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We call a correspondence, defined on the set of mixed strategy profiles, a gen-
eralized best reply correspondence if it (i) has a product structure, (ii) is upper
hemicontinuous, (iii) always includes a best reply to any mixed strategy profile,
and (iv) is convex- and closed-valued. For each generalized best reply corre-
spondence, we define a generalized best reply dynamics as a differential inclu-
sion based on it. We call a face of the set of mixed strategy profiles a minimally
asymptotically stable face (MASF) if it is asymptotically stable under some such
dynamics and no subface of it is asymptotically stable under any such dynamics.
The set of such correspondences (and dynamics) is endowed with the partial or-
der of pointwise set inclusion and, under a mild condition on the normal form of
the game at hand, forms a complete lattice with meets based on pointwise inter-
sections. The refined best reply correspondence is then defined as the smallest
element of the set of all generalized best reply correspondences. We find that ev-
ery persistent retract (Kalai and Samet 1984) contains a MASF. Furthermore, per-
sistent retracts are minimal CURB (closed under rational behavior) sets (Basu and
Weibull 1991) based on the refined best reply correspondence. Conversely, every
MASF must be a prep set (Voorneveld 2004), based again, however, on the refined
best reply correspondence.

Keywords. Evolutionary game theory, best response dynamics, CURB sets, per-
sistent retracts, asymptotic stability, Nash equilibrium refinements, learning.

JEL classification. C62, C72, C73.

1. Introduction

Evolutionary support for Nash equilibrium behavior in general, finite n-player games
is mixed. On the one hand, strict Nash equilibria (which necessarily must be in pure
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strategies) are evolutionarily stable (multipopulation evolutionarily stable strategies
ESS; see, e.g., Weibull 1995, Definition 5.1) and asymptotically stable under the mul-
tipopulation replicator dynamics. In fact, strict Nash equilibria are the only asymp-
totically stable states under the multipopulation replicator dynamics and other related
imitation-based dynamics, as shown by Ritzberger and Weibull (1995). Of course, many
games of interest do not have a strict Nash equilibrium.

On the other hand, nonstrict pure Nash equilibria and properly mixed Nash equilib-
ria do not have a lot of evolutionary support in general games. To demonstrate the latter
point, Hofbauer and Swinkels (1995) and Hart and Mas-Colell (2003) consider a class of
finite normal form games, in which each game has a unique but mixed Nash equilib-
rium; they show that any “reasonable” deterministic continuous-time dynamic process
must fail to make this unique Nash equilibrium asymptotically stable in at least one of
these games.

We thus have to abandon the hope of obtaining Nash equilibria as the only outcomes
of evolutionary processes. Yet this is not the end of studying the outcome of evolution.
One just has to accept that evolution leads, at least in some games, to a set of states
that also includes some non-Nash equilibrium states. It may still be the case that these
evolutionarily stable sets are in practice quite manageable and useful for the analysis of
games. Note that switching from strategy profiles to sets of strategy profiles is also nec-
essary in the study of Nash equilibrium refinements (see Kohlberg and Mertens 1986)
and in the study of the consequences of common knowledge of rationality in general
games (see, e.g., Bernheim 1984 and Pearce 1984).

Given the evolutionary appeal of some pure strategy profiles, it is natural to study
setwise generalizations of pure strategy profiles. A useful generalization of a pure strat-
egy profile is given by a face (of the polyhedron of mixed strategy profiles) that is ob-
tained simply by choosing a subset of pure strategies for every player and then consid-
ering all independent mixtures over these subsets.

We are not the first researchers to propose to study the evolutionary stability proper-
ties of such faces. Indeed, Ritzberger and Weibull (1995) identify faces that are asymptot-
ically stable under a large class of imitation-based dynamics. These faces are spanned
by what Ritzberger and Weibull (1995) call cuwbr sets, which are product sets of pure
strategy profiles that are closed under weakly better replies. Unless a minimal cuwbr set
is a singleton, it does not contain a strict Nash equilibrium, but must contain a (possibly
mixed) Nash equilibrium.

There are two (related) drawbacks of Ritzberger and Weibull’s (1995) result. First,
in many games, even the smallest cuwbr sets are very large sets. Thus, their predictive
power is limited. Second, and this is a possible reason for their limited predictive power,
the dynamics on which these sets are based, while plausible in some settings, are not
necessarily the most plausible in games with highly rational and highly informed play-
ers. More rational and more informed players might not adapt their strategies toward
better replies so very gradually as is implicit in the class of dynamics of Ritzberger and
Weibull (1995). One alternative with sharper predictions (i.e., smaller asymptotically
stable sets) and more plausible adjustment behavior for highly rational and highly in-
formed human beings is the best reply dynamics of Gilboa and Matsui (1991), Matsui
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H T C

H 4�0 0�4 2ε� ε
T 0�4 4�0 2ε� ε
C ε�2ε ε�2ε ε� ε

Game 1. A game to demonstrate the difference between imitation-based and best reply
dynamics.

(1992), and Hofbauer (1995) (in the spirit of fictitious play). To see how Ritzberger and
Weibull’s (1995) imitation-based dynamics and the best reply dynamics differ in the
sharpness of their predictions, consider the 2-player game in Game 1.

For ε ∈ (0�2), Game 1, which is matching pennies with an additional strategy, has
a unique smallest cuwbr set: the set of all strategy profiles. It is easy to see that both
H and T need to be in any minimal cuwbr set for both players. However, the unique
minimal cuwbr set also includes pure strategy C even if ε is very close to zero. To see
this, note that when play is, for instance, sufficiently close to (H�H), strategy C is better
than strategy H for player 2 (and thus better than the average strategy employed by all
individuals in player population 2). Under any dynamics considered in Ritzberger and
Weibull (1995), the share of C strategists in population 2 must then grow for some finite
amount of time.

Yet for all ε ∈ (0�2), strategy C is strictly dominated for both players by the mixed
strategy that puts equal weight on H and T . Thus, if a human being were to play this
game, and were told the current state of play and allowed to change her behavior, it
seems unlikely that she would choose strategy C. Indeed, under the best reply dynam-
ics, strategy C is never adopted by any revising agent. Thus, the best reply dynamics
eliminate C from any initial state. The unique minimal asymptotically stable face under
the best reply dynamics is the face spanned by the unique minimal CURB (closed under
rational behavior) set (as defined by Basu and Weibull 1991) {H�T } × {H�T }.

Hurkens (1995) analyzes a stochastic variant of the best reply dynamics. To be more
precise, he studies a stochastic version of fictitious play in which players play best replies
to samples from their memory as in the model of Young (1993). Hurkens (1995) shows
that the limiting invariant distribution of the resulting Markov chain attaches probabil-
ity 1 to the set of all minimal CURB sets. Analogously, one can prove that CURB sets are
asymptotically stable under the best reply dynamics.1

Even when an imitation-based dynamics and the best reply dynamics yield the same
collection of asymptotically stable sets of states, their vector fields are very different. To
see this, consider the replicator dynamics and the best reply dynamics for the following
simple 2-player, 2-strategy game in Game 2.

Note that pure strategies B and L are weakly dominated for players 1 and 2, respec-
tively. Figure 1 sketches the vector fields of the two dynamics for this game, where p

denotes the proportion of T in player population 1 and q denotes the proportion of R in
player population 2. The replicator dynamics (Taylor 1979) takes play from an interior

1This follows from Lemma 7 in this paper.
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L R

T 1�1 1�1
B 0�0 1�1

Game 2. A game to demonstrate the behavioral differences in imitation-based and best reply
dynamics.

Figure 1. The vector fields of the replicator and best reply dynamics for Game 2.

state to a possibly (weakly) dominated Nash equilibrium state on the boundary.2 Thus,
different initial states, under the replicator dynamics, lead to different, and often weakly
dominated, Nash equilibrium outcomes. A consequence of this fact is that all Nash equi-
librium boundary states are Lyapunov stable, yet none is asymptotically stable (not even
the undominated equilibrium (T�R)).

