱⁱ	54.80 (12)	O6-Cu1-O5	90.99 (17)
O5 ^{iv} —Ba1—O1 ⁱⁱ	109.76 (12)	O1-Cu1-O5	73.56 (16)
O2–Ba1–O5 ⁱⁱ	69.15 (13)	As1-O4-As2vi	125.3 (2)
O2 ⁱ -Ba1-O5 ⁱⁱ	137.03 (13)		

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) -x + 2, -y + 1, -z; (vi) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

noted that some authors (Pertlik, 1986; Horng & Wang, 1994) describe M1 as eight-coordinated, taking into account only O atoms at distances less than 3 Å. In order to observe M1 cations in a similar environment and to compare the distortion parameters in different diarsenates, the same CN = 9 for all M1 cations was assumed. The bond-valence calculations (Brown, 1996; Wills, 2010) show that the Sr atom in SrZnAs₂O₇ is in good agreement with its formal oxidation state ($\Sigma v_{ii} = 1.99$ v.u.) if CN = 9, although the longest Sr-O bond length [3.268 (3) Å] contributes only 2% to the bondvalence sum. The sum of the bond valences of the Ba atom in BaCuAs₂O₇ suggests a slight oversaturation if all nine ligands are considered ($\Sigma v_{ii} = 2.2$ v.u.), but it is the same as the value calculated for BaCoAs₂O₇ (Mihajlović et al., 2004). The longest Ba-O distance [3.008 (4) Å] contributes 6% to the bond-valence sum.

As a measure for polyhedron distortion of the AsO_4 tetrahedra, the $M1O_9$ tricapped trigonal prisms and the $M2O_5$ square pyramids, the volume-based eccentricity (ECC) and

Table 5

Geometrical characteristics of the coordination polyhedra for $M1^{II}M2^{II}As_2O_7$ compounds ($M1 = Ba^{2+}, Sr^{2+}, Pb^{2+}, Ca^{2+}, M2 = Cu^{2+}, Mg^{2+}, Zn^{2+}, Ni^{2+}, Co^{2+}, Cr^{2+}$).

Compound	Central atom (CN)	Average M -O bond distance (Å)	Radius of a fitted circumscribed sphere (Å)	Sum of ionic radii for the bonds* (Å)	Volume-based ECCs	Volume-based distortion, v	$\sigma_{tet}^{2}, \lambda(As1),$ $\sigma_{tet}^{2}, \lambda(As2),$ $As1-O_{b}-As2$ $angle (^{\circ}), \sigma_{dih}^{2}$
SrCuAs ₂ O ₇ ¹	As1 (4)	1.683±0.037	1.683	1.715	0.097	0.004	15.73, 1.0038
	As2 (4)	1.695 ± 0.041	1.692	1.715	0.111	0.007	35.89, 1.0089
	Sr (9)	2.705 ± 0.175	2.699	2.69	0.151	0.089	122 (2)
	Cu (5)	2.035 ± 0.133	2.026	2.03	0.330	0.038	386.89
SrCoAs ₂ O ₇ ²	As1 (4)	1.682 ± 0.043	1.680	1.715	0.112	0.003	14.25, 1.0035
	As2 (4)	1.693 ± 0.037	1.691	1.715	0.101	0.007	31.73, 1.0078
	Sr (9)	2.727 ± 0.235	2.718	2.69	0.224	0.095	122.7 (3)
	Co (5)	2.063 ± 0.068	2.061	2.05	0.037	0.033	342.20
$SrZnAs_2O_7^3$	As1 (4)	1.685 ± 0.040	1.684	1.715	0.105	0.003	14.24, 1.0032
	As2 (4)	1.695 ± 0.037	1.692	1.715	0.099	0.008	34.26, 1.0085
	Sr (9)	2.722 ± 0.231	2.714	2.69	0.217	0.094	122.39 (18)
	Zn (5)	2.054 ± 0.075	2.053	2.06	0.065	0.024	337.71
PbCuAs ₂ O ₇ ⁴	As1 (4)	1.686 ± 0.021	1.686	1.715	0.056	0.003	13.77, 1.0033
	As2 (4)	1.701 ± 0.052	1.697	1.715	0.139	0.007	41.62, 1.0103
	Pb (9)	2.756 ± 0.278	2.744	2.73	0.338	0.094	124.46 (8)
	Cu (5)	2.033 ± 0.121	2.023	2.03	0.298	0.021	246.99
BaCuAs ₂ O ₇ ¹	As1 (4)	1.690 ± 0.047	1.688	1.715	0.123	0.005	25.04, 1.0037
	As2 (4)	1.695 ± 0.031	1.692	1.715	0.084	0.009	39.06, 1.0095
	Ba (9)	2.827 ± 0.126	2.820	2.85	0.083	0.080	123 (3)
	Cu (5)	2.047 ± 0.175	2.038	2.03	0.416	0.039	182.37
BaCuAs ₂ O ₇ ³	As1 (4)	1.686 ± 0.039	1.685	1.715	0.104	0.003	14.96, 1.0039
	As2 (4)	1.696 ± 0.042	1.693	1.715	0.114	0.006	34.80, 1.0082
	Ba (9)	2.821 ± 0.120	2.816	2.85	0.071	0.082	125.32 (19)
	Cu (5)	2.057 ± 0.183	2.049	2.03	0.427	0.036	212.30
BaCuAs ₂ O ₇ ⁵	As1 (4)	1.695 ± 0.049	1.691	1.715	0.129	0.005	36.04, 1.0087
	As2 (4)	1.682 ± 0.035	1.681	1.715	0.091	0.004	18.57, 1.0033
	Ba (9)	2.826 ± 0.120	2.822	2.85	0.067	0.083	125.9 (3)
	Cu (5)	2.061 ± 0.185	2.053	2.03	0.429	0.030	219.00
BaMgAs ₂ O ₇ ⁶	As1 (4)	1.685 ± 0.042	1.685	1.715	0.110	0.002	7.96, 1.0022
	As2 (4)	1.694 ± 0.042	1.692	1.715	0.112	0.005	32.70, 1.0069
	Ba (9)	2.852 ± 0.178	2.848	2.85	0.103	0.096	125.0 (2)
	Mg (5)	2.049 ± 0.038	2.047	2.04	0.062	0.023	192.99
BaCoAs ₂ O ₇ ⁶	As1 (4)	1.686 ± 0.041	1.685	1.715	0.106	0.002	11.91, 1.003
	As2 (4)	1.696 ± 0.039	1.693	1.715	0.105	0.005	27.55, 1.007
	Ba (9)	2.829 ± 0.154	2.824	2.85	0.097	0.088	125.0 (2)
	Co(5)	2.069 ± 0.056	2.066	2.05	0.071	0.041	229.64
BaZnAs ₂ O ₇ ⁷	As1 (4)	1.687 ± 0.041	1.686	1.715	0.108	0.002	12.71, 1.0028
-2 - 1	As2 (4)	1.690 ± 0.040	1.688	1.715	0.108	0.005	28.97, 1.0073
	Ba (9)	2.833 ± 0.164	2.829	2.85	0.100	0.090	124.67 (14)
	Zn (5)	2.061 ± 0.054	2.059	2.06	0.083	0.026	216.59

