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Abstract The study of stable minimal surfaces in Riemannian 3-manifolds
(M, g) with non-negative scalar curvature has a rich history. In this paper,
we prove rigidity of such surfaces when (M, g) is asymptotically flat and
has horizon boundary. As a consequence, we obtain an effective version of
the positive mass theorem in terms of isoperimetric or, more generally, closed
volume-preserving stable CMC surfaces that is appealing from both a physical
and a purely geometric point of view. We also include a proof of the following
conjecture of Schoen: An asymptotically flat Riemannian 3-manifold with
non-negative scalar curvature that contains an unbounded area-minimizing
surface is isometric to flat R3.

1 Introduction

The geometry of stable minimal and volume-preserving stable constant
mean curvature surfaces in asymptotically flat 3-manifolds (M, g) with
non-negative scalar curvature is witness to the physical properties of the space-
times containing such (M, g) as maximal Cauchy hypersurfaces; see e.g.
[9,10,20,37,38,55,64]. The transition from positive to non-negative scalar

B Michael Eichmair
michael.eichmair@univie.ac.at

1 ETH Institute for Theoretical Studies, Clausiusstrasse 47, 8092 Zurich, Switzerland

2 DPMMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK

3 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1,
1090 Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-016-0667-3&domain=pdf


976 A. Carlotto et al.

curvature of (M, g), which is so crucial for physical applications, is a par-
ticularly delicate aspect in the analysis of such surfaces. Here we establish
optimal rigidity results in this context that apply very generally. We apply
them to obtain a precise understanding of the behavior of large isoperimetric
or, more generally, closed volume-preserving stable constant mean curvature
surfaces in (M, g) that extends the results of Brendle and Eichmair [13] and
Eichmair and Metzger [27–29]. In combination with existing literature, this
yields a rather complete analogy between the picture in (M, g) and classical
results in Euclidean space.

We review the standard terminology and conventions that we use here in
Appendix A. In particular, we follow the convention that stable minimal sur-
faces are by definition two-sided.

To provide context, we recall a celebrated application of the second varia-
tion of area formula due to Schoen and Yau [63, Theorem 6.1]. Assume (for
contradiction) that we are given a metric of positive scalar curvature on the
3-torusT3. Using results from geometric measure theory, one can find a closed
surface � ⊂ T

3 of non-zero genus that minimizes area in its homology class
with respect to this metric. In particular, � is a stable minimal surface. Using
the function u = 1 in the stability inequality (17), we obtain that

0 ≥
∫

�

|h|2 + Ric(ν, ν).

We may rewrite the integrand as

|h|2 + Ric(ν, ν) = 1

2
(|h|2 + R) − K ,

using the Gauss equation (18). It follows that
∫

�

K > 0

which is incompatiblewith theGauss-Bonnet formula. ThusT3 does not admit
a metric of positive scalar curvature.

This crucialmechanism—positive ambient scalar curvature is incompatible
with the existence of stable minimal surfaces of most topological types—is at
the heart of another fundamental result proven by Schoen and Yau, the positive
mass theorem [64]: If (M, g) is asymptotically flat with horizon boundary and
non-negative integrable scalar curvature, then its ADM-mass is non-negative.
Moreover, theADM-mass vanishes if and only if (M, g) is isometric to Euclid-
ean space.Using an initial perturbation, they reduce the proof of non-negativity
of the ADM-mass to the special case where (M, g) is asymptotic to Schwarz-
schild with horizon boundary and positive scalar curvature. If the mass is

123



Effective versions of the positive mass theorem 977

negative, then the coordinate planes {x3 = ±�} with respect to the chart
at infinity act as barriers for area minimization in the slab-like region they
enclose in M , provided � > 1 is sufficiently large. Using geometric measure
theory, one finds an unbounded complete area-minimizing boundary � in this
slab. Such a surface has quadratic area growth. Using the logarithmic cut-off
trick in the second variation of area (observing the decay of the ambient Ricci
curvature to handle integrability issues), it follows as before that

0 <
1

2

∫
�

|h|2 + R =
∫

�

K .

A result of Cohn-Vossen shows that� ∼= R
2. Using that� is area-minimizing

in a slab, they argue that � is asymptotic to a horizontal plane and conclude
that the geodesic curvature of the circles � ∩ Sr in � converges to 2π as
r → ∞.1 The Gauss-Bonnet formula gives that

∫
�

K = 0,

a contradiction. It follows that the ADM-mass of (M, g) is non-negative.
Observe that this line of reasoning cannot establish the rigidity part (only

Euclidean space has vanishingmass) of the positivemass theorem.Conversely,
a beautiful idea of Lohkamp [41, Sect. 6] shows that the rigidity assertion of
the positivemass theorem implies the non-negativity of ADM-mass in general.
Indeed, he shows that it suffices to prove that an asymptotically flatRiemannian
3-manifold with horizon boundary and non-negative scalar curvature is flat if
it is flat outside of a compact set.

The ideas of Schoen and Yau described above are instrumental to our results
here. We record the following technical variation on their work as a precursor
of Theorems 1.2 and 1.3 below.

Proposition 1.1 (Sect. 6 in [28]) Let (M, g) be an asymptotically flat Rie-
mannian 3-manifold. Assume that � ⊂ M is the unbounded component of an
area-minimizing boundary in (M, g), and that the scalar curvature of (M, g)
is non-negative along �. Then � ⊂ M is totally geodesic and the scalar
curvature of (M, g) vanishes along this surface. Moreover, for all ρ > 1 suf-
ficiently large, � intersects Sρ transversely in a nearly equatorial circle. The
Gauss curvature is integrable and

∫
�
K = 0.

We also mention that other proofs of the positive mass theorem (including
that of Witten [70] based on the Bochner formula for harmonic spinors and

1 An alternative argument for this part of the proof that also generalizes to stable minimal
surfaces with quadratic area growth was given in [27, Proposition 3.6]. The strategy of [27] is
exploited in the proof of Theorem 1.3 below.
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that of Huisken and Ilmanen [37] based on inverse mean curvature flow) have
been given.

The discoveries of Schoen and Yau have incited a remarkable surge of
activity investigating the relationship between scalar curvature, locally area-
minimizing (or stable minimal) surfaces, and the physical properties of
spacetimes evolving from asymptotically flat Riemannian 3-manifolds accord-
ing to the Einstein equations. This has lead to spectacular developments in
geometry and physics. We refer the reader to [2,10,22,31,32,37,59] to gain
an impression of the wealth and breadth of the repercussions.

The following rigidity result for scalar curvature was first proven by the
first-named author under the additional assumption of quadratic area growth
for the surface �. Subsequently, the quadratic area growth assumption was
removed independently (in the form of Theorem 1.2 below) by the first-named
author [16] and (in the form of Theorem 1.3 below) in a joint project of the
second- and third-named authors. The proof of Theorem 1.3 is included in this
paper.

Theorem 1.2 [16] Let (M, g) be an asymptotically flat Riemannian 3-
manifold with non-negative scalar curvature. Let � ⊂ M be a non-compact
properly embedded stable minimal surface. Then � is a totally geodesic flat
plane and the ambient scalar curvature vanishes along �. Such a surface
cannot exist under the additional assumption that (M, g) is asymptotic to
Schwarzschild with mass m > 0.

Theorem 1.3 Let (M, g) be a Riemannian 3-manifold with non-negative
scalar curvature that is asymptotic to Schwarzschild with mass m > 0
and which has horizon boundary. Every complete stable minimal immersion
ϕ : � → M that is proper is an embedding of a component of the horizon.

To obtain these results, it is necessary to understand how non-negative scalar
curvature keeps in check the a priori wild behavior at infinity of the minimal
surface. This difficulty does not arise in the original argument by Schoen
and Yau. The proofs of Theorems 1.2 and 1.3 use properness in a crucial
way. Moreover, the embeddedness assumption is essential in the derivation of
Theorem 1.2 in [16].

In spite of their geometric appeal, we cannot apply Theorems 1.2 and 1.3
to prove effective versions of the positive mass theorem such as Theorem 1.10
below. This is intimately related to the fact that properness is not preserved by
convergence of immersions. Our first main contribution here is the following
technical result that rectifies this:

Theorem 1.4 Let (M, g) be an asymptotically flat Riemannian 3-manifold
with non-negative scalar curvature. Assume that there is an unbounded com-
plete stable minimal immersion ϕ : � → M that does not cross itself. Then
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Effective versions of the positive mass theorem 979

(M, g) admits a complete non-compact properly embedded stable minimal
surface.

Using this, we obtain the following substantial improvement of Theorems
1.2 and 1.3:

Theorem 1.5 Let (M, g) be a Riemannian 3-manifold with non-negative
scalar curvature that is asymptotic to Schwarzschild with mass m > 0 and
which has horizon boundary. The only non-trivial complete stable minimal
immersions ϕ : � → M that do not cross themselves are embeddings of
components of the horizon.

For the proof of Theorem 1.4, we develop in Sect. 4 a general procedure
of extracting properly embedded top sheets from unbounded complete stable
minimal immersions that do not cross themselves. The method depends on a
purely analytic stability result—Corollary C.2—that restricts the topological
type of complete stable minimal immersions into (M, g).

The proof of the positive mass theorem suggests the following conjecture
[60, p. 48] of Schoen: An asymptotically flat Riemannian manifold with non-
negative scalar curvature that contains an unboundedarea-minimizing surface
is isometric to Euclidean space.We include here a proof of this conjecture and
that of a related rigidity result for slabs, both due to the second- and third-
named authors:

Theorem 1.6 The only asymptotically flat Riemannian 3-manifold with non-
negative scalar curvature that admits a non-compact area-minimizing bound-
ary is flat R3.