The best reply dynamics, alternatively, converges from any interior state in a straight
line to the undominated Nash equilibrium (T�R).3 However, there is something that
Figure 1 does not show. Because the best reply dynamics is a differential inclusion, there
can be several trajectories emanating from the same point. This happens here precisely
for all the Nash equilibria. Here, this implies that there are solutions to the best reply
dynamics that move gradually along the boundary. Thus, (T�R) is not Lyapunov sta-
ble because there are trajectories starting arbitrarily nearby and leaving any neighbor-
hood. Only the whole Nash equilibrium component is asymptotically stable. Notice
how central the point (T�R) is for the dynamics. Any trajectory starting in a completely
mixed strategy combination and converging to the Nash equilibrium component must
either converge to (T�R) or go through that point before it converges to any other Nash
equilibrium.

In this paper, we take the view that the fact that only the whole Nash equilibrium
component is asymptotically stable is due to inessential and superfluous trajectories. In

2The replicator dynamics is calculated as ṗ = p(1 − p)(1 − q) and q̇ = q(1 − q)(1 − p). Division yields,
for p �= 0, the separable ordinary differential equation dq/dp = q/p, which, for the initial point (p(0)�q(0)),
has the unique solution q(t) = (q(0)/p(0))p(t).

3To see this, note that for interior points (p(0)�q(0)), the differential equation for the best reply dynamics
(1), defined in Section 5, is given by ṗ = 1 −p and q̇ = 1 − q with unique solutions p(t) = 1 − (1 −p(0))e−t

and q(t) = 1 − (1 − q(0))e−t .
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fact, if one took the view that rational and informed human beings would never adopt
dominated strategies, by, for instance, playing only cautious best responses (as defined
by Pearce 1984), then the resulting cautious best reply dynamics would make (T�L) the
unique minimal asymptotically stable face.

Hurkens (1995) considers a second stochastic variant of the best reply dynamics, in
which individuals restrict themselves to playing semirobust best replies, as defined by
Balkenborg (1992). A definition of semirobust best replies is also given in this paper. At
this point, it suffices to say that the set of semirobust best replies to a particular strat-
egy profile is a (sometimes proper) subset of the set of all best replies to this strategy
profile. Hurkens (1995) shows that the limiting invariant distribution of the resulting
Markov chain in this second model attaches probability 1 to the set of persistent retracts
(as defined by Kalai and Samet 1984). For the simple 2-player, 2-strategy game above,
this implies that only the undominated pure Nash equilibrium (T�L) receives limiting
probability 1. Persistent retracts are faces that are typically smaller, and never larger,
than minimal CURB sets. To be more precise, every minimal CURB set contains a (pos-
sibly much smaller) persistent retract. Similarly every minimal cuwbr set contains a
(possibly much smaller) minimal CURB set.

Motivated by the results of Ritzberger and Weibull (1995) and Hurkens (1995), we
are interested in this paper in identifying and characterizing the smallest faces that are
evolutionarily stable under some reasonable dynamics (appropriate for highly rational
and highly informed human beings). We are interested in this for the following reason:
Suppose a pure Nash equilibrium is not such a smallest evolutionarily stable face. Then
there is not a single dynamics, from the whole class of dynamics we consider, under
which this Nash equilibrium is evolutionarily stable. Similarly, if a face is such that no
subface of it is such a smallest evolutionarily stable face, then, again, this face is not
evolutionarily stable under any dynamics in the large class we consider.

We restrict attention to best-reply-like dynamics. This is motivated by the intuitive
appeal of best responding for highly rational and informed human beings as well as by
the fact that Ritzberger and Weibull’s (1995) asymptotically stable minimal cuwbr sets
are typically much larger than the minimal CURB sets or persistent retracts that Hurkens
(1995) identifies as the outcome of his two variants of Young’s (1993) model of best reply
learning. We define and study a large class of generalized best reply dynamics, which is
supposed to contain all reasonable best-reply-like dynamics.4

We can thus define a minimally asymptotically stable face (MASF) as a face that is
asymptotically stable under some generalized best reply dynamics, with the additional
property that it does not contain a proper subface that is also asymptotically stable un-
der some (possibly different) generalized best reply dynamics. Note that it may well
seem possible that the dynamics that makes one MASF asymptotically stable in one
game is quite different from the dynamics that makes another MASF asymptotically sta-
ble in another game. Our first main result, however, shows that this is not possible. In
fact, under a mild restriction on the class of games we can study, there is a single dynam-
ics, which is the same for all games, that determines which faces are MASFs and which

4This class also contains some unreasonable dynamics. It becomes clear in the analysis, however, that
this does not pose a problem for the interpretation of our results.
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are not. That is, a face is a MASF if and only if it is a minimally asymptotically stable
face under this particular dynamics. We are thus justified in terming this dynamics the
(most) refined best reply dynamics.

The refined best reply dynamics is a very reasonable and intuitive dynamics (for
highly rational and highly informed individuals). The following microstory is adapted
from Hofbauer’s (1995) story, which gives rise to the best reply dynamics. For every
player position, there is a large population of individuals. Time is continuous and runs
from zero to infinity. Individuals play pure strategies. At time zero, individuals’ behavior
is given by some arbitrary frequency distribution of pure strategies, with one distribu-
tion for each population. In every short time interval, a small fraction of individuals is
given the opportunity to revise their strategy. When doing so, individuals know the ag-
gregate distribution of play (the state of play). If there is a unique best reply, a revising
individual adopts it. If there are multiple best replies, a revising individual considers
them all, but adopts only one of those that are also unique best replies in an open set of
nearby states of play. One could call this a cautious, myopically rational individual.5 One
similar alternative story could be that revising individuals do not know the exact state of
play. Different individuals have different beliefs (that are close to the truth) about the
aggregate play. Any individual’s belief over play in any two opponent populations i and
j is assumed to be statistically independent.6 If these beliefs are sufficiently diverse, only
a vanishing fraction of individuals adopt a strategy that is best only on a set of states with
Lebesgue measure zero. This again gives rise to the refined best reply dynamics.7

Interestingly, the refined best reply dynamics is based on Balkenborg’s (1992)
semirobust best replies and thus is, in some sense, analogous to the second stochas-
tic model of learning studied by Hurkens (1995). This then gives rise to the question
whether MASFs are exactly those faces that Hurkens (1995) identifies as the long-run
outcome of his learning process, namely, persistent retracts. Somewhat surprisingly, the
answer to this question is no. There are MASFs in some games that are proper subfaces
of persistent retracts, as we demonstrate by example. In an effort to at least partially
characterize MASFs in terms of concepts known from the literature, we ultimately show
that every persistent retract contains a MASF and every MASF must be an appropriate
version of a prep set (as defined by Voorneveld 2004). The appropriate version is not
the original prep set, which is based on the best reply correspondence, but is instead
based on the refined best reply correspondence, which underlies the refined best reply
dynamics.

Methodologically, this paper overlaps in part with Balkenborg (1992). To analyze
the properties of persistent retracts, that paper studies the “semirobust best reply corre-
spondence,” which differs from the refined best reply correspondences considered here
by not being convex-valued. Balkenborg et al. (2001) analyze the invariance of persistent

5The behavior of a revising individual is reminiscent of, yet not completely the same as, playing Pearce’s
(1984) cautious response.

6This statistical independence implies that beliefs can be represented as a state of play, i.e., an indepen-
dent vector of distributions over strategies, one for each player position.

7The approach in Roth and Sandholm (2011) can be used to obtain approximations of the refined best
reply dynamics by discrete time stochastic processes.
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retracts and equilibria using “sparse strategy selections.” These are particularly useful
when no unique minimal refined best reply correspondence exists.

The paper proceeds as follows. We first define the class of games we study in Sec-
tion 2. We then define the class of generalized best reply correspondences in Section 3,
where we also prove their lattice structure and the existence of a unique smallest el-
ement. In Section 4, we study the notion of a CURB set (Basu and Weibull 1991) and a
prep set8 (Voorneveld 2004) for all generalized best reply correspondences, and we study
their relationship. We also prove that CURB sets based on the refined best reply corre-
spondence coincide with Kalai and Samet’s (1984) persistent retracts. Finally, Section 5
provides the main results: persistent retracts are asymptotically stable under the refined
best reply dynamics and thus contain an MASF, and every MASF must be a tight prep set
based on the refined best reply correspondence. Section 6 concludes. In the Appendix,
we show the sense in which our restriction to games with generically unique best replies
is not essential.