Notes: (*) calculated from effective ionic radii (Shannon, 1976); (#) $\sigma_{dih}^2 = \Sigma(\theta_i - 60)^2/3$ (i = 1, 2, 3). References: (1) Chen & Wang (1996); (2) Horng & Wang (1994); (3) this work; (4) Pertlik (1986); (5) Wardojo & Hwu (1995); (6) Mihajlović *et al.* (2004); (7) Đorđević (2008).

the volume-based distortion (ν) were calculated using the program *IVTON* (Balić-Žunić & Makovicky, 1996; Makovicky

Figure 3

Displacement ellipsoid plot (90% probability level) of the $M2O_5$ square pyramids in SrZnAs₂O₇ and BaCuAs₂O₇, showing the distortion and the atomic numbering schemes.

& Balić-Žunić, 1998). The ECC is a measure of the displacement of the central atom from the centroid of the coordination polyhedron defined as the point for which the variance of squares of the central cation-to-corner ligand distances is at a minimum. The ν parameter is an overall measure of polyhedral distortion which can be defined as the regularity of distribution of the ligand atoms irrespective of the position of the central atom in the polyhedron. Unsurprisingly, in all the $M1^{II}M2^{II}As_2O_7$ compounds, the As1O₄ and As2O₄ tetrahedra are less distorted than the $M1O_9$ and $M2O_5$ polyhedra. The mean quadratic elongation, λ , and the tetrahedral angle variance, σ_{tet}^2 , indicate that the As2O₄ tetrahedra are a little more distorted than As1O₄ (Table 5 and Fig. 2). The low ECC $(0.056-0.123 \text{ for As1O}_4 \text{ and } 0.084-0.139 \text{ for As2O}_4)$ and low v (0.002-0.005 for As1O₄ and 0.004-0.009 for As2O₄) reflect the regularity of the tetrahedra (Fig. 2). The bridging bond angles

As1 $-O_{\rm b}$ -As2 range from 122.4 (2) to 125.3 (2)° and depend slightly on the M1 cation size (Table 5), *i.e.* the angles become a little wider as the M1 cation becomes larger. In contrast, the values of the dihedral angle variances depend greatly on the M1 cation size and the variance becomes smaller as the M1cations become larger, suggesting that a smaller M1 cation causes a larger dihedral angle deviation from the ideal value of 60° . The ECC (0.037–0.083) of the $M2^{II}$ cations in the ZnO₅, CoO_5 and MgO₅ pyramids are low, indicating that these $M2^{II}$ cations are located close to the centroid of the $M2O_5$ pyramids. The ECC (0.298-0.429) clearly increases with the incorporation of Cu^{II} cations in the M2 position (Table 5 and Fig. 2) leading to the almost uniform Cu-O basal distances and a longer Cu-O apical distance, which is in agreement with the Jahn–Teller effect of the Cu^{II} cation (Fig. 3). The M2 sites in three BaCuAs₂O₇ compounds have the highest eccentricity of all. PbCuAs₂O₇ displays a more eccentric Pb1O₉ polyhedron than the Sr- and Ba-containing $M1^{II}M2^{II}As_2O_7$ compounds, because of its inert electron pair. The ν values (0.021–0.041) of the M2O₅ polyhedra are, as expected, higher than for the As1O₄ and As2O₄ tetrahedra, but lower than for the $M1O_9$ coordination polyhedra: $v(BaO_9)$ $= 0.080 - 0.096 ((0.082)), v(SrO_9) = 0.089 - 0.095 ((0.094)) and$ $\nu(PbO_9) = 0.094$ (Table 5). These values indicate a slightly lower distortion of the $M1O_9$ coordination polyhedra for larger $M1^{II}$ cations. It is interesting that ν has the largest values in compounds containing Co, i.e. for the CoO₅ pyramid in BaCoAs₂O₇ and for the SrO₉ polyhedra in SrCoAs₂O₇. In $SrZnAs_2O_7$ and $BaCuAs_2O_7$, although both $M1^{II}$ cations are moved from the corresponding centroids [ECC(Sr) = 0.217]and ECC(Ba) = 0.071], judging by the v values [v(Sr) = 0.094]and $\nu(Ba) = 0.082$, the coordinated O atoms form quite regular polyhedra.

As already mentioned, the lattice parameters obtained for BaCuAs₂O₇ deviate somewhat from the values reported earlier by Wardojo & Hwu (1995) and Chen & Wang (1996). The slight increase in unit-cell volume of approximately 4 Å^3 [632.7 (2), 634.9 (2) and 636.6 (6) Å³ for BaCu_C, BaCu and BaCu_w, respectively; Table 5 and Fig. 2] reflects the increase of the dihedral angle variances, σ_{dih}^2 , which are 182.37, 212.30 and 219.00° for BaCu_C, BaCu and BaCu_W, respectively. This indicates that the smallest As₂O₇ angular deviation in BaCuAs₂O₇ corresponds to the smallest unit cell (Table 5 and Fig. 2). Contrary to the dihedral angle variances, the tetrahedral angle variances, σ_{tet}^2 , vary over relatively small intervals, viz. 14.96-25.04 and 34.80-39.06°, which confirms the statement that the As₂O₇ group is adjustable with regard to the bonding requirements. The other geometrical characteristics of the coordination polyhedra are nearly the same.

Acknowledgements

The authors gratefully acknowledge financial support by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant No. III45007) and the Austrian Science Foundation (FWF) (grant No. V203–N19).

The authors are thankful to Professor Dr T. Balić-Žunić for helping with the *IVTON* calculations.