Werecall the precisemeaning ofarea-minimizing boundaries inAppendix I.

Theorem 1.7 Let (M, g) be an asymptotically flat Riemannian 3-manifold
with non-negative scalar curvature and with horizon boundary. Any two dis-
joint connected unbounded properly embedded complete minimal surfaces
in (M, g) bound a region that is isometric to a standard Euclidean slab
R
2 × [a, b].
The proofs of Theorems 1.6 and 1.7 are inspired by the recent refinement

due to Liu [40] of a strategy of Anderson and Rodríguez [2] to prove rigidity
results for complete manifolds with non-negative Ricci curvature.

We point that that we may excise the slab in the conclusion of Theorem
1.7 from (M, g) to produce a new smooth asymptotically flat Riemannian 3-
manifoldwith non-negative scalar curvature that contains a properly embedded
totally geodesic flat plane along which the ambient scalar curvature vanishes.

For comparison, we recall the following consequence of a gluing result due
to the first-named author and Schoen:
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Theorem 1.8 [17] There exists an asymptotically flat Riemannian metric g =
gi j dxi ⊗ dx j with non-negative scalar curvature and positive mass on R

3

such that gi j = δi j on R
2 × (0, ∞).

The coordinate planes R
2 × {z} with z > 0 in Theorem 1.8 are stable

minimal surfaces. In particular, the area-minimizing condition in Theorem 1.6
cannot be relaxed. We also see that the condition that (M, g) be asymptotic to
Schwarzschild in Theorem 1.5 is necessary.

There is a rich theory of rigidity results for (compact) minimal surfaces in
Riemannian 3-manifolds with a lower scalar-curvature bound. We refer the
reader to the papers [1,7,8,15,43,44,49,54] for several recent results in this
direction, and to the introductions of these papers for a complete overview.

Theorem 1.6 plays a role in the classification of initial data sets that admit
a global static potential. Let (M, g) be a connected Riemannian manifold that
admits a non-constant function f ∈ C∞(M) with L∗ f = 0, where

L∗ f = −(	 f )g + ∇d f − f Ric

is the formal adjoint of the linearisation of the scalar curvature operator at g.
We recall from e.g. [22] that when (M, g) is asymptotically flat, then its scalar
curvature vanishes and the condition that L∗ f = 0 is equivalent to

∇d f = f Ric and 	 f = 0,

implying that the spacetime

(Mo × R, g − f 2dt ⊗ dt) where Mo = {x ∈ M : f (x) > 0}

is a static solution of the vacuumEinstein equations.More generally, Galloway
and Miao show in [34] that when (M, g) is an asymptotically flat Riemannian
3-manifold—possibly with several ends—such that f vanishes on the bound-
ary of M , then every unbounded component of the (necessarily regular) level
set {x ∈ M : f (x) = 0} is an absolutely area-minimizing plane. As observed
in Sect. 4 of [34], Theorem 1.6 shows that such unbounded components can
only exist when (M, g) is flat R3 and f is a linear function. Together with
Corollary 1.1 of [48] and the refinement of the results of Bunting andMasood-
ul-Alam [14] in Proposition 4.1 of [48], both due toMiao and Tam, one obtains
the following classification result:

Corollary 1.9 Let (M, g) be an asymptotically flat Riemannian 3-manifold,
possibly with several ends, that admits a non-constant function f ∈ C∞(M)

with L∗ f = 0 that vanishes on the boundary of M. Then (M, g) is isometric
to either flat R3, or, for some m > 0, either Schwarzschild
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Effective versions of the positive mass theorem 981

(
{x ∈ R

3 : |x | ≥ m/2},
(
1 + m

2|x |
)4 3∑

i=1

dxi ⊗ dxi
)

or the doubled spatial Schwarzschild geometry

(
R
3\{0},

(
1 + m

2|x |
)4 3∑

i=1

dxi ⊗ dxi
)

.

We are grateful to Lucas Ambrozio and Pengzi Miao for valuable discussions
concerning this point.

We now turn our attention to the role played by closed volume-preserving
CMC surfaces in asymptotically flat manifolds.

In their groundbreaking paper [38], Huisken and Yau have shown that the
complement of a certain (large) compact subsetC of a Riemannian 3-manifold
(M, g) that is asymptotic to Schwarzschild with mass m > 0 admits a folia-
tion by closed volume-preserving CMC spheres {�H }H∈(0,H0] where �H has
(outward) mean curvature H . Importantly, they observed that each leaf �H is
characterized uniquely by its mean curvature among a large class of surfaces,
justifying reference to {�H }H∈(0,H0] as the canonical foliation of the end of
(M, g). In [57], Qing and Tian have given a delicate improvement of this
characterization showing that�H is in fact the only closed volume-preserving
stable CMC sphere of mean curvature H in (M, g) that encloses C . These
results of [38,57] are perturbative in nature in that only surfaces far out in the
chart at infinity are considered. They lie very deep even in the special case of
the exact Schwarzschild (spatial) geometry

(
R
3\Bm

2
(0),

(
1 + m

2|x |
)4 3∑

i=1

dxi ⊗ dxi
)

. (1)

We mention the spectacular recent characterization [11] by Brendle of closed
embedded constant mean curvature surfaces in Schwarzschild as the centered
coordinate spheres in this context.

In the next twomain results,we investigate the question of global uniqueness
results for large volume-preserving stable CMC surfaces in asymptotically flat
manifolds.

Theorem 1.10 Let (M, g) be an asymptotically flat Riemannian 3-manifold
with non-negative scalar curvature and horizon boundary. Assume that (M, g)
contains no properly embedded totally geodesic flat planes along which the
ambient scalar curvature vanishes. Let C ⊂ M be compact. There is α =
α(C) > 0 so that every connected closed volume-preserving stable CMC
surface � ⊂ M with

123



982 A. Carlotto et al.

area(�) ≥ α

is disjoint from C.

In conjunction with the uniqueness results from [38,57], we obtain the
following consequence:

Corollary 1.11 Let (M, g) be a Riemannian 3-manifold with non-negative
scalar curvature that is asymptotic to Schwarzschild with mass m > 0 and
which has horizon boundary. Let p ∈ M. Every connected closed volume-
preserving stable CMC surface � ⊂ M that contains p and which has
sufficiently large area is part of the canonical foliation.

Theorem 1.10 was proven by the third-named author and Metzger in [27]
under the (much) stronger assumption that (M, g) has positive scalar curvature.
As we have already mentioned, our improvement here is closely tied to the
generality of Theorem 1.4.

In [13], Brendle and the third-named author have constructed examples
of Riemannian 3-manifolds asymptotic to Schwarzschild with positive mass
that contain a sequence of larger and larger volume-preserving stable CMC
surfaces that diverge to infinity together with the regions they bound. Thus, in
the uniqueness results of [38,57], a proviso that the surfaces enclose somegiven
set is certainly necessary. When the assumption of Schwarzschild asymptotics
is dropped, the examples in Theorem 1.8 show even more dramatically that
some such a condition is necessary to obtain uniqueness results. Theorem 1.10
extends the results of [38,57] optimally in this sense.

We remark that much progress has been made recently in developing ana-
logues of the results of [38,57] in general asymptotically flat Riemannian
3-manifolds, see e.g. [36,42,53].

Christodoulou and Yau [20] have noted that the Hawking mass of volume-
preserving stable CMC spheres in asymptotically flat Riemannian 3-manifolds
with non-negative scalar curvature is non-negative. This observation makes
these surfaces particularly appealing from a physical standpoint. Geometri-
cally, they arise in the variational analysis of the fundamental question of
isoperimetry. The results described above beg the questionwhether each leaf of
the canonical foliation {�H }H∈(0,H0] has least area for the volume it encloses,
and whether it is uniquely characterized by this property. This global unique-
ness result was established by Metzger and the third-named author in [28]. (In
exact Schwarzschild, this was proven by Bray in his dissertation [9].) Unlike
the results based on stability that we have described above, the existence and
global uniqueness of isoperimetric regions of large volume has been verified
in higher dimensions as well [29].

The definition of the ADM-mass through flux integrals as in (15) and that of
related physical invariants that canonically associated with an asymptotically
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Effective versions of the positive mass theorem 983

flat Riemannian 3-manifold (M, g) is suggested by theHamiltonian formalism
of general relativity. The fact that the positive mass theorem was a longstand-
ing open problem is witness to the elusive nature of these concepts. Over the
past two decades, in a quest for quasi-local versions of these notions, consid-
erable effort has been spent on recasting these concepts in terms of geometric
properties of (M, g). A spectacular advance in this direction is the develop-
ment of an isoperimetric notion of mass by Huisken. Recall the classical fact
that a small geodesic ball in a Riemannian manifold that is centered at a point
of positive scalar curvature bounds more volume than a Euclidean ball of the
same surface area. An explicit computation gives that large centered coordi-
nate balls in Schwarzschild (which is scalar-flat) have the same property, and
that the “isoperimetric deficit” encodes the mass. Huisken has introduced the
concept of isoperimetric mass

mI SO = lim
r→∞

2

area(Sr )

(
vol(Br ) − area(Sr )3/2

6
√

π

)

which does not involve derivatives of the metric at all. In [30], Fan et al. have
shown that

mI SO = mADM

if the scalar curvature of (M, g) is integrable. Their derivation is based on a
striking integration byparts. Thus, ifmADM > 0, then large coordinate balls Br
in (M, g) containmore volume than balls of the same surface area in Euclidean
space. Togetherwith the positivemass theorem, this leads to a remarkable large
scale manifestation of non-negative scalar curvature. We note that this implies
that, in the examples constructed by Schoen and the first-named author that we
described above, sufficiently large spheres in the Euclidean half-space, though
evidently volume-preserving stable CMC surfaces, are not isoperimetric. We
include the following consequence of this discussion, which sharpens [29,
Theorem 1.2] of Metzger and the third-named author:

Theorem 1.12 Let (M, g) be an asymptotically flat Riemannian n-manifold
with horizon boundary, integrable scalar curvature, and positive ADM-mass.
For all V > 0 sufficiently large there is an isoperimetric region of volume V ,
i.e., there is a bounded region �V ⊂ M of volume V that contains the horizon
such that

area(∂�V ) = inf{area(∂�) : � ⊂ M smooth open region containing

the horizon, volumeV }. (2)
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984 A. Carlotto et al.