2. Preliminaries

Let � = (I� S�u) be a finite n-player normal form game, where I = {1� � � � � n} is the set
of players, S = ×i∈ISi is the set of pure strategy profiles, and u :S → R

n is the payoff
function.9 Let �i = �(Si) denote the set of player i’s mixed strategies and let � = ×i∈I�i

denote the set of all mixed strategy profiles.10 Let int(�) = {x ∈ � :xis > 0 ∀s ∈ Si ∀i ∈ I}
denote the set of all completely mixed strategy profiles.

A strategy profile x ∈ � may also represent a population state in an evolutionary
interpretation of the game, in the following sense: each player i ∈ I is replaced by a pop-
ulation of agents who are playing in player position i, and xisi denotes the proportion of
players in population i who play pure strategy si ∈ Si.

For x ∈ �, let Bi(x) ⊂ Si denote the set of pure strategy best replies to x for player i.
Let B(x) = ×i∈I Bi(x). Let βi(x) = �(Bi(x)) ⊂ �i denote the set of mixed strategy best
replies to x for player i. Let β(x) = ×i∈Iβi(x).

Two strategies xi� yi ∈ �i are own-payoff equivalent (for player i) if ui(xi�x−i) =
ui(yi� x−i) for all x−i ∈ �−i = ×j �=i�j (see Kalai and Samet 1984). In contrast, Kohlberg
and Mertens (1986) call two strategies xi� yi ∈ �i payoff-equivalent if uj(xi�x−i) =
uj(yi� x−i) for all x−i ∈ �−i and for all players j ∈ I. We use these concepts primarily
for pure strategies.

Let 	 = {x ∈ � : B(x) is a singleton}. Notice that the unique best reply against a strat-
egy combination in 	 is necessarily a pure strategy. Throughout this paper, we restrict
attention to games � for which this set 	 is dense in �. Let this set of games be denoted
by G∗. A game � /∈ G∗ is given by Game 3. Player 1’s best reply set is {A�B} for any (mixed)
strategy of player 2. Hence, β(x) is never a singleton and 	 = ∅ is not dense in �. This
is because player 1 has two own-payoff equivalent pure strategies.

8A learning model that leads to the original prep sets of Voorneveld (2004) is given by Kets and Voorneveld
(2008).

9The function u also denotes the expected utility function in the mixed extension of the game �.
10Generally, let �(K) for any finite set K denote the set of all probability distributions over K.
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C D

A 1�1 1�0
B 1�0 1�1

Game 3. A game in which 	 is not dense in �.

Proposition 1 demonstrates that without equivalent strategies, 	 is dense in �. The
following lemma, due to Kalai and Samet (1984), is used in the proof of Proposition 1.

Lemma 1. Let U be a nonempty open subset of �. Then two strategies xi� yi ∈�i are own-
payoff equivalent (for player i) if and only if ui(xi� z−i) = ui(yi� z−i) for all z ∈U .

Proposition 1. Let � be without any own-payoff equivalent pure strategies. Then 	 is
dense in �; i.e., � ∈ G∗.

Proof. Suppose 	 is not dense in �. Then there is an open set U in � such that for
all y ∈ U , the pure best reply set B(y) is not a singleton, i.e., has at least two elements.
Without loss of generality, due to the finiteness of S, we can assume that there are two
pure strategy profiles si� ti ∈ Si such that si� ti ∈ Bi(y) for all y ∈ U and for some player
i ∈ I. But then by Lemma 1, si and ti are own-payoff equivalent for player i. �

Note that the converse of Proposition 1 is not true. Consider two own-payoff equiv-
alent strategies that are strictly dominated by another strategy. If these are the only
equivalent strategies in �, then 	 is still dense in �. However, the following proposi-
tion is immediate. Call xi ∈�i a robust best reply against x ∈� if xi is a best reply against
all strategy combinations in a neighborhood of x. Call xi ∈ �i a robust strategy if xi is a
robust best reply against some strategy combination x ∈ �. This terminology is inspired
by Okada (1983).

Proposition 2. Let � ∈ G∗. Let si ∈ Si be a robust strategy. Then player i has no distinct
own-payoff equivalent strategy to si in Si.

Games in the class G∗ are essentially those that do not have own-payoff equiva-
lent pure strategies for any player. The semireduced normal form of a game is usu-
ally obtained by removing all payoff equivalent strategies. In the Appendix, we argue
that the games in which there are own-payoff equivalent pure strategies that are not
payoff-equivalent are exceptional. Hence, the restriction to games in the class G∗ made
throughout the paper is essentially the restriction to the semireduced normal form in
the sense of Kohlberg and Mertens (1986).11 Since we are primarily interested in the
best reply correspondence, this restriction is largely without loss of generality. In fact,
every trajectory of the best reply dynamics of the reduced form of a normal form game
corresponds in a canonical fashion to a family of trajectories in the original game that
projects onto it.

11In particular, we are not ruling out games with, for instance, weakly dominated strategies.
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3. Generalized best reply correspondences

Definition 1. A correspondence τ :� ⇒ � is a generalized best reply correspondence if
all of the following statements hold.

(i) The set τ(x) = ×i∈Iτi(x) ∀x ∈�, where τi :� ⇒�i for all i ∈ I.

(ii) The correspondence τ is upper hemicontinuous12 at all x ∈�.

(iii) The set τi(x)∩βi(x) �= ∅ ∀x ∈�, ∀i ∈ I.

(iv) The set τ(x) is convex and closed for all x ∈�.

Note that property (iii) immediately implies that τ(x) �= ∅. Thus, a generalized best
reply correspondence has the same basic technical properties as the best reply corre-
spondence β, and, moreover, it is minimally connected to the best reply correspondence
β by the requirement that at least one best reply to some given strategy profile x (i.e., an
element of β(x)) is also available in τ(x).

In words, a generalized best reply correspondence has four properties. It must have
a product structure, since we want players to choose independently. At least one best re-
ply must always be available to players. It must be pointwise closed and convex. Closed-
ness is more of a technical requirement, but the requirement of convexity derives from
the desire to have players randomize arbitrarily between their generalized best replies.
Finally, we require a generalized best reply correspondence to be upper hemicontinu-
ous. This is an important technical requirement as it guarantees that such a generalized
best reply correspondence has a fixed point and that the differential inclusion based on
it always has a solution. In terms of player behavior, this translates to the requirement
that if one were to slightly perturb the current strategy profile of a player’s opponents,
that player would not choose a new strategy that was not formerly in the set of general-
ized best replies.

A subclass of the set of generalized best reply correspondences that is of indepen-
dent interest is the one that is based on pure strategies only, in the following sense. A cor-
respondence τ :�⇒ � is a generalized best reply correspondence based on pure strategies
if it is a generalized best reply correspondence, and if property (iv) is replaced by the
more stringent property (iv∗) such that τi(x) = �(Ti(x)) for some Ti(x) ⊂ Si for all x ∈ �

and for all i ∈ I. Then property (iii) is equivalent to Ti(x)∩ Bi(x) �= ∅ for all x ∈� and for
all i ∈ I.

Let T = T (�) denote the set of all generalized best reply correspondences (of a game
�) and let T PS denote the subset of all generalized best reply correspondences based on
pure strategies.

One natural example of a correspondence that is in T but not in T PS is the corre-
spondence of all mixed, weakly better replies. This correspondence is given by τ = ×i∈Iτi
with τi(x) = {yi ∈�i :ui(yi� x−i)≥ ui(xi�x−i)}.