References

- Adams, R. D., Layland, R. C. & Payen, C. (1995). Polyhedron, 14, 3473–3480.
- Alaoui El Belghiti, A., Boukhari, A. & Holt, E. M. (1991). *Acta Cryst.* C47, 473–477.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Balić-Žunić, T. & Makovicky, E. (1996). Acta Cryst. B52, 78-81.
- Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
- Brown, I. D. & Calvo, C. (1970). J. Solid State Chem. 1, 173-179.
- Calvo, C. (1968). Inorg. Chem. 7, 1345-1351.
- Chen, T. C. & Wang, S. L. (1996). J. Solid State Chem. 121, 350-355.
- Đorđević, T. (2008). Acta Cryst. E64, i57.
- Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
- Edhokkar, F., Hadrich, A., Graia, M. & Mhiri, T. (2012). 2012 IOP Conf. Ser. Mater. Sci. Eng. 28, 012017.
- El Bali, B., Boukhari, A., Aride, J., Maass, K., Wald, D., Glaum, R. & Abraham, F. (2001). *Solid State Sci.* **3**, 669–676.
- Elmarzouki, A., Boukhari, A., Holt, E. M. & Berrada, A. (1994). J. Alloys Compd, **204**, 127–131.
- Elmarzouki, A., Boukhari, A., Holt, E. M. & Berrada, A. (1995). J. Alloys Compd, **227**, 125–130.
- Faggiani, R. & Calvo, C. (1976). Can. J. Chem. 54, 3319-3324.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hazen, R. M. & Finger, L. W. (1982). In *Comparative Crystal Chemistry*, p. 86 and Appendix III. Chichester: Wiley.
- Höppe, H. A., Daub, M. & Bröhmer, M. C. (2007). Chem. Mater. 19, 6358–6362.
- Horchani-Naifer, K. & Férid, M. (2007). Acta Cryst. E63, i33-i34.
- Horng, J.-C. & Wang, S.-L. (1994). Acta Cryst. C50, 488-490.
- ICSD (2014). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany. http://icsd.fiz-karlsruhe.de/icsd/.
- Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.
- Le Meins, J.-M. & Courbion, G. (1999). Acta Cryst. C55, 481-483.
- Maass, K. & Glaum, R. (2000). Acta Cryst. C56, 404-406.
- Makovicky, E. & Balić-Žunić, T. (1998). Acta Cryst. B54, 766-773.
- Marzouki, R., Guesmi, A., Zid, M. F. & Driss, A. (2012). Cryst. Struct. Theor. Appl. 1, 68–73.
- Mihajlović, T. & Effenberger, H. (2006). Z. Kristallogr. 221, 770-781.
- Mihajlović, T., Kolitsch, U. & Effenberger, H. (2004). J. Alloys Compd, 379, 103–109.
- Moqine, A., Boukhari, A., Elammari, L. & Durand, J. (1993). J. Solid State Chem. 107, 368–372.
- Murashova, E. V., Velikodnyi, Y. A. & Trunov, V. K. (1991). Zh. Neorg. Khim. 36, 851–854.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.
- Pertlik, F. (1986). Monatsh. Chem. 117, 1343-1348.
- Riou, D. & Goreaud, M. (1990). Acta Cryst. C46, 1191-1193.
- Riou, D. & Raveau, B. (1991). Acta Cryst. C47, 1708-1709.
- Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, **172**, 567–570.
- Rousse, G., Rodríguez-Carvajal, J., Wurm, C. & Masquelier, C. (2013). *Phys. Rev. B*, **88**, 214433.
- Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i79-i83.

- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tahiri, A. A., Bali, B. E., Lachkar, M., Ouarsal, R. & Zavalij, P. Y. (2002). Acta Cryst. E58, i9–i11.
- Wardojo, T. A. & Hwu, S. J. (1995). J. Solid State Chem. 118, 280-284.
- Weil, M., Đorđević, T., Lengauer, C. L. & Kolitsch, U. (2009). Solid State Sci. 11, 2111–2117.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wills, A. S. (2010). VaList. http://www.CCP14.ac.uk.
- Yuan, J. L., Zeng, X. Y., Zhao, J. T., Zhang, Z. J., Chen, H. H. & Zhang, G. B. (2007). *J. Solid State Chem.* **180**, 3310–3316.

supporting information

Acta Cryst. (2015). C71, 330-337 [doi:10.1107/S2053229615005616]

An investigation of polyhedral deformation in two mixed-metal diarsenates: SrZnAs₂O₇ and BaCuAs₂O₇

Sabina Kovač, Ljiljana Karanović and Tamara Đorđević

Computing details

For both compounds, data collection: COLLECT (Nonius, 2002); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999). Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015), WinGX (Farrugia, 2012) and PLATON (Spek, 2009) for SrZnAs2O7; SHELXL2013 (Sheldrick, 2015) and WinGX (Farrugia, 2012) for BaCuAs2O7. For both compounds, molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: publicIF (Westrip, 2010).

(SrZnAs2O7) Strontium zinc diarsenic heptaoxide

Crystal data SrZnAs₂O₇ Z = 4 $M_r = 414.85$ F(000) = 760Monoclinic, $P2_1/n$ $D_{\rm x} = 4.568 {\rm Mg} {\rm m}^{-3}$ a = 5.5114 (11) Åb = 8.3524 (17) Åc = 13.106 (3) Å $\beta = 91.01 (3)^{\circ}$ V = 603.2 (2) Å³ Data collection Nonius KappaCCD diffractometer Radiation source: fine-focus sealed X-ray tube φ and ω scans $h = -7 \rightarrow 7$ Absorption correction: multi-scan (Otwinowski & Minor, 1997) $T_{\rm min} = 0.668, T_{\rm max} = 1.000$ 7055 measured reflections Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.074$ S = 1.041834 reflections 100 parameters 0 restraints

Mo *K* α radiation, $\lambda = 0.71073$ Å $\mu = 23.69 \text{ mm}^{-1}$ T = 298 KPrismatic, blue-green $0.16 \times 0.03 \times 0.02 \text{ mm}$ 1835 independent reflections 1555 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.062$ $\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$