The region � is smooth away from a thin singular set of Hausdorff dimension
≤ n − 7.

Assume now that n = 3 and that the scalar curvature of (M, g) is non-
negative.Remarkably, isoperimetric regions�V exist in (M, g) forall volumes
V > 0 in this case. This follows from a beautiful observation due to Shi [66], as
we explain in Appendix K. It is natural to wonder about the behavior of�V for
large volumes V > 0. For simplicity of exposition, we assume for a moment
that M has empty boundary. Let �i = ∂�Vi where Vi → ∞. It has been
shown in [28] that these surfaces either diverge to infinity as i → ∞, or that
alternatively a subsequence of these surfaces converges geometrically to a non-
compact area-minimizing boundary� ⊂ M . In view of Theorem1.6, the latter
is impossible unless (M, g) is flat R3. We arrive at the dichotomy that large
isoperimetric regions in (M, g) are either drawn far into the asymptotically
flat end, or they contain the center of the manifold.

Corollary 1.13 Let (M, g) be an asymptotically flat Riemannian 3-manifold
with non-negative scalar curvature and positive mass. Let U ⊂ M be a
bounded open subset that contains the boundary of M. There is V0 > 0 so that
for every isoperimetric region � ⊂ M of volume V ≥ V0, either U ⊂ �V or
U ∩�V is a thin smooth region that is bounded by the components of ∂M and
nearby stable constant mean curvature surfaces.

Note that the conclusion of the corollary is wrong for flat R3. When the scalar
curvature of (M, g) is everywhere positive, this result was observed as Corol-
lary 6.2 of [28]. The role of Theorem 1.6 here is that of Theorem 1.5 in the
proof of Corollary 1.11.

2 Sheeting of volume-preserving stable CMC surfaces

Proposition 2.1 Let (M, g) be a homogeneously regular Riemannian 3-
manifold with non-negative scalar curvature R ≥ 0. Assume that there is
a bounded open set O ⊂ M and a sequence {�k}∞k=1 of connected closed
volume-preserving stable CMC surfaces in (M, g) with

lim
k→∞ area(O ∩ �k) = ∞. (3)

There exists a totally geodesic stable minimal immersion ϕ : � → M that
does not cross itself. Moreover, � with the induced metric is conformal to the
plane and the ambient scalar curvature vanishes along this immersion.

Proof It follows from (20) and (3) that themean curvatures of the surfaces tend
to 0 as k → ∞. By Lemma D.2, the second fundamental forms of the surfaces
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are bounded independently of k. Passing to a subsequence if necessary, we can
find p ∈ M such that

lim
k→∞ area(Br (p) ∩ �k) = ∞ (4)

for all r > 0. Choose base points x∗
k ∈ �k for the submanifolds �k with

limk→∞ x∗
k = p. Passing to a convergent subsequence, we obtain a complete

minimal immersion ϕ̃ : �̃ → M with base point x̃∗ such that ϕ̃(x̃∗) = p. As
it is the limit of embedded surfaces, this immersion does not cross itself. Its
second fundamental form is bounded. In particular, the area of small geodesic
balls in �̃ is bounded below uniformly in terms of the radius. We see from (3)
that �̃ is non-compact.

Let π : � → �̃ be the universal cover of �̃. Let x∗ ∈ � be a point such
that π(x∗) = x̃∗. Consider the immersion ϕ = ϕ̃ ◦ π : � → M .

In the argument below, we denote the second fundamental forms of the
submanifolds �k and the immersion ϕ : � → M by hk and by h respectively.
LetU ⊂ � be open, bounded, connected, and simply connected with x∗ ∈ U .
Fix r > 0 sufficiently small.

Using the curvature bounds and (4), upon passing to a further subsequence,
we see that there are n(k) components of Br (p) ∩ �k that are geometrically
close to one another, where n(k) is strictly increasing in k. In fact, we can
choose points x1k , . . . , x

n(k)
k ∈ Br (p) ∩ �k contained in these components

such that x j
k → p as k → ∞ for every j ≥ 1. Using the maximum principle,

we see that for every j ≥ 1, the submanifolds �k with respective base points
x j
k converge to to an immersion which agrees with ϕ : � → M after passing

to the universal cover. It follows that we can find u1k, . . . , u
n(k)
k : U → R such

that u j
k → 0 in C2

loc(U ) as k → ∞ for every j ≥ 1, and such that

�
j
k =

{
exp u j

k (x)ν(ϕ(x)) : x ∈ U
}

are disjoint subsets of �k for every j = 1, . . . , n(k).
Assume that there is a point in � where |h|2 + R ◦ ϕ > 2δ for some

δ > 0. Let U ⊂ � be a subset as above that contains this point. Fix k ≥ 1
sufficiently large. Then, for each j ∈ {1, . . . , n(k)}, this implies that the surface
�

j
k contains a subset where |hk |2 + R > δ whose area is bounded below

independently of k. Because n(k) can be taken arbitrarily large, this contradicts
(20). It follows that ϕ : � → M is totally geodesic and R ◦ ϕ = 0.

To see that ϕ : � → M is stable, it is enough to show that every bounded
open subset U ⊂ � admits a positive Jacobi function. The argument below
is similar to [67, p. 333], [45, p. 732], or [46, p. 493]. We may assume that
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986 A. Carlotto et al.

U is simply connected and that x∗ ∈ U . By the argument above, �k contains
two disjoint pieces that appear as small graphs above U whose unit normals
approximately point in the same direction. The defining functions of these
graphs are ordered. They tend to zero in C2

loc(U ) as k → ∞. These functions
satisfy the same graphical prescribed constant mean curvature equation on
U . Hence, their difference is a positive solution of a linear uniformly elliptic
partial differential equation. By the Harnack principle, the supremum and the
infimum of this solution are comparable on small balls. As in [67, p. 333], we
may rescale and pass to a subsequence that converges to a positive solution of
the Jacobi equation on U .

It follows from [32, Theorem 3(ii)] that � with the induced metric is con-
formal to the plane. ��

3 Bounded complete stable minimal immersions

Proposition 3.1 Let (M, g) be an asymptotically flat Riemannian 3-manifold
with horizon boundary. Every complete minimal immersion ϕ : � → M
with uniformly bounded second fundamental form is either unbounded or an
embedding of a component of the horizon.

Proof Assume that the trace ϕ(�) of the immersion ϕ : � → M is contained
in a compact set. Let S be the union of the horizon and the closure of ϕ(�).
There is a closed minimal surface in M that contains S. To see this, let r > 1
large be such that S ⊂ Br and such that the mean curvature of the coordinate
sphere Sr with respect to the outward pointing unit normal is bounded below
by H0 > 0.

Let H ∈ (0, H0). Consider the functional

� �→ FH (�) = area(∂�) − H vol(�)

on

A = {� : � ⊂ M is open with smooth boundary and S ⊂ � ⊂ Br }.
The curvature bounds from Lemma D.2 together with the completeness of
the immersion ensure that S acts as an effective geometric barrier for the
minimization of this functional in the following sense: There is δ > 0 small
depending on H ∈ (0, H0) such that given � ∈ A with

dist(∂�, ∂(Br\S)) < δ

there is �̃ ∈ A with

dist(∂�̃, ∂(Br\S)) ≥ δ
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Effective versions of the positive mass theorem 987

such that

FH (�̃) < FH (�).

This follows from a classical calibration argument, see for example [24,
Lemma 7.2], based on vector fields as described in LemmaG.1. Standard argu-
ments of geometric measure theory, see for example [24,33], imply that there
is a minimizer �H ∈ A of FH . Its boundary �H = ∂�H is a closed hyper-
surface in Br\S with constant (outward) mean curvature H that is strongly
stable, i.e., its Jacobi operator is non-negative definite. We obtain that

area(�H ) ≤ area(Sr )

fromdirect comparison. In conjunctionwith strong stability,we obtain uniform
curvature estimates for�H from e.g. [62] or [61]. It follows that the Hausdorff
distance between�H and the horizon tends to zero as H ↘ 0, since otherwise
we could find (by extraction of a convergent subsequence) a closed minimal
surface in (M, g) that is not a component of the horizon. In particular, the trace
of the original immersion is contained in a component of the horizon. Since
the components are spheres, it follows that the immersion is an embedding. ��
Remark 3.2 The proof of the preceding lemma should be compared to those
of [37, Lemma 4.1] and [26, Theorem 4.1]. The key point is to recognize that
the trace of the immersion acts as a barrier for area minimization.

4 Top sheets

Lemma 4.1 Let (M, g) be an asymptotically flat Riemannian 3-manifold. Let
ϕ : � → M be an unbounded complete stable minimal immersion that does
not cross itself. For every ε > 0 there is r0 > 0 so that for all r ≥ r0 there is
a plane � = �(r) through the origin in the chart at infinity with

sup
{
r−1dist(ϕ(x), �) + |proj�(ν(x))| : x ∈ ϕ−1(Sr )

}
< ε.