12Following Aliprantis and Border (1999, Chap. 17.2) or Ritzberger (2002, Definition 5.8), the correspon-
dence τ is upper hemicontinuous at x if for every open set V ⊂ � with τ(x) ⊂ V , there is an open subset
U ⊂� with x ∈ U such that for all y ∈ U , τ(y) ⊂ V .
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One example of a correspondence in T PS is, of course, the best reply correspondence
itself. For another example, let Ti(x) = {si ∈ Si :ui(si� x−i) ≥ ui(xi�x−i)}. That is, Ti(x) is
the set of all weakly better replies to x−i given xi. The resulting correspondence is that
of all mixtures of pure, weakly better replies (see Ritzberger and Weibull 1995). Another
example, closely connected to the S∞W procedure of Dekel and Fudenberg (1990), can
be found by letting Ti(x) be the set of all pure best replies, except those that are weakly
dominated.

The following example of a correspondence in T PS is key to the subsequent analysis
in this paper.

Definition 2. For games in G∗ and for x ∈�, let

Si(x) = {si ∈ Si :∃{xt}∞t=1 ∈	 :xt → x∧ Bi(xt) = {si} ∀t}�

Then σi(x) = �(Si(x)) and σ(x) = ×i∈Iσi(x) ∀x ∈�. We call this correspondence σ :� ⇒
� the (most) refined best reply correspondence.

The set Si(x) in Definition 2 is the set of pure semirobust best replies, as defined in
Balkenborg (1992).

Given two correspondences τ�τ′ ∈ T , let τ ⊂ τ′ if τ(x) ⊂ τ′(x) for all x ∈ �. The set
T endowed with this notion of “smaller than” is a partial order (see, e.g., Davey and
Priestley 2002, Definition 1.2). Given two correspondences τ�τ′ ∈ T , let τ′′ = τ ∧ τ′ if
τ′′
i (x) = τi(x)∩ τ′

i(x) and τ′′(x) = ×i∈Iτ′′
i (x) for all x ∈ �.

The first theorem of this paper demonstrates that for games in G∗, the set T of
generalized best reply correspondences has a lot of structure and, especially, a small-
est element. In fact, the set T is a complete lattice, which means that every subset of
T has an infimum (meet) and a supremum (join) (see, e.g., Davey and Priestley 2002,
Definition 2.4).

Theorem 1. Let � ∈ G∗. Then

(i) T is a complete lattice

(ii) T has a unique smallest element, which is given by σ , the refined best reply
correspondence

(iii) σ ∈ T PS.

Proof. Let T ′ be a nonempty subset of T . Define τ∗ by τ∗(x) = ⋂
τ∈T ′ τ(x) for all x ∈ �.

We claim that τ∗ ∈ T . Since the intersection of products, convex sets, and closed sets
is itself a convex and closed product, τ∗ has properties (i) and (iv) of a generalized best
reply correspondence (Definition 1). Any τ ∈ T ′ is in fact compact-valued. The set �
is compact and Hausdorff, and, therefore, a regular topological space (Aliprantis and
Border 1999, Theorem 2.48). Hence, τ∗ is upper hemicontinuous (Aliprantis and Border
1999, Theorem 17.25.3), i.e., it satisfies property (ii) of a generalized best reply corre-
spondence (Definition 1).
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It remains for us to show that τ∗ has property (iii) of a generalized best reply cor-
respondence. Since � ∈ G∗, β(x) is by definition a singleton for all x ∈ 	, and is given
by the pure strategy that is the unique element of B(x). Thus, for all x ∈ 	, we have
β(x) ⊂ τ(x) for any τ ∈ T . For x ∈ 	, let Si(x) = Bi(x) for all i ∈ I. Since � ∈ G∗,
it follows that 	 is dense in �. For x /∈ 	, let U ⊂ � be a neighborhood of x, let
SU
i (x) = ⋃

x′∈U∩	 Bi(x
′), and let Si(x) = ⋂

(U neighborhood of x) SU
i (x). Let σi(x) = �(Si(x))

and let σ(x) = ×i∈Iσi(x) ∀x ∈�. Thus, σ is the refined best reply correspondence.
Then, by Definition 1 properties (ii) and (iv) of any τ ∈ T , we must have σ(x) ⊂ τ(x)

for all x /∈ 	, which implies that this holds for all x ∈ � and for all τ ∈ T . Thus, σ ⊂ τ∗,
and, as a result, τ∗ satisfies property Definition 1(iii). It follows immediately that τ∗ is
the infimum of T ′ in T . The supremum of T ′ is easily seen to be the intersection of all
upper bounds of T ′ in T . The set T is, therefore, a complete lattice, which proves part (i)
of Theorem 1.

A complete lattice has a lowest element. Given that σ ⊂ τ for all τ ∈ T and that σ ∈ T ,
this lowest element must be σ . This proves part (ii). Part (iii) follows immediately from
the construction of σ . �

Note that Theorem 1 also implies that the set T PS is a complete lattice with the same
smallest element, σ .

The converse of Theorem 1 is, in fact, also true, in the following sense. For any game
� /∈ G∗, T is not a lattice and does not have a unique smallest element. To see this, con-
sider any game � /∈ G∗. This game must have at least two own-payoff equivalent pure
strategies for some player that are simultaneous best replies in an open set of strategy
profiles. Thus, one can construct τ ∈ T based on only one of these two pure strategies,
and τ′ ∈ T based only on the other, such that τ(x) ∩ τ′(x) = ∅ for some x ∈ � and, as a
result, τ ∧ τ′ /∈ T .

Theorem 1 justifies our calling σ the (most) refined best reply correspondence, since
σ is the unique smallest generalized best reply correspondence and obviously satisfies
σ ⊂ β.

This refined best reply correspondence σ coincides with the best reply correspon-
dence β almost everywhere (i.e., for all x ∈ 	, which is dense in �, given � ∈ G∗). Fur-
thermore, for strategy profiles x /∈ 	, it is constructed in a minimal way to ensure upper
hemicontinuity by requiring that σ(x) includes those and only those pure strategies that
are best replies to some nearby x′ ∈	.13 For such x, any σ(x) must then also include all
convex combinations of all pure strategies in τ(x) by Definition 1 property (iv).

We now provide a brief partial characterization of the refined best reply correspon-
dence in terms of well known objects from the theory of games. A detailed characteriza-
tion of the refined best reply correspondence, its fixed points, and other objects based
on it can be found in our companion paper, Balkenborg et al. (2009). For 2-player games
the refined best reply correspondence includes those and only those best replies that are
not weakly dominated and are not equivalent to a mixture of other pure strategies. The
example in Game 4 (from Balkenborg et al. 2009) demonstrates part of this claim. In this

13Strategies that are unique best replies to some x are called inducible in von Stengel and Zamir (2010).
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D E F

A 2�2 1�2 1�2
B 2�1 2�2 0�0
C 2�1 0�0 2�2

Game 4. A game with equivalent mixed strategies.

game, strategy A is equivalent to the mixture of pure strategies B and C (and strategy
D to the mixture of pure strategies E and F). However, A is a best reply only on a thin
set of mixed strategy profiles. In fact, A is best against any x ∈ � in which x2E = x2F ,
the set of which is a thin set. Thus, we have y1A = 0 for all y ∈ σ1(x) and for all x ∈ �,
i.e., A is never in the set of refined best replies. This implies, for instance, that there are
strategically stable equilibria in the sense of Kohlberg and Mertens (1986) that are not
fixed points of the refined best reply correspondence. For games with more than two
players, the set of refined best replies at a given strategy profile x may well be a proper
subset of the set of best replies that are not weakly dominated and not equivalent to a
mixed strategy. For a thorough discussion of this, we refer the reader to our companion
paper, Balkenborg et al. (2009).

4. τ -CURB and τ -prep sets

A set R ⊂ S is a strategy selection if R= ×i∈IRi and if Ri ⊂ Si, Ri �= ∅ for all i. For a strategy
selection R, let �(R) = ×i∈I�(Ri) denote the set of independent strategy mixtures of the
pure strategies in R. A set ϕ ⊂ � is a face if there is a strategy selection R such that
ϕ = �(R). Note that � = �(S). Note also that β(x) = �(B(x)) and σ(x) = �(S(x)).
Generally, τ(x)= �(T(x)) for some selection T(x) if τ ∈ T PS.