 $k = -11 \rightarrow 11$ $l = -18 \rightarrow 18$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_0^2) + (0.0401P)^2 + 1.0702P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 1.35 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.20 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sr1	0.20949 (7)	0.67034 (5)	0.21859 (3)	0.01119 (11)	
As1	-0.24486 (7)	0.47658 (5)	0.33857 (3)	0.00824 (11)	
As2	0.67278 (7)	0.69498 (5)	0.01457 (3)	0.00820 (11)	
Znl	0.83776 (9)	0.35654 (6)	0.10963 (4)	0.01061 (12)	
01	0.9575 (5)	0.3826 (4)	0.2663 (2)	0.0117 (6)	
O2	0.4720 (5)	0.4537 (4)	0.2972 (3)	0.0153 (7)	
03	0.6522 (6)	0.1665 (4)	0.1521 (3)	0.0124 (6)	
O4	-0.2204 (6)	0.3987 (4)	0.4618 (2)	0.0132 (6)	
05	1.1990 (5)	0.3270 (4)	0.0989 (2)	0.0119 (6)	
06	0.8294 (5)	0.5986 (4)	0.1072 (2)	0.0128 (6)	
07	0.6245 (5)	0.3445 (4)	-0.0251 (2)	0.0112 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	0.00753 (19)	0.0120 (2)	0.0140 (2)	-0.00041 (14)	-0.00140 (15)	0.00130 (15)
As1	0.00647 (19)	0.0078 (2)	0.0104 (2)	0.00031 (14)	-0.00097 (15)	-0.00028 (15)
As2	0.0062 (2)	0.0096 (2)	0.0088 (2)	0.00015 (14)	-0.00062 (15)	-0.00011 (15)
Zn1	0.0082 (2)	0.0101 (2)	0.0134 (3)	-0.00048 (18)	-0.00143 (18)	0.00016 (19)
01	0.0082 (14)	0.0150 (15)	0.0118 (15)	0.0032 (11)	0.0010 (12)	-0.0016 (12)
O2	0.0066 (14)	0.0137 (16)	0.0253 (19)	-0.0001 (11)	-0.0055 (13)	-0.0007 (13)
O3	0.0118 (15)	0.0063 (14)	0.0189 (16)	0.0007 (11)	0.0004 (12)	0.0015 (12)
O4	0.0183 (15)	0.0094 (15)	0.0118 (15)	0.0033 (12)	-0.0005 (12)	0.0006 (12)
05	0.0077 (14)	0.0174 (16)	0.0106 (15)	0.0000 (11)	0.0002 (11)	-0.0002 (12)
O6	0.0117 (15)	0.0104 (15)	0.0161 (16)	0.0004 (11)	-0.0053 (12)	0.0015 (12)
O7	0.0044 (13)	0.0157 (16)	0.0136 (15)	-0.0011 (11)	-0.0001 (11)	0.0015 (13)

Geometric parameters (Å, °)

Sr1—O2	2.525 (3)	Zn1—O3	1.973 (3)
Sr1—O1 ⁱ	2.557 (3)	Zn1—O5	2.013 (3)
Sr1—O2 ⁱⁱ	2.576 (3)	Zn1—O6	2.023 (3)
Sr1—O6 ⁱⁱⁱ	2.602 (3)	Zn1—O7	2.106 (3)
Sr1—O3 ⁱⁱ	2.640 (3)	Zn1—O1	2.157 (3)
Sr1—O7 ^{iv}	2.714 (3)	Zn1—Sr1 ^{vii}	3.6059 (9)
Sr1—O5 ⁱ	2.765 (3)	Zn1—Sr1 ^{viii}	3.6762 (11)
Sr1—O1 ⁱⁱⁱ	2.851 (3)	O1—As1 ^{vii}	1.671 (3)
Sr1—O5 ⁱⁱⁱ	3.268 (3)	O1—Sr1 ^{viii}	2.557 (3)
Sr1—As1	3.3913 (9)	O1—Sr1 ^{vii}	2.851 (3)

Sr1—Zn1 ⁱⁱⁱ	3.6059 (9)	O2—As1 ^{vii}	1.654 (3)
Sr1—Zn1 ⁱ	3.6762 (11)	O2—Sr1 ^{ix}	2.576 (3)
As1—O2 ⁱⁱⁱ	1.654 (3)	O3—As1 ^{ix}	1.670 (3)
As1—O3 ⁱⁱ	1.670 (3)	O3—Sr1 ^{ix}	2.640 (3)
As1—O1 ⁱⁱⁱ	1 671 (3)	$O4$ —As 2^{ix}	1 749 (3)
As104	1.071(3) 1 744(3)	$05-4s^{2vi}$	1.669 (3)
	2 6860 (8)	O5 Sr1 ^{viii}	2.765(3)
$A_{s1} = S_{r1}^{iii}$	3.0009(0)	$O_5 = S_{\pi 1} V_{\mu 1}$	2.703(3)
	5.7574(10)		3.208 (3)
As2—05 ¹¹	1.669 (3)	06—Sr1 ^{**}	2.602 (3)
As2-O/N	1.679 (3)	$O/-As2^{N}$	1.679 (3)
As2—O6	1.682 (3)	O'/—Srl ^{IV}	2.714 (3)
As2—O4 ⁿ	1.749 (3)		
O2—Sr1—O1 ⁱ	93.44 (10)	O2 ⁱⁱⁱ —As1—Sr1	127.11 (12)
O2—Sr1—O2 ⁱⁱ	155.50 (7)	O3 ⁱⁱ —As1—Sr1	49.74 (11)
$O1^{i}$ —Sr1— $O2^{ii}$	69.30 (10)	O1 ⁱⁱⁱ —As1—Sr1	57.05 (11)
$O2$ —Sr1— $O6^{iii}$	120.91 (10)	04—As1—Sr1	124.17 (11)
01^{i} Sr1 -06^{iii}	140.59(10)	Ω^{2iii} As 1 - Sr 1 v	37 37 (11)
Ω^{2ii} Sr1- Ω^{6iii}	81 88 (10)	$O3^{ii}$ As1 Sr1 ^v	152 14 (11)
$02 - Sr1 - 03^{ii}$	99.39 (10)	$\Omega_1^{\text{iii}} \Delta_{s1} S_{r1}^{\text{v}}$	91 54 (11)
$O1^{i}$ Sr1 $O3^{ii}$	120 53 (10)	O_{1} As $1 $ Sr ¹	88 37 (11)
O^{2i} Sr1 O^{2ii}	76.47(10)	Sr1 As1 Sr1v	138 830 (16)
02 - 511 - 03	70.47 (10)	O^{iii} As S^{r1ii}	138.830(10)
$00^{$	73.40(10)	$O2^{\text{III}}$ $A = 1$ $O = 1^{\text{IIII}}$	55.50 (11) 82.08 (11)
02—Sr1— $0/$ ^{**}	98.52 (11)	$O3^{\text{m}}$ As1—Sr1 ^m	82.08 (11)
Ol^{-1} $Srl - O/^{1}$	81.41 (10)	OI^{m} As I Sr I^{m}	120.33 (11)
$O2^{n}$ —Sr1—O7 ⁿ	95.96 (10)	O4—As1—Sr1 ^m	126.83 (11)
$O6^{in}$ —Sr1— $O7^{iv}$	75.32 (9)	Srl—Asl—Srl ^m	101.16 (2)
$O3^{ii}$ —Sr1— $O7^{iv}$	150.51 (10)	Sr1 ^v —As1—Sr1 ⁱⁱⁱ	70.374 (18)
$O2$ — $Sr1$ — $O5^i$	83.80 (10)	$O5^{vi}$ —As2— $O7^{iv}$	118.74 (15)
$O1^{i}$ — $Sr1$ — $O5^{i}$	59.01 (10)	O5 ^{vi} —As2—O6	111.75 (16)
$O2^{ii}$ —Sr1—O5 ⁱ	72.49 (10)	O7 ^{iv} —As2—O6	109.62 (15)
$O6^{iii}$ — $Sr1$ — $O5^{i}$	136.65 (10)	O5 ^{vi} —As2—O4 ⁱⁱ	101.56 (15)
$O3^{ii}$ —Sr1—O5 ⁱ	65.08 (9)	O7 ^{iv} —As2—O4 ⁱⁱ	108.69 (15)
$O7^{iv}$ —Sr1—O5 ⁱ	140.40 (9)	O6—As2—O4 ⁱⁱ	105.33 (15)
O2—Sr1—O1 ⁱⁱⁱ	65.43 (9)	O5 ^{vi} —As2—Sr1	159.71 (11)
$O1^{i}$ —Sr1— $O1^{iii}$	156.84 (6)	O7 ^{iv} —As2—Sr1	41.43 (11)
02^{ii} —Sr1—O1 ⁱⁱⁱ	127.02 (9)	06—As2—Sr1	78.79 (11)
$O6^{iii}$ Sr1 $O1^{iii}$	62, 52, (9)	$O4^{ii}$ As 2 Sr1	91 67 (11)
03^{ii} Sr1 01^{iii}	58 16 (9)	03 - 7n1 - 05	116.04 (13)
$O7^{iv}$ Sr1 $O1^{iii}$	100.88 (0)	03 7n1 06	142.82(13)
O_{1}^{i} S_{r1} O_{1}^{iii}	106.05 (0)	05 - 2n1 - 06	142.02(13)
03 - 51 - 01	64.66(10)	03 - 2n1 - 00	96.20 (13) 85.04 (13)
02 - 311 - 03	120(0(10))	$05 - 2\pi 1 - 07$	83.04(13)
$O_1 = O_1 = O_2$	130.09 (9)	O_{3}	110.29(12)
$02^{}$ $51103^{}$	139.81 (9)	00 - 2 n 1 - 0 / 01	91.20 (12)
	01.41 (9)	05-2n1-01	87.94 (13)
$O3^n$ —Srl— $O5^m$	106.87 (9)	05—Zn1—01	78.02 (12)
$O'/^{iv}$ —Srl—O5 ^m	60.98 (9)	O6—Zn1—O1	85.46 (12)
$O5^{i}$ — $Sr1$ — $O5^{iii}$	146.28 (9)	07—Zn1—O1	163.69 (12)