Proof All rescalings take place in the chart at infinity.
Suppose, for a contradiction, that for some ε > 0 there is a sequence 1 <

rk → ∞ such that

sup{r−1
k dist(ϕ(x), �) + |proj�(ν(x))| : p ∈ ϕ−1(Srk )} ≥ ε

for every plane � through the origin. Let x∗
k ∈ � be points with |ϕ(x∗

k )| = rk .
It follows from Proposition E.4 that there is a plane �1 through the origin so
that, after passing to a subsequence, the rescaled immersions
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ϕ−1(M\B1) → R
3\B1/rk (0) given by x �→ ϕ(x)/rk

with respective base points x∗
k converge to an immersion

ϕ1 : �1 → R
3\{0}

with ϕ1(�1) = �1\{0}. Let y∗
k ∈ � be points such that ϕ(y∗

k ) ∈ Srk and

r−1
k dist(ϕ(y∗

k ), �1) + |proj�1
(ν(y∗

k ))| ≥ ε

2
. (5)

By Proposition E.4, there is a plane �2 through the origin such that a
subsequence of the immersions

ϕ−1(M\B1) → R
3\B1/rk (0) given by x �→ ϕ(x)/rk

with respective base points y∗
k converges to an immersion

ϕ2 : �2 → R
3\{0}

with ϕ2(�2) = �2\{0}. We must have that �1 = �2 because the original
immersion does not cross itself. This contradicts (5). ��
Proposition 4.2 Let (M, g) be an asymptotically flat Riemannian 3-manifold
with non-negative scalar curvature. Assume that there is an unbounded com-
plete stable minimal injective immersion ϕ : � → M. Then there is a proper
such embedding.

Proof All rescalings take place in the chart at infinity.
By Lemma 4.1, after a rotation of the chart at infinity, there is r > 1 large

so that

sup
{
dist(ϕ(x), �) : x ∈ ϕ−1(Sr )

} ≤ r/2

where � = {x3 = 0} and

|ν(x) · e3| ≥ 1

2
(6)

for all x ∈ � with |ϕ(x)| = r .
Let x∗

k ∈ � be points such that |ϕ(x∗
k )| = r and

lim
k→∞ ϕ3(x∗

k ) = sup
{
ϕ3(x) : x ∈ � with |ϕ(x)| = r

}
.
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Here, ϕ3 = x3 ◦ ϕ on ϕ−1(M\B1). The second fundamental form of the
immersion is bounded by Lemma D.2. The pointed immersions ϕ : � → M
with respective base points x∗

k subconverge to an unbounded complete stable
minimal immersion ϕ̂ : �̂ → M with base point x̂∗ that does not cross itself
and such that ϕ̂(x̂∗) ∈ Sr . It follows fromCorollaryC.2 that �̂with the induced
metric is conformal to the plane. Lemma F.2 shows that ϕ̂ is injective. Note
that

ϕ̂3(x̂∗) = sup{ϕ̂3(x) : x̂ ∈ �̂ with |ϕ̂(x̂)| = r}. (7)

Thus ϕ̂(�̂) ∩ Sr is a disjoint union of traces of complete injectively immersed
curves. In view of (6), these curves are either infinite spirals or simple and
closed. The curve containing ϕ̂(x̂∗) is simple and closed by (6) and (7). The
preimage γ of this curve under ϕ̂ is simple and closed in �̂. By the maximum
principle, the image under ϕ̂ of the bounded open region in �̂ bounded by γ

is contained in Br . Finally, a continuity argument using Lemma E.3 gives that
ϕ̂ : �̂ → M is a proper embedding. ��

5 Proofs of main theorems

Proof of Theorem 1.3 Any non-compact, proper immersion ϕ : � → M must
have unbounded trace. It follows from Corollary C.2 that � with the induced
metric is conformal to the plane. The Ricci tensor of the Schwarzschild metric
(1) is given by

m

|x |3
(
1 + m

2|x |
)−2 (

δi j − 3
xkx�

|x |2 δikδ j�

)
dxi ⊗ dx j .

In conjunction with Lemma E.5, we see that

Ric(ν, ν)(x) ≥ m

2
|ϕ(x)|−3 (8)

holds for all x ∈ � with |ϕ(x)| sufficiently large. Since the immersion is
proper, it follows that the negative part of Ric(ν, ν) is integrable. Using the
conformal invariance of the Dirichlet energy in dimension two, the logarithmic
cut-off trick, and Fatou’s lemma, we obtain that

∫
�

|h|2 + Ric(ν, ν) ≤ 0 (9)

from stability. It follows that the function

x �→ |ϕ(x)|−3
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is integrable along the immersion. Using also the Gauss equation (18) and the
estimate

R ◦ ϕ(x) = o(|ϕ(x)|−3) as |ϕ(x)| → ∞, (10)

we see that the Gauss curvature of the immersion is integrable. Rewriting the
integrand in (9) using the Gauss equation in the manner of Schoen and Yau,
we conclude that

1

2

∫
�

|h|2 + R ◦ ϕ ≤
∫

�

K .

In particular,

0 ≤
∫

�

K . (11)

For r > 1 sufficiently large, we have that �r = ϕ−1(Br ) is a smooth bounded
region by Lemma E.3. In fact, it follows from the argument in the proof of
Lemma E.3 that �r is connected. The maximum principle gives that �r is
simply connected.

At this point, we argue as in [27, Proposition 3.6], except that we use limits
of pointed immersions instead of limits in the sense of geometric measure
theory. By Proposition E.4, the geodesic curvature of the boundary of �r with
respect to the induced metric is given by

κ = (1 + o(1))/r as r → ∞.

Moreover,2

lim sup
r→∞

length(∂�r )

2πr
≥ 1.

Recall that the Gauss-Bonnet formula reads
∫

�r

K +
∫

∂�r

κ = 2π.

By (11), we obtain that

lim sup
r→∞

length(∂�r )

2πr
= 1 and

∫
�

K = 0.

2 In fact, either 1 = lim supr→∞ length(∂�r )/2πr or 2 ≤ lim supr→∞ length(∂�r )/2πr .
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Effective versions of the positive mass theorem 991

A modification of the argument in [32, p. 209] using the logarithmic cut-off
trick in the construction of the test functions ζ shows that K = 0; cf. [16,
p. 11]. This is incompatible with the Gauss equation (18) and the estimates (8)
and (10). ��
Remark 5.1 The argument from [32] applied as in the last step of the preceding
proof shows that the surface � ⊂ M in Proposition 1.1 is intrinsically flat.

Proof of Theorem 1.4 The domain � with the induced metric is conformal to
the plane by Corollary C.2. If the immersion is injective, the result follows
from Proposition 4.2. If not, it follows from Remark F.3 and Lemma F.5 that
the immersion ϕ : � → M factors to an unbounded complete stable minimal
immersion ϕ̃ : �̃ → M through a side-preserving covering π : �̃ → �. Note
that �̃ is cylindrical by topological reasons. This is impossible by Corollary
C.2. ��
Proof of Theorem 1.5 This is immediate from Theorems 1.4 and 1.3, Lemma
D.2, and Proposition 3.1. ��
Proof of Theorem 1.6 We first deal with the case where the boundary of M is
empty.

Let r0 > 0 be as in Appendix J. Let ρ0 > 1 be such that Sρ is convex for
all ρ ≥ ρ0. Every closed minimal surface of (M, g) is contained in Bρ0 .

Let � ⊂ M be a connected unbounded properly embedded and separating
surface that is area-minimizing with respect to g. Fix a component M+ of
the complement of � in M and choose a point p ∈ M+ to the following
specifications:

• Bρ0 is disjoint from {x ∈ M : distg(x, p) < 4r};
• r = distg(�, p)/2 < r0;
• � intersects {x ∈ M : distg(x, p) < 4r} in a single component, and the
function distg( · , p) is decreasing in the direction of the unit normal of this
component that is pointing into M+.
In Appendix J, we construct a family of conformal Riemannian metrics

{g(t)}t∈(0,ε) on M with the following properties (see also Fig. 1):

(i) g(t) → g smoothly as t → 0;
(ii) g(t) = g on {x ∈ M : distg(x, p) ≥ 3r};
(iii) g(t) ≤ g as quadratic forms on M , with strict inequality on {x ∈ M :

r < distg(x, p) < 3r};
(iv) The scalar curvature of g(t) is positive on {x ∈ M : r < distg(x, p) <

3r};
(v) The region M+ is weakly mean-convex with respect to g(t).

By taking ε > 0 smaller if necessary,wemay assume that all closedminimal
surfaces of (M, g(t)) are contained in Bρ0 .
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p r

2r

3r

Σ

Σρ(t)

Γρ Γρ

Sρ

g(t)=g

Rg(t)>0

M+

Fig. 1 A diagram of the perturbed metric g(t) and corresponding surface �ρ(t) used in the
proof of Theorem 1.6

According to Proposition 1.1, for all ρ ≥ ρ0 sufficiently large, the intersec-
tion of � with Sρ is transverse in a nearly equatorial circle. We denote this
circle by�ρ = �∩Sρ . Consider all properly embedded surfaces inM that have
boundary�ρ andwhich togetherwith�∩Bρ bound an open subset ofM+∩Bρ .
Using (v) and standard existence results from geometric measure theory, we
see that among all these surfaces there is one—call it �ρ(t)—that has least
area with respect to g(t). This surface is disjoint from M+ ∩ Sρ by convexity.
It has one component with boundary �ρ . Its other components are closed min-
imal surfaces in (M, g(t)) that are disjoint from {x ∈ M : distg(x, p) < 3r}.
Importantly though, �ρ(t) intersects {x ∈ M : distg(x, p) < 3r}, since oth-
erwise,

areag(�ρ(t)) = areag(t)(�ρ(t)) ≤ areag(t)(� ∩ Bρ) < areag(� ∩ Bρ).