Let A ⊂ �. For any τ ∈ T , let τ(A) = ×i∈Iτi(A) with τi(A) = ⋃
x∈A τi(x). The follow-

ing definition is a generalized version of Basu and Weibull’s (1991) CURB sets.
For τ ∈ T , a strategy selection R is a τ-CURB set if τ(�(R)) ⊂ �(R). It is a tight τ-

CURB set if, in addition, τ(�(R)) ⊃ �(R), and hence, τ(�(R)) = �(R).14 It is a minimal
τ-CURB set if it does not properly contain another τ-CURB set.

These definitions, while well defined for all τ ∈ T , are more natural for τ ∈ T PS since
they are based on pure strategies. In fact, if τ ∈ T \ T PS, then there are typically not many
tight τ-CURB sets.

Note that if τ = β, we obtain the original definition of CURB sets of Basu and Weibull
(1991). If τ is the correspondence of all mixtures of pure weakly better replies, as defined
in Section 3, τ-CURB sets are Ritzberger and Weibull’s (1995) cuwbr sets (closed under
weakly better replies). If, as mentioned in Section 3, Ti(x) is the set of all pure best
replies, except weakly dominated ones, and if τ is the correspondence in T PS based on
these Ti(x), then τ-CURB sets are Basu and Weibull’s (1991) CURB* sets.

14Note that, for any τ ∈ T , the set of tight τ-CURB sets, together with the empty set, also forms a finite
and thus complete lattice. This follows from the fact that the set of all pure strategy selections is a lattice if
we include the empty set. Then τ is an order-preserving function from the set of subsets of the set of pure
strategy sets to itself, i.e., if R ⊂ R′, then τ(R) ⊂ τ(R′). Thus, by Tarski’s fixed point theorem, the set of all
fixed points of τ also forms a lattice. These are tight τ-CURB sets (and the empty set).
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The lattice structure of T allows us to compare CURB sets based on different gener-
alized best reply correspondences.

Lemma 2. Let � ∈ G∗. Let τ�τ′ ∈ T with τ ⊂ τ′. Then any τ′-CURB set is also a τ-CURB
set. Furthermore, any τ-CURB set for some τ ∈ T is also a σ-CURB set.

Proof. For the first part, let R be a τ′-CURB set. Then, by definition, τ′(�(R)) ⊂ �(R).
But since τ ⊂ τ′, we have τ(�(R)) ⊂ τ′(�(R)) ⊂ �(R). The second part follows from the
first part of this lemma and the second part of Theorem 1.

Lemma 2 implies that the smallest of all τ-CURB sets for any τ ∈ T are the minimal
σ-CURB sets. And it turns out that we can characterize these minimal σ-CURB sets.

The following definitions are due to Kalai and Samet (1984). A set ϕ ⊂ � is a retract
if ϕ = ×i∈Iϕi, where ϕi ⊂ �i is nonempty, compact, and convex. A set ϕ ⊂ � absorbs
another set ϕ′ ⊂ � if for all x ∈ ϕ′, we have β(x) ∩ ϕ �= ∅. A retract ϕ is an absorbing
retract if it absorbs a neighborhood of itself. It is a persistent retract if it does not properly
contain another absorbing retract. Kalai and Samet (1984) show that for games without
equivalent strategies, and hence, for games in G∗, persistent retracts have to be faces. �

Lemma 3. Let � ∈ G∗. A strategy selection R ⊂ S is a σ-CURB set if and only if �(R) is an
absorbing retract.

Proof. ⇐. Let the strategy selection R ⊂ S be such that �(R) is an absorbing retract,
i.e., it absorbs a neighborhood of itself. Let U be such a neighborhood of �(R). It follows
that for every y ∈ U , there is an r ∈ R such that r ∈ B(y). For all r ∈ R, let Ur = {y ∈ U : r ∈

B(y)}. It is obvious that
⋃

r∈RUr = U .
Suppose R is not a σ-CURB set. Then there is a player i ∈ I and a pure strategy si ∈

Si \Ri such that si ∈ Si(x) for some x ∈ �(R). By the definition of Si, we must then have
si ∈ β(y) for all y ∈ O for some open set O, whose closure contains x. But then, by the
finiteness of R, there is a strategy profile r ∈ R such that Ur and O have an intersection
that contains an open set. On this set, si and ri are now both best replies. But then, by
Lemma 1, si and ri are equivalent for player i, which, by Proposition 2, contradicts our
assumption.

⇒. Suppose R ⊂ S is a σ-CURB set. Suppose also that �(R) is not an absorb-
ing retract. Then for every neighborhood U of �(R), there is a yU ∈ U such that
β(yU) ∩ �(R) = ∅. In particular, for every such yU , there is a player i ∈ I and a pure
strategy si ∈ Si \ Ri such that si ∈ Bi(yU). By the finiteness of the number of players and
pure strategies, and by the compactness of �, this means that there is a convergent sub-
sequence of yU ∈ int(�) such that yU → x for some x ∈ �(R) and there is also an i ∈ I

and an si ∈ Si \ Ri such that si ∈ Bi(yU) for all such yU . Now one of two things must be
true. Either si is a best reply in an open set with closure intersecting �(R), in which case
si ∈ Ri, given the definition of σ and a σ-CURB set, which gives rise to a contradiction.
Alternatively, there is no open set with closure intersecting �(R) such that si is best on
the whole open set, in which case there must be a strategy ri ∈ Ri such that ri ∈ β(yU)

at least for a subsequence of all such yU (converging to x), which again gives rise to a
contradiction. �
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Lemma 3 immediately implies the following theorem.

Theorem 2. Let � ∈ G∗. A strategy selection R⊂ S is a minimal σ-CURB set if and only if
�(R) is a persistent retract.

Theorem 2, together with Lemma 2, implies that the smallest τ-CURB sets for any
τ ∈ T are Kalai and Samet’s (1984) persistent retracts.

The largest tight β-CURB set is the set of rationalizable strategies (Bernheim 1984
and Pearce 1984). We can similarly define, for any τ ∈ T , the set of τ-rationalizable
strategies as the largest tight τ-CURB set.

Alternatively, we can define τ-rationalizable strategies, more in the original spirit of
Bernheim (1984) and Pearce (1984), in the following way. We do this only for τ ∈ T PS. If
τ ∈ T PS, then there are correspondences Ti for each player such that τi(x) = �(Ti(x)) for
all x ∈ � and for all i ∈ I. For A ⊂ �, let Ti(A) = ⋃

x∈ATi(x). Let τi(A) = �(Ti(A)). Let
τ(A) = ×i∈Iτi(A). For k ≥ 2, let τk(A) = τ(τk−1(A)). For A = �, τk(A) is a decreasing
sequence. Let τ∞(�) = ⋂∞

k=1 τ
k(�). A pure strategy profile s ∈ S is τ-rationalizable if it

is an element of the strategy selection R⊂ S that satisfies �(R) = τ∞(�).
We thus have notions of rationalizability for any generalized best reply correspon-

dence (that is based on pure strategies).
Lemma 2 immediately implies the following result.

Corollary 1. Let � ∈ G∗. Let τ�τ′ ∈ T such that τ ⊂ τ′. Then every τ-rationalizable
strategy is also τ′-rationalizable. In particular, every σ-rationalizable strategy is also τ-
rationalizable for any τ ∈ T .

This corollary thus states that the smallest set of τ-rationalizable strategies is ob-
tained when τ = σ .

It turns out that not only do such τ-CURB sets play a role in our analysis of gen-
eralized best reply dynamics in the next section, but also do τ-versions (especially the
σ-version) of Voorneveld’s (2004) prep sets. We define τ-prep sets only for τ ∈ T PS. Let
τ ∈ T PS. A strategy selection R is a τ-prep set if for all x ∈ �(R) and for all i ∈ I, it is true
that τi(x) ∩ �(Ri) �= ∅. A τ-prep set is minimal if it does not properly contain any other
τ-prep set. Thus, any pure fixed point of τ is a minimal τ-prep set, just as every pure
Nash equilibrium is a minimal (β-) prep set. We call a τ-prep set tight if for every si ∈Ri,
it is the case that si ∈ τi(x) for some x ∈�(R). Minimal τ-prep sets are necessarily tight.