O1 ⁱⁱⁱ —Sr1—O5 ⁱⁱⁱ	50.28 (8)	O3—Zn1—Sr1 ^{vii}	140.05 (10)
O2—Sr1—As1	83.76 (7)	O5—Zn1—Sr1 ^{vii}	63.96 (9)
O1 ⁱ —Sr1—As1	146.09 (7)	O6—Zn1—Sr1 ^{vii}	44.96 (8)
O2 ⁱⁱ —Sr1—As1	100.76 (7)	O7—Zn1—Sr1 ^{vii}	132.18 (9)
O6 ⁱⁱⁱ —Sr1—As1	63.68 (7)	O1—Zn1—Sr1 ^{vii}	52.23 (9)
O3 ⁱⁱ —Sr1—As1	28.87 (7)	O3—Zn1—Sr1 ^{viii}	80.60 (9)
O7 ^{iv} —Sr1—As1	132.48 (7)	O5—Zn1—Sr1 ^{viii}	47.89 (9)
O5 ⁱ —Sr1—As1	87.12 (7)	O6—Zn1—Sr1 ^{viii}	116.59 (9)
Ol ⁱⁱⁱ —Srl—Asl	29.47 (6)	O7—Zn1—Sr1 ^{viii}	148.87 (9)
O5 ⁱⁱⁱ —Sr1—As1	78.27 (6)	O1—Zn1—Sr1 ^{viii}	42.84 (8)
O2—Sr1—Zn1 ⁱⁱⁱ	87.59 (8)	Sr1 ^{vii} —Zn1—Sr1 ^{viii}	71.96 (2)
O1 ⁱ —Sr1—Zn1 ⁱⁱⁱ	159.49 (7)	As1 ^{vii} —O1—Zn1	113.01 (15)
O2 ⁱⁱ —Sr1—Zn1 ⁱⁱⁱ	114.76 (7)	As1 ^{vii} —O1—Sr1 ^{viii}	140.09 (17)
O6 ⁱⁱⁱ —Sr1—Zn1 ⁱⁱⁱ	33.32 (7)	Zn1—O1—Sr1 ^{viii}	102.17 (12)
O3 ⁱⁱ —Sr1—Zn1 ⁱⁱⁱ	79.36 (7)	As1 ^{vii} —O1—Sr1 ^{vii}	93.48 (13)
O7 ^{iv} —Sr1—Zn1 ⁱⁱⁱ	78.19 (7)	Zn1—O1—Sr1 ^{vii}	91.04 (11)
O5 ⁱ —Sr1—Zn1 ⁱⁱⁱ	141.29 (7)	Sr1 ^{viii} —O1—Sr1 ^{vii}	104.45 (10)
O1 ⁱⁱⁱ —Sr1—Zn1 ⁱⁱⁱ	36.73 (6)	As1 ^{vii} —O2—Sr1	125.53 (17)
O5 ⁱⁱⁱ —Sr1—Zn1 ⁱⁱⁱ	33.60 (5)	As1 ^{vii} —O2—Sr1 ^{ix}	119.69 (16)
As1—Sr1—Zn1 ⁱⁱⁱ	54.392 (17)	Sr1—O2—Sr1 ^{ix}	114.01 (11)
$O2$ — $Sr1$ — $Zn1^i$	71.08 (8)	As1 ^{ix} —O3—Zn1	128.72 (18)
$O1^{i}$ — $Sr1$ — $Zn1^{i}$	34.99 (7)	As1 ^{ix} —O3—Sr1 ^{ix}	101.39 (14)
O2 ⁱⁱ —Sr1—Zn1 ⁱ	85.35 (7)	Zn1—O3—Sr1 ^{ix}	124.90 (14)
O6 ⁱⁱⁱ —Sr1—Zn1 ⁱ	166.41 (7)	As1—O4—As2 ^{ix}	122.39 (18)
O3 ⁱⁱ —Sr1—Zn1 ⁱ	97.12 (7)	As2 ^{vi} —O5—Zn1	120.70 (17)
$O7^{iv}$ —Sr1—Zn1 ⁱ	110.80 (7)	As2 ^{vi} —O5—Sr1 ^{viii}	130.19 (16)
$O5^{i}$ — $Sr1$ — $Zn1^{i}$	32.70 (6)	Zn1—O5—Sr1 ^{viii}	99.40 (12)
O1 ⁱⁱⁱ —Sr1—Zn1 ⁱ	123.39 (6)	As2 ^{vi} —O5—Sr1 ^{vii}	121.35 (15)
O5 ⁱⁱⁱ —Sr1—Zn1 ⁱ	132.15 (5)	Zn1—O5—Sr1 ^{vii}	82.44 (10)
As1—Sr1—Zn1 ⁱ	114.63 (2)	Sr1 ^{viii} —O5—Sr1 ^{vii}	89.94 (9)
$Zn1^{iii}$ — $Sr1$ — $Zn1^{i}$	157.632 (18)	As2—O6—Zn1	120.07 (17)
O2 ⁱⁱⁱ —As1—O3 ⁱⁱ	114.79 (16)	As2—O6—Sr1 ^{vii}	133.84 (17)
O2 ⁱⁱⁱ —As1—O1 ⁱⁱⁱ	113.26 (16)	Zn1—O6—Sr1 ^{vii}	101.73 (12)
O3 ⁱⁱ —As1—O1 ⁱⁱⁱ	106.36 (16)	As2 ^{iv} —O7—Zn1	118.14 (17)
O2 ⁱⁱⁱ —As1—O4	108.51 (17)	As2 ^{iv} —O7—Sr1 ^{iv}	114.40 (15)
O3 ⁱⁱ —As1—O4	105.51 (16)	$Zn1$ —O7— $Sr1^{iv}$	126.37 (12)
O1 ⁱⁱⁱ —As1—O4	107.95 (15)		