(12)

The strict inequality holds on account of (iii) and because� intersects {x ∈ M :
distg(x, p) < 3r}. Observe that (12) violates the area-minimizing property of
� with respect to g.

Using standard convergence results from geometricmeasure theory, we now
find a connected unbounded properly embedded separating surface�(t) ⊂ M
as a subsequential geometric limit of �ρ(t) as ρ → ∞. By construction,�(t)
is contained in M+ ∪ � where it is area-minimizing with respect to g(t).
Moreover, �(t) intersects {x ∈ M : distg(x, p) ≤ 3r}. If �(t) intersects
{x ∈ M : distg(x, p) < 3r}, then it also intersects {x ∈ M : distg(x, p) ≤ r}
because of (iv) and Proposition 1.1. Passing to a subsequential geometric limit
as t → 0, we obtain a connected unbounded properly embedded separating
surface �+ ⊂ M that is contained in M+ ∪ � where it minimizes area with
respect to g. Using now the area-minimizing property of �, we see that �+
is in fact area-minimizing in all of M . Note that � intersects {x ∈ M :
distg(x, p) < 3r} while it is disjoint from {x ∈ M : distg(x, p) ≤ r}. It
follows from the maximum principle that � and �+ are disjoint.
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Effective versions of the positive mass theorem 993

Repeating this argument with choices of p ∈ M+ converging to a fixed
point on �, we obtain a sequence of totally geodesic intrinsically flat planes
in M (see Proposition 1.1 and Remark 5.1) along which the ambient scalar
curvature vanishes and that converge to� from one side. Proceeding as in [67,
p. 333] but using the first variation of the second fundamental form instead of
the Jacobi equation, cf. [2] and [40], we obtain a positive function f ∈ C∞(�)

such that

(∇2
� f )(X, Y ) + Rm(ν, X, Y, ν) f = 0 (13)

for all tangent fields X, Y of�. Here, ν is a unit normal field of�. Tracing this
equation and using that Ric(ν, ν) = 0 (this follows from the Gauss equation),
we obtain that

	� f = 0.

It follows that f is a positive constant. Going back to the original equation
(13), we see that Rm(ν, X, Y, ν) = 0 whenever X, Y are tangential to �. The
Codazzi equation implies that Rm(X, Y, Z , ν) = 0 provided that X, Y, Z are
tangential, and the Gauss equation gives that Rm(X, Y, Z ,W ) = 0 whenever
X, Y, Z ,W are tangential. It follows that the ambient curvature tensor vanishes
along �.

We may repeat this argument, beginning with any surface �+ constructed
as above. It follows that an open neighbourhood of � in (M, g) is flat and
in fact isometric to standard R

2 × (−ε, ε) for some ε > 0. Moreover, the
surfaces in M that correspond to R

2 × {z} where z ∈ (−ε, ε) are all area-
minimising. Using standard compactness properties of such surfaces and a
continuity argument, we conclude that (M, g) is isometric to flat R3.

We now turn to the general case where M has boundary. Consider � ∈
F with non-compact area-minimizing boundary � ⊂ M . The unique non-
compact component �0 ⊂ M of � is a separating surface. Let M− and M+
denote the two components of its complement in M . Note that the interior of
� ∩ M agrees with either M− (Case 1) or M+ (Case 2) outside of Bρ0 . The
proof that g is flat in M+ proceeds exactly as above, except for the following
change. In Case 1, we let �ρ(t) have least area among properly embedded
surfaces with boundary �ρ that bound together with �0 ∩ Bρ in M+ ∩ Bρ and
relative to M+ ∩ ∂M . In Case 2, we let �ρ(t) have least area among properly
embedded surfaces with boundary �ρ that bound together with M+ ∩ Sρ in
M+ ∩ Bρ and relative to M+ ∩ ∂M . Theorem 1.6 follows upon switching the
roles of M− and M+. ��
Remark 5.2 The use of the conformal change of metric in this proof is inspired
by an idea of Liu in his classification of complete non-compact Riemannian
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3-manifolds with non-negative Ricci curvature [40]. The observation (12) is
crucial in the proof of Theorem 1.6, as we use it to be sure that the surfaces
�ρ(t)donot run off asρ → ∞. This observation is not needed forTheorem1.7
below, since the solutions of Plateau problems considered in the proof cannot
escape the slab as we pass to the limit.We point out that at a related point in the
work of Anderson and Rodríguez [2], their assumption of non-negative Ricci
curvature is used tacitly in their delicate estimation of comparison surfaces [2,
(1.5)].

Proof of Theorem 1.7 Since (M, g) has horizon boundary,M is diffeomorphic
to the complement of a finite union of open balls with disjoint closures in R3.
Let � ⊂ M be the connected region bounded by two disjoint unbounded
properly embedded complete minimal surfaces �0, �1 ⊂ M . By solving a
sequence of Plateau problems in �∩ Br with boundary on �∩ Sr and passing
to a subsequential geometric limit as r → ∞,weobtain anunboundedproperly
embedded boundary� ⊂ M that is contained in �̄where it is area-minimizing
with respect to g. In particular, every component of � is a stable minimal
surface. By the maximum principle, if such a component intersects with �0
or �1, then it coincides with the respective surface. By Theorem 1.2, every
unbounded component is a totally geodesic flat plane along which the ambient
scalar curvature vanishes. We may now proceed as in the proof of Theorem
1.6. ��
Proof of Theorem 1.10 Assume that there exist a compact set C ⊂ M and
closed volume-preserving stable CMC surfaces �k ⊂ M with �k ∩ C �= ∅
and area(�k) → ∞. Suppose that

sup
k

area(Br ∩ �k) < ∞

for every r > 1. Using the methods from [27] we find an unbounded complete
stable minimal surface� ⊂ M that is properly embedded. (In fact, the surface
has quadratic area growth.) In conjunction with Theorem 1.2, this contradicts
our hypothesis.3

Assume now that

sup
k

area(Br ∩ �k) = ∞,

3 The proof of Theorem 1.2 simplifies considerably for surfaces with quadratic area growth.
Indeed, the arguments in [27, Sections 3 and 4] show that

∫
� K = 0. It follows from [32, p. 209]

that� is flat with its induced metric. Lemma E.5 is quite elementary for surfaces with quadratic
area growth, see the argument in [27, Lemma 3.5]. Finally, the Gauss equation rearrangement
argument applied in the manner of Schoen and Yau leads to a contradiction.
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for some r > 1. Using Proposition 2.1 we obtain a complete stable minimal
immersion ϕ : � → M that does not cross itself andwhere� with the induced
metric is conformal to the plane. Such an immersion must be unbounded by
Proposition 3.1 and the fact that the components of the horizon are spheres.
This contradicts Theorem 1.4. ��
Remark 5.3 We remark that in the preceding proof, because the immersion at
hand is totally geodesic, the argument for “passing to the top sheet” simplifies.
Indeed, we obtain the estimate

|hδ(x)| ≤ O
(|ϕ(x)|−2)

as |ϕ(x)| → ∞ for the Euclidean second fundamental form hδ of the immer-
sion. This can be integrated up at infinity to show that the immersion is
essentially a union of multi graphs above a fixed plane outside a large compact
set.

Proof of Theorem 1.12 Assume that for a sequence Vi → ∞ there is no
isoperimetric region (M, g) of volume Vi . The argument in the proof of [29,
Theorem 1.2] (see also [52, Theorem 2] for a much more general version of
this line of argument in the case where the horizon is empty) shows that there
is a minimizing sequence for

inf{area(∂�) : � ⊂ M smooth open region of volume Vi containing

the horizon} (14)

consisting of a divergent sequence of coordinate balls of radii r j (Vi ) and a
residual isoperimetric region �̃(Vi ), and that the volumes of these residual
regions diverges as i → ∞. Moreover, we have that

lim
j→∞

n − 1

r j (Vi )
= H(Vi )

where H(Vi ) is the (outward) mean curvature scalar of ∂�̃(Vi ). Let r̃(Vi ) =
2/H(Vi ). The blow-down argument in [29] shows that �̃(Vi ) is close to a
coordinate ball of radius 1 upon rescaling by r̃(Vi ) when i is sufficiently
large. We conclude that (14) is almost achieved by the union of two large
disjoint coordinate balls of comparable radii provided i is sufficiently large.
This contradicts the Euclidean isoperimetric inequality. ��
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Appendix A: Basic notions and conventions

Consider a complete Riemannian 3-manifold (M, g), possibly with boundary.
We say that (M, g) is asymptotically flat if there are a compact subset

K ⊂ M and a chart

M\K ∼=
{
x ∈ R

3 : |x | >
1

2

}

so that the components of the metric tensor have the form

gi j = δi j + bi j

where

|bi j | + |x ||∂kbi j | + |x |2|∂k∂�bi j | = o(1) as x → ∞.

Such a chart is called a structure at infinity. We always fix such a chart when
introducing an asymptotically flat Riemannian manifold and refer to it as the
chart at infinity. We also define a smooth positive function

| · | : M → (0, ∞)

that coincides with the Euclidean distance from the origin in R3\B1(0) in the
above chart and which on K is bounded by 1. Given r > 1, we let

Br = {p ∈ M : |p| < r} and Sr = {p ∈ M : |p| = r}.
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If the scalar curvature of (M, g) is integrable, then the limit

lim
r→∞

1

16π

∫
{|x |=r}

3∑
i, j=1

(
∂i gi j − ∂ j gii

) x j

|x | (15)

exists. It is independent of the choice of structure at infinity [5] and called
the ADM-mass (after Arnowitt et al. [3]) of the asymptotically flat manifold
(M, g).