Analogously to Lemma 2, we can compare τ-prep sets for different τ’s in T PS. How-
ever, the comparison is reversed, as the next lemma states.

Lemma 4. Let � ∈ G∗. Let τ�τ′ ∈ T PS with τ ⊂ τ′. Then any τ-prep set is also a τ′-prep set.
Furthermore, any σ-prep set is also a τ-prep set for every τ ∈ T PS.

Proof. For the first part, let R be a τ-prep set. Thus, by definition, for all x ∈ �(R) and
for all i ∈ I, it must be the case that τi(x) ∩�(R)i �= ∅. But then, as τ ⊂ τ′, it follows that
for all x ∈�(R) and for all i ∈ I, we have τ′

i(x)∩�(R)i �= ∅. The second part follows from
the first part of this lemma and the second part of Theorem 1. �
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Thus, Lemmas 2 and 4 imply that the smaller τ ∈ T is (in the lattice), the more τ-
CURB sets and the fewer τ-prep sets there are.

5. Generalized best reply dynamics

Gilboa and Matsui (1991), Matsui (1992), and Hofbauer (1995) introduce and study the
continuous time best reply dynamics (1), which is, modulo a time change, equivalent
to Brown’s (1951) continuous time version of fictitious play. This best reply dynamics is
given by the differential inclusion

ẋ ∈ β(x)− x� (1)

Similarly, we can define generalized τ-best reply dynamics, for some τ ∈ T , given by
the differential inclusion

ẋ ∈ τ(x)− x� (2)

The best reply dynamics (1) is obviously a special case of (2) for τ = β. A solution to (2)
is an absolutely continuous function ξ(t�x0) through initial state x0 ∈ �, defined for at
least all t ≥ 0, that satisfies (2) for almost all t.15

Since the right hand side of (2) is upper hemicontinuous with compact and convex
values, the existence of at least one Lipschitz-continuous solution ξ(t�x0) through each
initial state x0 is guaranteed for any τ ∈ T (see Aubin and Cellina 1984, Chap. 2, Section 1,
Theorem 3, p. 98). In general, several solutions can exist through a given initial state.

The objects we aim to identify and characterize in this paper can now be defined as
follows.

Definition 3. Let � ∈ G∗. A face �(R) (spanned by a strategy selection R) is a minimal
asymptotically stable face (MASF) if there is a τ ∈ T such that �(R) is asymptotically sta-
ble16 under ẋ ∈ τ(x)−x, and for all proper subfaces �(R′) ⊂�(R), where R′ is a strategy
selection, and for all τ′ ∈ T , �(R′) is not asymptotically stable under ẋ ∈ τ′(x)− x.

15Gilboa and Matsui (1991) and Matsui (1992) additionally require the right differentiability of solutions.
Hofbauer (1995) argues that all solutions in the sense of differential inclusions should be admitted. This
is natural for applications to discrete approximations (e.g., fictitious play; see Hofbauer and Sorin 2006) or
stochastic approximations (see Benaim et al. 2005). Note that any absolutely continuous solution is auto-
matically Lipschitz, since the right hand side of (1) is bounded. Hofbauer (1995) also provides an explicit
construction of all piecewise linear solutions (for 2-person games) and provides conditions for when these
constitute all solutions. See also Hofbauer and Sigmund (1998), Cressman (2003), and Sandholm (2010).

16We call A asymptotically stable if it is Lyapunov stable and attractive. A set A is Lyapunov stable if
for every neighborhood U of A, there exists a neighborhood V of A such that all solutions ξ(t�x0) with
x0 ∈ V satisfy ξ(t�x0) ∈ U for all t ≥ 0. Set A is attractive if there is a neighborhood U of A such that for
every solution ξ(t�x0) with x0 ∈ U its ω-limit set is contained in A :

⋂
T≥0 {ξ(t�x0) : t ≥ T } ⊂ A. Note that in

contrast to Definition IX in Benaim et al. (2005, p. 339), we drop here the requirement (i) of invariance. A set
A is invariant if for every x0 ∈ A, there is a complete solution ξ(t�x0) ∈ A (i.e., defined for all positive and
negative times t ∈ R). Consider as an example the matching pennies game with the best reply dynamics.
Then the only invariant set is the unique Nash equilibrium that is the minimal asymptotically stable set of
this game. In particular, there are no invariant faces under the best reply dynamics. The only CURB set is
the whole strategy space. But this is not invariant, only forward-invariant. Therefore, it is not reasonable to
require invariance in the definition of MASF.
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Since σ(x) ⊂ τ(x) for all x and for all τ ∈ T , every solution of the σ-best reply
dynamics

ẋ ∈ σ(x)− x (3)

is also a solution of the τ-best reply dynamics (2). This means that any substantial dif-
ference in the dynamics is due to the multiplicity of trajectories. In fact, this is worth
stating as a lemma.

Lemma 5. Let � ∈ G∗. Let τ�τ′ ∈ T such that τ ⊂ τ′. Let x0 ∈� be an arbitrary initial state.
Then every solution to ẋ ∈ τ(x) − x through x0 is also a solution to ẋ ∈ τ′(x) − x through
x0.

The proof follows immediately from the partial order on T .
This lemma immediately implies another lemma.

Lemma 6. Let � ∈ G∗. Let τ�τ′ ∈ T such that τ ⊂ τ′. Let A ⊂ �. If A is asymptotically
stable under ẋ ∈ τ′(x) − x, then A is also asymptotically stable under ẋ ∈ τ(x) − x. Fur-
thermore, if A is asymptotically stable under ẋ ∈ τ(x) − x for some τ ∈ T , then A is also
asymptotically stable under ẋ ∈ σ(x)− x.

The first part follows directly from Lemma 5. The second part follows from the first
and second parts of Theorem 1.

Lemma 6 thus implies that minimal asymptotically stable faces (MASF) are those
and only those faces that are the smallest faces that are asymptotically stable under
the (most) refined best reply dynamics ẋ ∈ σ(x) − x. In the remainder of this section,
we provide partial characterizations of such faces. We first show that for any τ ∈ T PS,
the τ-best reply dynamics converges to the set of τ-rationalizable strategies.17 Further-
more, every τ-CURB set is asymptotically stable under this dynamics. In particular, Basu
and Weibull’s (1991) CURB sets are asymptotically stable under the best reply dynamics,
and Kalai and Samet’s (1984) persistent retracts are asymptotically stable under the re-
fined best reply dynamics. These results are similar to the results of Hurkens (1995),
who showed that for a stochastic learning model à la Young (1993), recurrent sets coin-
cide with either CURB sets or persistent retracts, depending on the details of the model.
These results are also similar to those of Ritzberger and Weibull (1995), who show that
any strategy selection that is closed under weakly better replies is asymptotically stable
under any deterministic payoff-positive dynamics.

Then, however, we give an example of a game in which a proper subface of a per-
sistent retract is asymptotically stable under the refined best reply dynamics. That is,
an MASF can be smaller than a persistent retract. We show that a necessary condition
for a face to be asymptotically stable under the refined best reply dynamics (i.e., to be a
MASF) is that it constitute a tight σ-prep set (and must thus be a τ-prep set for all τ ∈ T ).

17For β = τ, this result seems to be well understood. For a related, but weaker, statement about the
iterated elimination of strictly dominated strategies, see Sandholm (2010, Theorem 7.4.2).
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Theorem 3. Let � ∈ G∗. Let τ ∈ T PS. Let R be the strategy selection of S that spans the set
of τ-rationalizable strategies, i.e., �(R) = τ∞(�). Let si ∈ Si \Ri. Then xisi (t) → 0 for any
solution x(·) to ẋ ∈ τ(x)− x for any initial state x(0) ∈�.