Symmetry codes: (i) -*x*+3/2, *y*+1/2, -*z*+1/2; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) *x*-1, *y*, *z*; (iv) -*x*+1, -*y*+1, -*z*; (v) -*x*-1/2, *y*-1/2, -*z*+1/2; (vi) -*x*+2, -*y*+1, -*z*; (vii) *x*+1, *y*, *z*; (viii) -*x*+3/2, *y*-1/2, -*z*+1/2; (ix) -*x*+1/2, *y*-1/2, -*z*+1/2.

(BaCuAs2O7) Barium copper diarsenic heptaoxide

Crystal data	
BaCuAs ₂ O ₇	$\beta = 91.12 \ (3)^{\circ}$
$M_r = 462.72$	V = 634.9 (2) Å ³
Monoclinic, $P2_1/n$	Z = 4
a = 5.7343 (11) Å	F(000) = 828
b = 8.4722 (17) Å	$D_{\rm x} = 4.841 {\rm Mg} {\rm m}^{-3}$
c = 13.071 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

 $\mu = 19.84 \text{ mm}^{-1}$ T = 298 K

Data collection

Nonius KappaCCD diffractometer	1298 independent reflections 1232 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed X-ray tube	$R_{\rm int} = 0.025$
φ and ω scans	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(Otwinowski & Minor, 1997)	$k = -10 \rightarrow 10$
$T_{\min} = 0.807, T_{\max} = 1.000$	$l = -16 \rightarrow 16$
4991 measured reflections	
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0211P)^2 + 6.356P]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.025$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.059$	$\Delta \rho_{\rm max} = 2.28 \text{ e} \text{ Å}^{-3}$
S = 1.20	$\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$
1297 reflections	Extinction correction: SHELXL,
101 parameters	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
0 restraints	Extinction coefficient: 0.0029 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Prismatic, blue-green

 $0.06 \times 0.03 \times 0.02 \text{ mm}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Bal	0.21641 (6)	0.65177 (4)	0.21373 (3)	0.01078 (13)	
As1	-0.25303 (10)	0.46629 (7)	0.34475 (4)	0.00811 (16)	
As2	0.67164 (10)	0.68332 (7)	0.00787 (4)	0.00849 (16)	
Cu1	0.78989 (13)	0.35893 (8)	0.11961 (6)	0.01007 (18)	
01	0.9278 (7)	0.3766 (5)	0.2630 (3)	0.0115 (8)	
02	0.4698 (7)	0.4399 (5)	0.3119 (4)	0.0170 (9)	
03	0.6632 (8)	0.1528 (5)	0.1488 (3)	0.0138 (9)	
O4	-0.2048 (8)	0.3849 (5)	0.4659 (3)	0.0126 (9)	
05	1.2020 (8)	0.3402 (5)	0.1034 (3)	0.0142 (9)	
06	0.8041 (7)	0.5920 (5)	0.1077 (3)	0.0135 (9)	
O7	0.6194 (7)	0.3516 (5)	-0.0132 (3)	0.0124 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.0117 (2)	0.00914 (19)	0.0115 (2)	-0.00027 (13)	-0.00038 (13)	0.00043 (13)
As1	0.0103 (3)	0.0060 (3)	0.0079 (3)	0.0003 (2)	-0.0006 (2)	-0.0002 (2)
As2	0.0104 (3)	0.0082 (3)	0.0069 (3)	-0.0001 (2)	0.0000 (2)	0.0000 (2)
Cu1	0.0144 (4)	0.0067 (4)	0.0090 (4)	-0.0007 (3)	-0.0022 (3)	0.0006 (3)
01	0.012 (2)	0.011 (2)	0.011 (2)	0.0012 (15)	0.0017 (16)	-0.0003 (16)

Acta Cryst. (2015). C71, 330-337

supporting information

O2	0.010 (2)	0.016 (2)	0.024 (2)	0.0012 (17)	-0.0035 (18)	0.0004 (19)
03	0.019 (2)	0.007 (2)	0.016 (2)	0.0013 (17)	0.0022 (18)	0.0016 (17)
O4	0.022 (2)	0.0067 (19)	0.009 (2)	0.0017 (17)	-0.0015 (17)	0.0017 (16)
O5	0.016 (2)	0.014 (2)	0.013 (2)	0.0026 (17)	0.0058 (17)	0.0006 (17)
06	0.016 (2)	0.009 (2)	0.015 (2)	-0.0005 (16)	-0.0050 (17)	-0.0001 (17)
O7	0.010 (2)	0.015 (2)	0.012 (2)	-0.0029 (16)	-0.0003 (17)	0.0005 (16)

Geometric parameters (Å, °)