We say that (M, g) asymptotically flat has horizon boundary if its only
closedminimal surfaces are the components of its boundary. It is known that the
boundary components of such (M, g) are area-minimizing spheres. Moreover,
M is diffeomorphic to the complement of a finite union of open balls with
disjoint closures in R

3. See [37, Lemma 4.1] and the references therein.
Let m ∈ R. We say that (M, g) is asymptotic to Schwarzschild with mass

m if there exists a chart as above such that

gi j =
(
1 + m

2|x |
)4

δi j + ci j (16)

where

|x ||ci j | + |x |2|∂kci j | + |x |3|∂k∂�ci j | = o(1) as x → ∞.

We say that an immersion ϕ : � → M does not cross itself if given
x1, x2 ∈ � with ϕ(x1) = ϕ(x2) there are U1,U2 ⊂ � open with x1 ∈ U1 and
x2 ∈ U2 such that ϕ(U1) = ϕ(U2) and so that the restrictions of ϕ : � → M
to U1 and U2 are embeddings.

The concept of “immersions that do not cross themselves” arises naturally
when studying limits of injective immersions of co-dimension one.

Consider a two-sided immersion ϕ : � → M of a boundaryless surface �

with unit normal ν : � → T M .
Below, we use Ric and R to denote the ambient Ricci tensor and scalar

curvature, we write H and h for the (scalar) mean curvature and the second
fundamental form of the immersion with respect to the designated unit normal,
we denote by K the Gauss curvature of the induced metric ϕ∗g on �, and we
compute gradients and lengths and perform integration with respect to the
induced metric.

Recall that ϕ : � → M is a stable minimal immersion if its mean curvature
vanishes and

∫
�

|∇u|2 ≥
∫

�

(|h|2 + Ric(ν, ν))u2 for all u ∈ C∞
c (�). (17)

123



998 A. Carlotto et al.

Such immersions arise in area minimization; cf. Appendix H.
Recall that ϕ : � → M is a volume-preserving stable CMC immersion if

its mean curvature is constant and
∫

�

|∇u|2 ≥
∫

�

(|h|2 + Ric(ν, ν))u2 for all u ∈ C∞
c (�) with

∫
�

u = 0.

Such immersions arise in areaminimizationwith a (relative) volumeconstraint,
i.e. in the isoperimetric problem; cf. Appendix H.

Finally, recall the Gauss equation

R ◦ ϕ = 2K + |h|2 − H2 + 2Ric(ν, ν). (18)

We emphasize that in this paper, we adopt the convention that constant
mean curvature immersions with non-zero mean curvature and stable minimal
immersions are by definition two-sided. The immersions considered here are
all of co-dimension one. The domain of a complete immersion is connected
by definition.

The notion of convergence for pointed immersions and compactness results
in the presence of uniform curvature bounds are used throughout the paper
and are reviewed in Appendix B.

Appendix B: A compactness result for pointed immersions

For a proof of the following compactness result, see [21].

Lemma B.1 (Limits of immersions) Let (M, g) be a complete Riemannian
manifold. Let

{ϕk : �k → M}∞k=1

be a sequence of complete constant mean curvature immersions such that

sup
k

sup
x∈�k

|hk(x)| < ∞.

Assume that there are points x∗
k ∈ �k such that the limit

lim
k→∞ ϕk(x

∗
k )

of points in M exists. There is a complete constant mean curvature immersion

ϕ : � → M
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and a point x∗ ∈ � so that a subsequence of the immersions

ϕk : �k → M with base points x∗
k

converges to

ϕ : � → M with base point x∗

in the sense of pointed immersions. By this we mean that the following holds
up to passing to a subsequence. Let ν be a unit normal field of ϕ. There are
bounded open subsets Uk ⊂ �k and Vk ⊂ � with

x∗
k ∈ Uk

and

x∗ ∈ V1 ⊂ V2 ⊂ . . . and � =
∞⋃
k=1

Vk

as well as diffeomorphisms

ψk : Vk → Uk

and functions uk ∈ C∞(Vk) with

uk → 0

in C∞
loc(V�) as � ≤ k → ∞ for every � ≥ 1 and

ψ−1
k (x∗

k ) → x∗

such that

(ϕk ◦ ψk)(x) = expϕ(x)(uk(x)ν(x))

for all x ∈ Vk.

Appendix C: Rigidity of stable minimal cylinders

The result in the following proposition was established under the additional
hypothesis that the Gauss curvature of the immersion is integrable in [32,
Theorem 3 (ii)] and left as an open problem in [32, Remark 2]. Solutions have
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been proposed in [6,50,58,65].4 Here we present a short proof based on a
result by Fischer-Colbrie.

Proposition C.1 Let (M, g) be a 3-dimensional Riemannian manifold with
non-negative scalar curvature R ≥ 0. Let ϕ : � → M be a complete stable
minimal immersion such that � with the induced metric is conformal to the
cylinder. Then the immersion is totally geodesic, the induced metric is flat, and
R ◦ ϕ = 0.

Proof According to [31, Proposition 1], there is a smooth function u > 0 on
� such that

−	u + Ku = 1

2
(|h|2 + R ◦ ϕ)u

where K and	 are respectively the Gauss curvature and the non-positive defi-
nite Laplace-Beltrami operator of the induced metric ϕ∗g on� and where |h|2
denotes the sum of squares of principal curvatures of the immersion. Theorem
1 in [31] ensures that the conformally related metric u2 ϕ∗g is complete. The
Gauss curvature of this metric is given by

1

u2

( |∇u|2
u2

+ K − 	u

u

)
= 1

u2

( |∇u|2
u2

+ |h|2 + R ◦ ϕ

2

)
(19)

where all geometric operations are with respect to the original induced metric.
In particular, it is non-negative. It follows from the splitting theoremofCheeger
and Gromoll [18] that u2 ϕ∗g is flat.5 The claim now follows from (19). ��
Corollary C.2 Let (M, g) be an asymptotically flat Riemannian 3-manifold
with non-negative scalar curvature. Let ϕ : � → M be an unbounded com-
plete stable minimal immersion. Then � with the induced metric is conformal
to the plane.

Proof Else, by [32, Theorem 3 (ii)],� with the induced metric is conformal to
the cylinder. By Proposition C.1, the induced metric is flat and the immersion
is totally geodesic. This implies the existence of simple closed geodesics far
out, contradicting asymptotic flatness. ��
4 It seems to us that the proof given in [65] “only” shows that there are no stable minimal
immersions of the cylinder into (M, g) if the ambient scalar curvature is positive; see the
argument given in [65, top of p. 216] and also the sentence after the statement of their Theorem
2. In the proof given in [50], consider the integral over the ball Br at the bottom of page 292.
In the evaluation of this integral using conformal invariance as suggested on the next page, we
do not see how the geometry of the “conformally changed” domain is controlled so that the
“order” of the test functions on the cylinder carries over.
5 In fact, the relevant two-dimensional case of the splitting theorem is due to Cohn-Vossen.
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Appendix D: Geometry of volume-preserving stable CMC immersions

Lemma D.1 [20] Let (M, g) be a Riemannian 3-manifold and

ϕ : � → M

be a connected closed volume-preserving stable CMC immersion. Then

∫
�

H2 + 2|h|2 + 2(R ◦ ϕ) ≤ 64π (20)

where R is the scalar curvature of (M, g) and H and h denote the mean
curvature and the second fundamental form of the immersion respectively. If
� is a sphere, then the bound on the right hand side may be lowered to 48π .

Lemma D.2 (Cf. [71, Theorem 7] and also [27, Proposition 2.2]) Let (M, g)
be a homogeneously regular Riemannian 3-manifold. Let α > 0. There is a
constant β > 0 with the following property. Let ϕ : � → M be a complete
volume-preserving stable CMC immersion whose mean curvature satisfies
|H | ≤ α. Then

sup
x∈�

|h(x)| ≤ β

where h denotes the second fundamental form of the immersion.

Lemma D.3 [27, Proposition 2.3] Let (M, g) be an asymptotically flat Rie-
mannian 3-manifold. Let C ⊂ M be compact and α > 0. There is a constant
β > 0 with the following property. Let ϕ : � → M be a complete volume-
preserving stable CMC immersion whose mean curvature satisfies |H | ≤ α

and such that

ϕ(�) ∩ C �= ∅.

Let h denote the second fundamental form of the immersion. Then

sup
x∈�

|ϕ(x)||h(x)| ≤ β.

Appendix E: Asymptotic behavior of stable minimal immersions

In this appendix, we investigate the qualitative behavior of the part of a sta-
ble minimal immersion that extends into the end of an asymptotically flat
Riemannian 3-manifold.
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The following result due to Gulliver and Lawson [35] extends the classical
result of Fischer-Colbrie and Schoen [32], do Carmo and Peng [23], as well
as Pogorelov [56] to the possible inclusion of an isolated singularity.

Lemma E.1 Let

ϕ : � → R
3\{0}

be a connected stable minimal immersion that is complete6 away from the
origin. Then ϕ(�) is a plane.

In conjunction with Lemma D.3, we obtain the following

Lemma E.2 Let (M, g) be an asymptotically flat Riemannian 3-manifold. Let

ϕ : � → M

be a complete stable minimal immersion. Then

|ϕ(x)||h(x)| = o(1)

as |ϕ(x)| → ∞.