Proof. The proof is by induction on k, the iteration in the deletion process, i.e., the k

in τ∞(�) = ⋂∞
k=1 τ

k(�). Let Rk denote the strategy selection of S that spans τk(�), i.e.,
�(Rk) = τk(�). For k= 1, consider an arbitrary strategy si ∈ Si \R1

i . Then, by definition,
si /∈ τi(x) for any x ∈ �. Hence, this strategy’s growth rate according to ẋ ∈ τ(x) − x is
ẋisi = 0 − xisi and, therefore,

xisi (t) = e−txisi

for all t ≥ 0, i.e., xisi (t) shrinks exponentially to zero. This proves the statement of the
theorem for si ∈ Si \ R1

i . Now assume the statement of the theorem is true for si ∈ Si \
Rk−1
i ; that is, for any such si, we have xisi (t) → 0 for any solution x(·) to ẋ ∈ τ(x)− x for

any initial state x(0) ∈ �. Then, for any such si and for any x(0) ∈ �, there is a finite T

such that xisi (t) < ε for all t ≥ T . Now by the definition of τ, for si ∈ Si \ Rk
i it is the case

that si /∈ τi(x(t)), provided ε is small enough (or t large enough). But then for all t ≥ T ,
it follows once again that ẋisi = 0 − xisi and, hence, that xisi (t) shrinks exponentially to
zero. �

Lemma 7. Let � ∈ G∗, let R be a strategy selection, and let τ ∈ T PS. If R is a τ-CURB set,
then �(R) is asymptotically stable under ẋ ∈ τ(x)− x.

Proof. Let U be a neighborhood of �(R). For U sufficiently small, it follows from the
definition of a τ-CURB set and the upper hemicontinuity of τ that, for any x ∈U and any
i ∈ I, si ∈ τi(x) implies si ∈Ri. Hence, for any x ∈U , we must have ẋisi = −xisi for all i ∈ I

and si /∈ Ri. But then it must follow that ‖x(t) − �(R)‖∞ shrinks exponentially to zero
for all x(0) ∈U . �

A corollary to Lemma 7 is the following result.

Corollary 2. Let � ∈ G∗. A robust equilibrium point (Okada 1983) is asymptotically
stable under the refined best reply dynamics (3).

This follows from the fact that a robust equilibrium point is a singleton persistent
retract. Note that in games in G∗, a robust equilibrium point must be a pure strategy
profile.

Note also that a game could well have asymptotically stable sets under ẋ ∈ σ(x)− x

that are proper subsets of persistent retracts, but are not faces. The unique Nash equi-
librium of matching pennies is an example. It turns out, however, that there may even
be faces that are proper subsets of persistent retracts and yet are asymptotically stable
under ẋ ∈ σ(x)− x.

Game 5. Consider the following 4-player game � = (I� S�u) with I = {1�2�3�4}, S1 =
{H1�T1}, S2 = {H2�T2}, S3 = {D�U}, and S4 = {A�B}. The utility functions are given as
follows.
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Players 1 and 2 are playing matching pennies and do not care about other players’
strategies. That is, their payoffs are given by

H2 T2

H1 2�0 0�2
T1 0�2 2�0

for any strategy pair of players 3 and 4. Player 3’s strategy U is strictly dominated by D.
In other words, u3(s1� s2�U� s4) = 0, while u3(s1� s2�D� s4) = 1 for all s1 ∈ S1, s2 ∈ S2, and
s4 ∈ S4. Player 4’s payoffs are more interesting. Strategy A provides player 4 a payoff of
zero regardless of all other players’ strategies; that is, u4(s1� s2� s3�A) = 0 for all s1 ∈ S1,
s2 ∈ S2, and s3 ∈ S3.

Player 4’s payoffs from strategy B are given as follows: u4(T1�T2�U�B) = 1, u4(T1�T2�

D�B) = 0, u4(H1�T2�D�B) = −1, u4(T1�H2�D�B) = −1, u4(H1�T2�U�B) = 0, u4(T1�H2�

U�B) = 0, and, finally, u4(H1�H2�D�B) = u4(H1�H2�U�B) = −2.

Claim 1. The unique minimal σ-CURB set in Game 5 is the face spanned by the strategy
selection {H1�T1} × {H2�T2} × {D} × {A�B}.

Proof. The facts that player 1’s part of a minimal σ-CURB set is {H1�T1}, and player 2’s
part is {H2�T2} follow immediately from the matching pennies structure of their payoffs.
The fact that player 3’s part of a minimal σ-CURB set is {D} follows from the fact that D
strictly dominates U . Thus, all that remains to be shown is that player 4’s part must be
{A�B}.

Obviously A is the unique best reply against (H1�H2�D). Thus, A is included in
player 4’s part of the minimal σ-CURB set. Furthermore, a short calculation shows
that u4(x1�x2�x3�B) > u4(x1�x2�x3�A) = 0 if and only if x3(U) > [x1(H1) + x2(H2)]/
[1 − x1(H1)x2(H2)]. The strategy profiles satisfying this condition form an open set,
which contains the strategy profile (T1�T2�D�A) in its boundary. Therefore, B is also
included in player 4’s part of the minimal σ-CURB set. �

Claim 2. In Game 5, the face spanned by the strategy selection {H1�T1}×{H2�T2}×{D}×
{A} is asymptotically stable under ẋ ∈ σ(x)− x.

Proof. Consider a solution, ζ, to ẋ ∈ σ(x)−x through some initial point x0 close to this
face. From the matching pennies structure of the payoffs of players 1 and 2, it follows
that ζ1H1(t�x

0) → 1
2 as t → ∞. Also, ζ2H2(t�x

0) → 1
2 as t → ∞. Furthermore, we must

have ζ3D(t�x
0) → 1 as t → ∞ by the fact that D strictly dominates U . In fact, we must

have ζ3D(t�x
0) > ζ3D(t

′�x0) if t > t ′.
Note that this game has only one Nash equilibrium ( 1

2H1 + 1
2T1�

1
2H2 + 1

2T2�D�A).

Given the above observations, it must be true that ζ4A(t�x
0)→ 1 as t → ∞ for all x0 ∈ �.

The only thing left to show is that the face spanned by {H1�T1}× {H2�T2}× {D}× {A}
is also Lyapunov stable. To show this, we must prove that for any neighborhood V of the
face, there is another neighborhood U ⊂ V such that any solution to ẋ ∈ σ(x) − x with
initial state in U must stay in V for all t ≥ 0.
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Let V be a neighborhood such that for any x ∈ V , we have x3(U) < ε for some
ε > 0. Let E(ε) ⊂ � denote the ε-box around state (T1�T2�D�A), i.e., x ∈ E if and only if
x1(H1) ≤ ε, x2(H2)≤ ε, x3(U) ≤ ε, and x4(B) ≤ ε.

Let x0 ∈ V \ E(2ε), i.e., x0 is a state outside the 2ε-box around (T1�T2�D�A). Given
the matching pennies structure of the game between players 1 and 2, it is easy to see that
ζ(t�x0) /∈ E(ε) for any t ≥ 0. Thus, by the argument in the proof of Claim 1, B is never
best against ζ(t�x0) for any t ≥ 0, and thus ζ(t�x0)4(B) shrinks to zero as t → ∞.