Ba1—O2	2.628 (4)	Cu1—O3	1.932 (4)
Ba1—O2 ⁱ	2.683 (5)	Cu1—O7	1.976 (4)
Ba1—O6 ⁱⁱ	2.764 (4)	Cu1—O6	1.983 (4)
Ba1—O7 ⁱⁱⁱ	2.803 (4)	Cu1—O1	2.025 (4)
Ba1—O1 ^{iv}	2.803 (4)	Cu1—O5	2.382 (4)
Ba1—O3 ⁱ	2.850 (4)	Cu1—Ba1 ^{vii}	3.6787 (10)
Ba1—O5 ^{iv}	2.904 (4)	Cu1—Ba1 ^{viii}	3.9494 (12)
Ba1—O1 ⁱⁱ	2.938 (4)	O1—As1 ^{vii}	1.685 (4)
Ba1—O5 ⁱⁱ	3.008 (4)	O1—Ba1 ^{viii}	2.803 (4)
Ba1—As1	3.5818 (10)	O1—Ba1 ^{vii}	2.938 (4)
Ba1—Cu1 ⁱⁱ	3.6787 (10)	O2—As1 ^{vii}	1.654 (4)
Ba1—As2	3.7950 (13)	O2—Ba1 ^{ix}	2.683 (5)
As1—O2 ⁱⁱ	1.654 (4)	O3—As1 ^{ix}	1.663 (4)
As1—O3 ⁱ	1.663 (4)	O3—Ba1 ^{ix}	2.850 (4)
As1—O1 ⁱⁱ	1.685 (4)	O4—As2 ^{ix}	1.752 (4)
As1—O4	1.744 (4)	O5—As2 ^{vi}	1.650 (4)
As1—Ba1 ⁱⁱ	3.8019 (11)	O5—Ba1 ^{viii}	2.904 (4)
As1—Ba1 ^v	3.8295 (9)	O5—Ba1 ^{vii}	3.008 (4)
As2—O5 ^{vi}	1.650 (4)	O6—Ba1 ^{vii}	2.764 (4)
As2—06	1.685 (4)	O7—As2 ⁱⁱⁱ	1.698 (4)
As2—O7 ⁱⁱⁱ	1.698 (4)	O7—Bal ⁱⁱⁱ	2.803 (4)
$As2-O4^i$	1.752 (4)		
$O_2 = P_{01} = O_2^{i}$	152 91 (10)		121 40 (17)
O_2 —Da1— O_2	133.01(10) 125.29(12)	$O_2 = A_{S1} = Ba_1$	131.49(17)
$O_2 - Da_1 - O_0^{ii}$	123.38(13)	O3 As1 Bal	54.22 (15)
$O_2 = Da_1 = O_0^{m}$	70.08 (13)	Of Asl Bal	34.33 (13) 120.01 (15)
02 0/	104.89(14)	O4 As1 Ba1	120.01(13)
$O_2 = Ba_1 = O_1^{m}$	91.88 (14)	$O2^{i}$ As1 Ba1"	35.13 (10)
$O_0^{$	80.15 (13)	O_3 As1 Ba1"	82.79 (16)
$O_2 - Ba_1 - O_1^{iv}$	90.97 (13)	$O1^{}AS1^{}Ba1^{}$	113.44 (13)
$O_2 - Bal - O_1^{ii}$	/1.4/(13)	O4—AsI—BaI"	133.13 (14)
$O6^{\text{H}}$ —Bal—O1 ^W	142.42 (13)	Bal—Asl—Bal"	101.86 (2)
O/m—Bal—Ol ^w	81.45 (12)	$O2^{i}$ AsI Balv	36.33 (16)
$O2-Ba1-O3^{1}$	96.66 (13)	O_3^{I} As I — Balv	152.13 (16)
$O2^{i}$ —Bal—O3 ⁱ	76.64 (13)	Ol ⁿ —Asl—Bal ^v	89.59 (15)
$O6^{\mu}$ —Bal—O3 ¹	70.14 (13)	O4—As1—Bal ^v	90.19 (15)
O^{m} Bal O^{3}	149.83 (13)	Bal—Asl—Bal ^v	137.295 (19)
$O1^{iv}$ —Ba1—O3 ⁱ	119.53 (12)	Ba1 ^u —As1—Ba1 ^v	69.617 (19)
O2—Ba1—O5 ^{iv}	83.98 (14)	O5 ^{vi} —As2—O6	115.4 (2)