The following lemma shows that complete stable minimal immersions in
asymptotically flat 3-manifolds have transverse intersection with all suffi-
ciently large coordinate spheres. It is based on the ideas of White [69, p. 251]
who observed a similar result for surfaces that are properly embedded in
B1(0)\{0} (see also the work of Meeks et al. [47, Lemma 4.1]). The generality
we require causes a complication that is not present in [47,69]. Specifically,
we need to address the failure of the Palais-Smale condition (due to lack of
properness) in the proof of the mountain pass lemma. Our reasoning here may
be of some independent interest.

Lemma E.3 Let (M, g) be an asymptotically flat Riemannian 3-manifold. Let
ϕ : � → M be a complete stable minimal immersion. There is r0 > 1 so that
the immersion is transverse to the centered coordinate sphere Sr for every
r ≥ r0.

Proof We work in the coordinate chart

M\B1 ∼= R
3\B1(0)

6 In other words, every sequence {xi }∞i=1 ⊂ � that is Cauchy with respect to the induced
Riemannian distance either has a limit in � or is such that |ϕ(xi )| → 0.
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at infinity. First, recall the elementary estimate

|ϕ(x)|2|hδ(x) − hg(x)| ≤ c
(|ϕ(x)||hg(x)| + 1

)

on ϕ−1(M\B1) which holds for a constant c > 0 that is independent of the
immersion. Here we use hg and hδ to denote the scalar-valued second funda-
mental forms with respect to the ambient metrics g and δ respectively. Using
also Lemma E.2 we obtain that

|ϕ(x)||hδ(x)| = o(1)

as |ϕ(x)| → ∞. Let f : � → R denote the function given by

x �→ |ϕ(x)|2.

Given x ∈ ϕ−1(M\B1) and v ∈ Tx� we have that

1

2

(
∂2� f

)
(x)(v, v) = |v|2 − hδ(x)(v, v)(νδ · ϕ(x))

where ∂2� f and νδ are respectively the Hessian of f and the normal of the
immersion, both take with respect to metric induced on � by the ambient
Euclidean metric. We obtain the convexity estimate

(
∂2� f

)
(x)(v, v) ≥ |v|2 (21)

provided |ϕ(x)| is sufficiently large. In particular, the critical points of f on
ϕ−1(M\Br ) are strict local minima provided r > 1 is sufficiently large.

In what follows, we rework the proof of the mountain pass lemma as pre-
sented in e.g. [68, pp. 74–76] or [39, pp. 332–334].

Let y ∈ ϕ−1(M\Br ) be a critical point of f . We let � denote the collection
of all continuous paths

[0, 1] �→ ϕ−1(M\Br )

with the property that |ϕ(γ (0))| = r and γ (1) = y. Let

α = inf
γ∈�

sup
t∈[0,1]

f (γ (t)).

Note that

r2 < f (y) < α.
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Choose paths γm ∈ � such that

α = lim
m→∞ sup

t∈[0,1]
f (γm(t)).

Consider the quantity

lim
δ→0

lim inf
m→∞ inf{|(∂� f )(x)| : x ∈ I (m, δ)} (22)

where

I (m, δ)={x ∈ � : there is t ∈ [0, 1] such that dist�(x, γm(t)) < δ and | f (γm(t)) − α| < δ} .

Here,

dist� : � × � → R

is the Riemannian distance on � with respect to the metric induced on � by
the ambient Euclidean metric. If the quantity in (22) vanishes, then—possibly
upon passing to a subsequence—there exist tm ∈ [0, 1] so that

f (γm(tm)) → α and (∂� f )(γm(tm)) → 0

contradicting the choice of the paths γm in view of the strict convexity estimate
(21) and the curvature estimates. Assume now that the quantity in (22) is
bounded below by ε > 0. Fix δ ∈ (0, 1) satisfying α > 2δ + r2. Up to
subsequences, we have that

|(∂� f )(x)| ≥ ε

for all x ∈ � for which there is t ∈ [0, 1] verifying

| f (γm(t)) − α| < δ and dist�(γm(t), x) < δ.

Let χ ∈ C∞(R) be a function such that 0 ≤ χ ≤ 1 everywhere, which is
one on the inverval [α − δ, α + δ], and which vanishes away from the interval
(α − 2δ, α + 2δ). The length of the vector field

x �→ −χ( f (x))(∂� f )(x)

is bounded by 2(α + 2δ). Owing to the curvature estimates, its flow exists for
all time. Let�s : � → � denote the time s diffeomorphism generated by this
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vector field. Note that �s ◦ γm ∈ �. As in the standard proof of the mountain
pass lemma, we conclude that

lim
s→∞ sup

t∈[0,1]
f (�s(γm(t)) ≤ max

{
α − δ, sup

t∈[0,1]
f (γm(t)) − δ ε

16α

}
.

This contradicts the choice of γm . ��
The following two results are obtained fromLemmaE.3 in a straightforward

manner.

Proposition E.4 Let (M, g) be an asymptotically flat Riemannian 3-manifold
and ϕ : � → M an unbounded complete stable minimal immersion. Let
{x∗

k }∞k=1 ⊂ � be points with

1 < rk = |ϕ(x∗
k )| → ∞ as k → ∞.

Consider the pointed immersion

ϕ−1(M\B1) → R
3\B1/rk (0) given by x �→ ϕ(x)/rk

with base point xk. Here we use the chart at infinity to identify M\B1 ∼=
R
3\B1(0). The trace of every subsequential limit of these pointed immersions

is a plane through the origin.

Lemma E.5 Let (M, g) be an asymptotically flat Riemannian 3-manifold. Let
ν be a unit normal field of a complete stable minimal immersion ϕ : � → M.
Then

ν(x) · ϕ(x)

|ϕ(x)| → 0 as |ϕ(x)| → ∞.

Appendix F: Quotients of immersions

In this appendix, we collect observations on quotients of minimal immersions
that do not cross themselves. The first two lemmas are elementary.

Lemma F.1 Let (M, g) be a Riemannian manifold. Let ϕ : � → M be a
minimal immersion that does not cross itself and where � has no boundary.
Every point x1 ∈ � has a neighborhood U1 ⊂ � with the following property.
Whenever x2 ∈ � is such that ϕ(x1) = ϕ(x2) there is a neighborhoodU2 ⊂ �

with x2 ∈ � and a diffeomorphism ψ : U1 → U2 so that

ψ(x1) = x2 and ϕ ◦ ψ = ϕ.
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Lemma F.2 Let (M, g) be a Riemannian manifold. Let ϕ : � → M be
a connected minimal immersion that does not cross itself where � has no
boundary. We say that two points x1, x2 ∈ � are equivalent and write

x1 ∼ x2 if ϕ(x1) = ϕ(x2).

The topological quotient �̃ = �/∼ is a smooth manifold. The quotient map

π : � → �̃ given by x �→ [x]∼
is a covering. There is a unique immersion ϕ̃ : �̃ → M such that the diagram

�

π
ϕ

�̃
ϕ̃

M

commutes.

Remark F.3 Let ϕ : � → M be a connected two-sided minimal immersion
that does not cross itself. Let ν : � → T M be a unit normal field. A variant
of the preceding lemma where we only identify points x1, x2 ∈ � with

ϕ(x1) = ϕ(x2) and ν(x1) = ν(x2)

allows us to factor through to a two-sidedminimal immersion ϕ̃ : �̃ → M that
is either injective or two-to-one by a side-preserving covering π : � → �̃.
A useful example to bear in mind in this context is the minimal immersion
S
2 → RP

3 obtained from following the antipodal map S
2 → RP

2 by the
equatorial embedding RP

2 → RP
3.

Remark F.4 A cover of a stable minimal immersion7 is still stable; see [32].
The converse of this statement is not true in general; see [46, p. 491].

The next result is a special case of [46, Lemma A.1(2)]. We include an
outline of the proof for convenient reference.

Lemma F.5 [46] Let (M, g) be a Riemannian 3-manifold. Let ϕ : � → M
be a complete stable minimal immersion such that � with the induced metric
is conformal to the plane. Let π : � → �̃ be a side-preserving covering

7 Recall that in this paper a stable minimal immersion is by definition two-sided.
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of surfaces where �̃ is non-compact. The map ϕ̃ : �̃ → M that makes the
diagram

�

π
ϕ

�̃
ϕ̃

M

commute is a complete stable minimal immersion.

Proof It suffices to consider the case where

� = R × R and �̃ = R × R/Z

and where

π : � → �̃ is given by (x, y) �→ (x, [y]).

Let T > 0. Assume that the domain (−T, T ) × R/Z is unstable for the
immersion

ϕ̃ : R × R/Z → M.

It follows that there is ũ ∈ C∞
c ((−T, T ) × R/Z) and δ > 0 such that

δ +
∫

(−T,T )×R/Z

|∇̃ũ|2 ≤
∫

(−T,T )×R/Z

(|h̃|2 + Ric(ν̃, ν̃))ũ2.

Let χ ∈ C∞((−3, 0)) be such that χ(x) = 1 for x > −1 and χ(x) = 0 for
x < −2. Given n ≥ 1, consider the cut-off function χn ∈ C∞

c ((−3, n + 3))
given by

χn(x) =

⎧⎪⎨
⎪⎩

χ(x) x ∈ (−3, 0)

1 x ∈ [0, n]
χ(−x + n) x ∈ (n, n + 3).

Set un = (ũ ◦ π)χn ∈ C∞
c (R2). Using the stability of the immersion

ϕ : R × R → M
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and equivariance of ϕ in the second component, we obtain that

0 ≥
∫

(−T,T )×(−3,n+3)

(|h|2 + Ric(ν, ν)
)
u2n − |∇un|2

= nδ +
∫

(−T,T )×((−3,0)∪(n,n+3))

(|h|2 + Ric(ν, ν)
)
u2n − |∇un|2

= nδ − c

where the constant c is independent of n. Taking n sufficiently large, we obtain
a contradiction. ��

Appendix G: Barriers for the functional � �→ area(∂�) − Hvol(�)

Lemma G.1 Let g be a Riemannian metric on B2(0) × (−2, 2) ⊂ R
m+1 and

let u ∈ C∞(B2(0)) have the following properties:

(i) −2 ≤ u(x) ≤ 2 for all x ∈ B2(0).
(ii) u(x) > 0 for all x ∈ B1(0).
(iii) u(x) ≤ 0 for all x ∈ B2(0) with |x | > 1.