O2 ⁱ —Ba1—O5 ^{iv}	70.11 (13)	O5 ^{vi} —As2—O7 ⁱⁱⁱ	117.7 (2)
O6 ⁱⁱ —Ba1—O5 ^{iv}	129.47 (13)	O6—As2—O7 ⁱⁱⁱ	108.5 (2)
O7 ⁱⁱⁱ —Ba1—O5 ^{iv}	136.35 (12)	$O5^{vi}$ —As2—O4 ⁱ	104.0 (2)
O1 ^{iv} —Ba1—O5 ^{iv}	55.40 (12)	$O6$ — $As2$ — $O4^i$	104.5 (2)
O3 ⁱ —Ba1—O5 ^{iv}	65.93 (12)	O7 ⁱⁱⁱ —As2—O4 ⁱ	105.4 (2)
O2—Ba1—O1 ⁱⁱ	70.08 (13)	O5 ^{vi} —As2—Ba1	159.52 (16)
O2 ⁱ —Ba1—O1 ⁱⁱ	121.67 (12)	O6—As2—Ba1	74.00 (15)
O6 ⁱⁱ —Ba1—O1 ⁱⁱ	58.97 (12)	O7 ⁱⁱⁱ —As2—Ba1	42.97 (15)
O7 ⁱⁱⁱ —Ba1—O1 ⁱⁱ	113.44 (12)	O4 ⁱ —As2—Ba1	90.18 (14)
O1 ^{iv} —Ba1—O1 ⁱⁱ	158.02 (6)	O3—Cu1—O7	87.90 (19)
O3 ⁱ —Ba1—O1 ⁱⁱ	54.80 (12)	O3—Cu1—O6	158.73 (19)
O5 ^{iv} —Ba1—O1 ⁱⁱ	109.76 (12)	O7—Cu1—O6	89.01 (18)
O2—Ba1—O5 ⁱⁱ	69.15 (13)	O3—Cu1—O1	91.48 (18)
O2 ⁱ —Ba1—O5 ⁱⁱ	137.03 (13)	O7—Cu1—O1	172.97 (17)
O6 ⁱⁱ —Ba1—O5 ⁱⁱ	65.41 (12)	06—Cu1—O1	89.03 (18)
O7 ⁱⁱⁱ —Ba1—O5 ⁱⁱ	63.22 (12)	O3—Cu1—O5	109.54 (17)
O1 ^{iv} —Ba1—O5 ⁱⁱ	131.40 (12)	O7—Cu1—O5	113.23 (17)
O3 ⁱ —Ba1—O5 ⁱⁱ	106.90 (12)	O6—Cu1—O5	90.99 (17)
O5 ^{iv} —Ba1—O5 ⁱⁱ	151.54 (11)	01—Cu1—O5	73.56 (16)
O1 ⁱⁱ —Ba1—O5 ⁱⁱ	53.01 (11)	O3—Cu1—Ba1 ^{vii}	142.53 (14)
O2—Ba1—As1	83.13 (10)	O7—Cu1—Ba1 ^{vii}	128.98 (13)
O2 ⁱ —Ba1—As1	99.08 (10)	O6—Cu1—Ba1 ^{vii}	47.66 (12)
O6 ⁱⁱ —Ba1—As1	61.04 (9)	O1—Cu1—Ba1 ^{vii}	52.83 (12)
O7 ⁱⁱⁱ —Ba1—As1	135.40 (9)	O5—Cu1—Ba1 ^{vii}	54.59 (11)
O1 ^{iv} —Ba1—As1	142.98 (9)	O3—Cu1—Ba1 ^{viii}	75.98 (14)
O3 ⁱ —Ba1—As1	27.04 (8)	O7—Cu1—Ba1 ^{viii}	143.84 (13)
O5 ^{iv} —Ba1—As1	87.60 (9)	O6—Cu1—Ba1 ^{viii}	117.12 (13)
O1 ⁱⁱ —Ba1—As1	27.77 (8)	O1—Cu1—Ba1 ^{viii}	42.25 (12)
O5 ⁱⁱ —Ba1—As1	80.23 (8)	O5—Cu1—Ba1 ^{viii}	46.97 (11)
O2—Ba1—Cu1 ⁱⁱ	93.45 (10)	Ba1 ^{vii} —Cu1—Ba1 ^{viii}	69.55 (2)
O2 ⁱ —Ba1—Cu1 ⁱⁱ	108.16 (9)	As1 ^{vii} —O1—Cu1	112.7 (2)
O6 ⁱⁱ —Ba1—Cu1 ⁱⁱ	32.03 (9)	As1 ^{vii} —O1—Ba1 ^{viii}	133.9 (2)
O7 ⁱⁱⁱ —Ba1—Cu1 ⁱⁱ	85.05 (9)	Cu1—O1—Ba1 ^{viii}	108.69 (17)
O1 ^{iv} —Ba1—Cu1 ⁱⁱ	166.46 (9)	As1 ^{vii} —O1—Ba1 ^{vii}	97.90 (18)
O3 ⁱ —Ba1—Cu1 ⁱⁱ	72.65 (9)	Cu1—O1—Ba1 ^{vii}	93.86 (15)
O5 ^{iv} —Ba1—Cu1 ⁱⁱ	137.83 (9)	Ba1 ^{viii} —O1—Ba1 ^{vii}	98.69 (13)
O1 ⁱⁱ —Ba1—Cu1 ⁱⁱ	33.32 (8)	As1 ^{vii} —O2—Ba1	123.6 (2)
O5 ⁱⁱ —Ba1—Cu1 ⁱⁱ	40.19 (8)	As1 ^{vii} —O2—Ba1 ^{ix}	122.2 (2)
As1—Ba1—Cu1 ⁱⁱ	50.434 (18)	Ba1—O2—Ba1 ^{ix}	110.24 (15)
O2—Ba1—As2	90.73 (10)	As1 ^{ix} —O3—Cu1	138.7 (3)
O2 ⁱ —Ba1—As2	97.19 (10)	As1 ^{ix} —O3—Ba1 ^{ix}	101.80 (18)
O6 ⁱⁱ —Ba1—As2	104.54 (9)	Cu1—O3—Ba1 ^{ix}	114.94 (18)
O7 ⁱⁱⁱ —Ba1—As2	24.39 (9)	As1—O4—As2 ^{ix}	125.3 (2)
O1 ^{iv} —Ba1—As2	61.30 (9)	As2 ^{vi} —O5—Cu1	122.7 (2)
O3 ⁱ —Ba1—As2	172.51 (9)	As2 ^{vi} —O5—Ba1 ^{viii}	126.4 (2)
O5 ^{iv} —Ba1—As2	116.28 (8)	Cu1—O5—Ba1 ^{viii}	96.18 (14)
Ol ⁱⁱ —Bal—As2	127.56 (8)	As2 ^{vi} —O5—Ba1 ^{vii}	121.3 (2)
O5 ⁱⁱ —Ba1—As2	74.62 (8)	Cu1—O5—Ba1 ^{vii}	85.23 (12)

As1—Ba1—As2	154.659 (18)	Ba1 ^{viii} —O5—Ba1 ^{vii}	94.90 (13)
Cu1 ⁱⁱ —Ba1—As2	105.81 (2)	As2—O6—Cu1	120.0 (2)
O2 ⁱⁱ —As1—O3 ⁱ	115.9 (2)	As2—O6—Ba1 ^{vii}	132.3 (2)
O2 ⁱⁱ —As1—O1 ⁱⁱ	112.0 (2)	Cu1—O6—Ba1 ^{vii}	100.32 (17)
O3 ⁱ —As1—O1 ⁱⁱ	105.5 (2)	As2 ⁱⁱⁱ —O7—Cu1	116.1 (2)
O2 ⁱⁱ —As1—O4	108.5 (2)	As2 ⁱⁱⁱ —O7—Ba1 ⁱⁱⁱ	112.6 (2)
O3 ⁱ —As1—O4	106.6 (2)	Cu1—O7—Ba1 ⁱⁱⁱ	130.72 (19)
O1 ⁱⁱ —As1—O4	108.0 (2)		

Symmetry codes: (i) -*x*+1/2, *y*+1/2, -*z*+1/2; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*+1, -*z*; (iv) -*x*+3/2, *y*+1/2, -*z*+1/2; (v) -*x*-1/2, *y*-1/2, -*z*+1/2; (vi) -*x*+2, -*y*+1, -*z*; (vii) *x*+1, *y*, *z*; (viii) -*x*+3/2, *y*-1/2, -*z*+1/2; (iv) -*x*+1/2, *y*-1/2, -*z*+1/2; (vi) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) -*x*+3/2, *y*-1/2, -*z*+1/2; (vi) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) -*x*+3/2, *y*-1/2, -*z*+1/2; (vi) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) -*x*+3/2, *y*-1/2, -*z*+1/2; (vi) -*x*+3/2, -*z*+1/2;