Let ε ∈ (0, 1). The region

Dε = {(x, z) : x ∈ B1(0) and 0 < z < εu(x)}
is foliated by level sets of the function

v : B1(0) × (−2, 2) → R given by (x, z) �→ z

u(x)
.

Let (x0, z0) ∈ Dε. The vector field

X = ∇v

|∇v|
at the point (x0, z0) is equal to the upward pointing unit normal of the graph

x �→
(
x,

z0
u(x0)

u(x)

)

and its divergence at (x0, z0) is equal to the mean curvature of this graph
computed with respect to the upward pointing unit normal at (x0, z0). As
ε ↘ 0, the mean curvatures of these graphs approach the mean curvature of
the disk B1(0) × {0} where we identify points with the same first coordinate.
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Appendix H: Variation formulae for area and relative volume

In this section, we recall the first and second variation formulae for the area
and (relative) volume of immersions. We refer the reader to e.g. [4,10] for
derivations.

Let (M, g) be a Riemannian manifold. We consider a two-sided immersion
ϕ : � → M with unit normal ν : � → T M andmean curvature H ∈ C∞(�).
(We always take the mean curvature to be the tangential divergence of the
designated unit normal. Themean curvature vector field is thus given by−Hν.)
We also assume that neither M nor � have boundary.

Let U ∈ C∞(� × (−ε, ε)) be compactly supported in � and such that
U (x, 0) = 0 for all x ∈ �. Shrinking ε > 0, if necessary, we obtain a
variation {ϕt : � → M}t∈(−ε,ε) of ϕ : � → M through immersions

ϕt : � → M given by x �→ expU (x, t)ν(x).

Except for reparametrizations, every variation of ϕ : � → M arises in this
way. We have that

d

dt

∣∣∣
t=0

area of ϕt =
∫

�

H U̇ ( · , 0)
d2

dt2

∣∣∣
t=0

area of ϕt =
∫

�

H2 U̇ ( · , 0)2 + H Ü ( · , 0) + |∇(U̇ ( · , 0))|2

−(|h|2 + Ric(ν, ν))U̇ ( · , 0)2.

Observe the abuse of notation here: the area of ϕt may be infinite. Instead,
we should consider the measure (with respect to the induced metric) of the
spatial support ofU or that of any compact subset of � containing it. Assume
now that M is oriented. We define the relative volume of ϕt by integrating the
pull-back of the volume form of (M, g) by the map

(x, t) �→ ϕt (x)

across � × [0, t] if t ≥ 0 and across � × [t, 0] if t < 0. It follows that

d

dt

∣∣∣
t=0

relative volume of ϕt =
∫

�

U̇ ( · , 0)
d2

dt2

∣∣∣
t=0

relative volume of ϕt =
∫

�

Ü ( · , 0) + H U̇ ( · , 0)2.

Here, dots indicate derivatives with respect to the variation parameter, h is the
second fundamental form of ϕ : � → M , Ric is the ambient Ricci curvature,
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and integration, gradient, and lengths are taken with respect to the induced
metric ϕ∗g on �.

The special case whereU (x, t) = tu(x) for all (x, t) ∈ � × (−ε, ε) where
u ∈ C∞

c (�) is particularly important. Note that U̇ ( · , 0) = u in this case.

Appendix I: Area-minimizing boundaries

Let (M, g) be an asymptotically flat Riemannian 3-manifold. Extend M
inwards across each of its minimal boundary components by thin collar neigh-
borhoods to a new manifold M̂ without boundary. Denote the union of these
finitely many collar neighborhoods by C . We consider the collection F of all
properly embedded 3-dimensional submanifolds with boundary � ⊂ M̂ with
C ⊂ �. A surface � ⊂ M bounds in M relative to ∂M if it arises as the
boundary of such a smooth region. Note that ∂M bounds in this sense.

We say that the boundary of � ∈ F is area-minimizing if for all ρ > 1 and
�̃ ∈ F with �\Bρ = �̃\Bρ we have that8

area(B2ρ ∩ ∂�) ≤ area(B2ρ ∩ ∂�̃).

The components of the boundary � ⊂ M of such � ∈ F are stable minimal
surfaces in (M, g). It follows from the arguments in Sect. A of [28] that �

has at most one unbounded component �0. More precisely, if we consider the
homothetic blow-downs of � in the chart at infinity

M\U ∼= {
x ∈ R

3 : |x | > 1
}

by a sequence λi → ∞, then we can pass to a geometric subsequential limit
in R3\{0}. This limit is either a half-space through the origin, or empty in the
case where � is bounded.

Appendix J: A particular conformal change of metric

Deformations of the metric tensor such as the ones considered here have been
studied in great generality by Ehrlich in [25]; see also the paper by Liu [40].

8 We could also work with the larger class of all 3-dimensional submanifolds with locally finite
boundary area. However, by standard geometric measure theory, every such submanifold with
area-minimizing boundary is properly embedded.
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Let f ∈ C∞(R) be a non-positive function with support in the interval
[0, 3] such that

f (s) = − exp(18/(s − 3))

when s ∈ (1, 3). This definition is made so that

0 < f ′(s) and s f ′′(s) + 3 f ′(s) < 0

for all s ∈ (1, 3).
Let (M, g) be a homogeneously regular Riemannian 3-manifold. Choose

0 < r0 < inj(M, g)/4 so that

	gdistg( · , p)2 ≤ 8 on {x ∈ M : distg(x, p) ≤ 3r0}

for all p ∈ M . Here, 	g is the non-positive Laplace-Beltrami operator with
respect to g. Fix p ∈ M and 0 < r ≤ r0. Consider the function v : M → R

given by

x �→ r4 f (distg(x, p)/r).

Note that v is smooth, non-positive, and supported in {x ∈ M : distg(x, p) ≤
3r}. Moreover,

v < 0 and 	gv < 0

on {x ∈ M : r < distg(x, p) < 3r}.
For ε > 0 sufficiently small, a smooth family of conformal metrics

{g(t)}t∈(0,ε) with the properties needed in the proof of Theorem 1.6 is given
by

g(t) = (1 + tv)4g.

In fact, when u ∈ C∞(M) is positive and g̃ = u4g is a conformal metric, we
have that

u5Rg̃ = uRg − 8	gu

and

u3Hg̃ = uHg + 4(du)(νg)

along � where νg is the unit normal with respect to g.
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Appendix K: Existence of isoperimetric regions of all volumes

Brendle and the second-named author observed [12] that the monotonicity of
the Hawking mass along Huisken and Ilmanen’s weak inverse mean curvature
flow [37] can be combined with the co-area formula to give an explicit lower
bound for the volume swept out under inversemean curvature flowof a surface.
This insight was subsequently used by the second-named author to study the
large isoperimetric regions of asymptotically hyperbolic manifolds [19]. In a
recent preprint, Shi [66] observed that closely related arguments can be used to
construct regions whose isoperimetric ratio is better than Euclidean in non-flat
asymptotically flat manifolds that have non-negative scalar curvature. Here we
note that Shi’s observation implies the existence of isoperimetric regions of all
volumes in asymptotically flat 3-manifolds with non-negative scalar curvature.
This answers a question of Huisken.

Proposition K.1 Let (M, g) be an asymptotically flat Riemannian 3-manifold
with horizon boundary and non-negative scalar curvature. Then (M, g) admits
isoperimetric region for every volume, i.e., for every V > 0 there is a smooth
bounded region �V ⊂ M of volume V that contains the horizon such that

area(∂�V ) = inf{area(∂�) : �⊂M smooth open region containing the horizon, volume V }.
(23)

Proof The first part of the argument is as in [66]. Let r > 0. We claim that
there are bounded Borel sets � with finite perimeter � that lie arbitrarily far
out in the asymptotically flat region of (M, g) such that

H2
g(∂

∗�) = 4πr2 and L3
g(�) >

4

3
πr3.

To see this, fix a point p ∈ M that lies far out in the asymptotic region of
(M, g) and so that (M, g) is not flat at p. Let �τ = {u < τ } denote the region
swept out by the weak inverse mean curvature flow “starting at the point p” as
constructed in [37, Lemma 8.1]. We may assume (by [37, Lemma 1.6]) that
H2

g(∂
∗�τ) = 4πeτ . Because the scalar curvature of (M, g) is non-negative

and g is non-flat at p, the Hawking mass of ∂∗�τ is strictly positive for all
τ > 0. Thus, the argument in [12, Proposition 3] or in [66] shows that

L3
g(�τ ) > 2π

∫ τ

−∞
e
3t
2 dt = 4π

3
e
3τ
2

for all τ > 0. Choosing τ = 2 log r we obtain the desired region.
Using that (M, g) has horizon boundary, we see that its isoperimetric profile

is strictly increasing as in the proof of [19, Lemma 3.3]. The result now follows
from [28, Proposition 4.2] or [52, Theorem 2]. ��
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We also mention the existence results of Mondino and Nardulli [51] for
isoperimetric regions of all volumes in complete and non-compact Riemannian
manifolds that satisfy a lower bound on the Ricci curvature and are locally
asymptotic to model geometries. Their results are based on the comprehensive
analysis of Nardulli [52, Theorem 2].
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