For x0 ∈ E(2ε), things are different. For some such initial states x0, the path ζ(t�x0)

can go through E(ε) for some time. For part of this time, indeed, player 4’s strategy B

could indeed be best and could grow. However, there is an upper bound on the time
period that ζ(t�x0) spends within E(ε). This upper bound depends on ε. For ε small
enough, the direction that ζ(t�x0) takes for players 1 and 2 must be toward (T1�H2)

(irrespective of what players 3 and 4 do). Given that T2 is thus not best anywhere for
player 2 in this ε-box around (T1�T2�D�A), this means that T2 shrinks (or H2 grows). In
fact, we must have ζ(t�x0)2(T2) = x0

2(T2)e
−t . In the worst case, we thus have ζ(T�x0) /∈

E(ε) for all t ≥ T if T = − ln(1 − ε). Therefore, − ln(1 − ε) is the longest time possible
that ζ(t�x0) stays within E(ε) for any x0 ∈ E(2ε). For at least part and at most all of
this time, B could be (uniquely) best for player 4. Thus, ζ(t�x0)4(B) could grow for up
to this amount of time. Given x0 ∈ V and thus x0

4(B) ≤ ε, we have ζ(t�x0)4(B) ≤ 1 −
(1 − ε)eln(1−ε) = 1 − (1 − ε)2 < 2ε. As ε → 0, this expression tends to zero as well. This
implies that for any neighborhood V of the face spanned by {H1�T1} × {H2�T2} × {D} ×
{A}, there is another neighborhood U such that x3(U) ≤ ε for some ε > 0 small enough
and for all x ∈ V , such that ζ(t�x0) ∈ V for all t ≥ 0 and all x0 ∈U . �

Note that σ = β in this game. Therefore, the converse of Lemma 7 is not true for
the best reply dynamics either. The difference in the seemingly discrepant conclusions
of Claims 1 and 2 is driven by the following observation: B is the unique best reply for
player 4 in a cone-shaped set of opponent strategy profiles with apex (T1�T2�D). Hence,
B is included in each σ-CURB set. Still, the face spanned by the smaller strategy se-
lection {H1�T1} × {H2�T2} × {D} × {A} is asymptotically stable: the trajectories starting
in this cone leave it quickly; moreover, the closer the starting point is to the (smaller)
face, the more quickly the trajectory leaves. Thus, there is a vanishing amount of time in
which B can grow.

Lemma 8. Let � ∈ G∗ and let R be a strategy selection. If �(R) is asymptotically stable un-
der the τ-best reply dynamics ẋ ∈ τ(x)−x for τ ∈ T PS, then R is a τ-prep set. Furthermore,
if for all strategy selections R′ that are proper subsets of R, the face �(R′) is not asymptot-
ically stable under ẋ ∈ τ(x)− x (i.e., �(R) is a minimal asymptotically stable set), then R

is a tight τ-prep set.

Proof. Since τ ∈ T PS, then for every x ∈ �, there is a Ti(x) such that τi(x) = �(Ti(x))

for all i ∈ I. Now suppose �(R) is asymptotically stable under ẋ ∈ τ(x) − x and R is not
a τ-prep set. Then there is an x ∈ �(R) and a player i ∈ I such that Ti(x) ∩ Ri = ∅. But
then, by the upper hemicontinuity of τ, there is a neighborhood of x such that Ti(x

′) ⊂
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D E F

A 1�1 1�1 2�1
B 1�1 0�0 3�1
C 1�2 1�3 1�1

Game 6. This game is taken from Samuelson (1992).

Ti(x) for all x′ in this neighborhood. Thus, a solution to ẋ ∈ τ(x) − x starting from a
state in the interior of this neighborhood must spend a finite amount of time within this
neighborhood. In this finite amount of time, all strategies in Ri must shrink. The face
�(R) is, therefore, not asymptotically stable, which is a contradiction, proving the first
part of this lemma. To prove the second part, suppose �(R) is asymptotically stable and
R is not a tight τ-prep set. Then there is a player i ∈ I and si ∈ Ri such that si /∈ Ti(x) for
any x ∈ �(R). Let R′ be derived from R by letting R′

i = Ri \ {si} and R′
j = Rj for all j �= i.

Then �(R′) is also asymptotically stable under ẋ ∈ τ(x)− x. �

Not every τ-prep set is asymptotically stable under ẋ ∈ τ(x)−x. To see this for τ = σ ,
consider Game 6. This game is symmetric. Note that strategies C and F are weakly
dominated. The unique persistent retract of this game is spanned by {A�B} × {D�E}.
There are three singleton σ-prep sets {(A�D)}, {(A�E)}, and {(B�D)}. None of these
is asymptotically stable under the refined best reply dynamics. Thus, none of these is
MASF. To see this, note that ẋ ∈ σ(x)− x has a solution starting at (A�D) that gradually
takes play toward (A�E).

We are finally in a position to prove our main theorem.

Theorem 4. Let � ∈ G∗. If R is a strategy selection such that �(R) is a persistent retract
(minimal σ-CURB set), then �(R) contains an MASF. Conversely, if R is a strategy selec-
tion such that �(R) is an MASF, then R is a tight σ-prep set.

Proof. For the first part, suppose that R is a strategy selection such that �(R) is a per-
sistent retract (minimal σ-CURB set). Then the fact that �(R) is asymptotically stable
under ẋ ∈ σ(x) − x follows from Lemmas 6 and 7. Thus, either �(R) is an MASF or it
contains one. The second part follows from Lemma 8. �

If one is interested in (partially) characterizing not only MASFs, but also their asymp-
totically stable subsets, one approach is to define an appropriate version of Balkenborg
and Schlag’s (2007) strict equilibrium sets, based on the refined best reply correspon-
dence. We conjecture that these sets, appropriately defined, are asymptotically stable
under ẋ ∈ σ(x)− x.

6. Conclusion

In this paper we endeavor to find the smallest faces of the set of mixed strategy profiles
that can justifiably be called evolutionarily stable. To do so, we introduce generaliza-
tions of the best reply correspondence that satisfy four reasonable criteria. We define
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a generalized best reply dynamics as an appropriate differential inclusion based on the
respective generalized best reply correspondence. We define a minimal asymptotically
stable face (MASF) as a face of the set of mixed strategy profiles that is asymptotically
stable under some such generalized, deterministic evolutionary process, and with the
additional property that it does not properly contain another face that is also asymptot-
ically stable under some (possibly different) generalized best reply dynamics.

We show (Theorem 1) that the set of all generalized best reply correspondences (and,
hence, dynamics) is, for most games, a complete lattice with a unique smallest element.
We call this smallest element the refined best reply correspondence (and dynamics).

The main results in this paper offer a partial characterization of minimal asymptoti-
cally stable faces (MASFs). We show (Theorem 2) that every persistent retract (Kalai and
Samet 1984) is the same as a minimal CURB set (Basu and Weibull 1991) based, however,
on the refined best reply correspondence, and contains an MASF (Theorem 4). A MASF
can be a proper subface of a persistent retract, as we show by example, and must be
(Theorem 4) a tight prep set (Voorneveld 2004) based again on the refined best reply
correspondence. Thus, MASFs are sets somewhere “in between” CURB and prep sets
based on the refined best reply correspondence.

Our findings are thus reminiscent of Hurkens’s (1995) findings that a stochastic best
reply learning process based on semirobust best replies results in play that eventually
leads to a persistent retract. This suggests that while it is difficult to justify Nash equi-
librium behavior, either epistemically or through evolution or learning, let alone any of
its pointwise refinements or even setwise refinements such as Kohlberg and Mertens’s
(1986) strategically stable sets, there are relatively small sets of strategy profiles that can
be justified through learning. Furthermore, every persistent retract or CURB set based
on the refined best reply correspondence contains such a set. In addition, for a face to be
an MASF, it is a necessary condition that this face be spanned by a tight prep set based,
again, on the refined best reply correspondence.

We thus suggest that in applied game theory work, MASFs, or at least appropriate
variations of CURB sets, persistent retracts, and prep sets, which have not yet been used
to a great extent,18 may be very apt choices for a solution concept.

Appendix: On the generic equivalence of own-payoff equivalence

and payoff equivalence

Adapting a notion of Brandenburger and Friedenberg (2009) for perfect information
games, we let a normal form game satisfy the single payoff condition (SPC) if all own-
payoff equivalent pure strategies are also payoff equivalent.19 Not every game satisfies
the SPC: a player other than i might not be indifferent between player i’s own-payoff
equivalent strategies. This is the case in Game 3. For another example, consider the
following game between a completely deaf person and her neighbor. If the completely
deaf person does not care whether there is a loud radio playing in her apartment, while

18Some notable exceptions are Kalai and Samet (1985), Balkenborg (1993), Blume (1994, 1996), Hurkens
(1996), van Damme and Hurkens (1996), and Gordon (2006).

19Battigalli’s (1997) notion of games without relevant ties is closely connected.
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her neighbor does care, the game of how loud the deaf person plays her radio does not
satisfy the SPC.

Thus, our restriction that the game should have no own-payoff equivalent strategies
for any player i is a stronger requirement than saying the game has to be in semire-
duced normal form (see, e.g., p. 147 in Ritzberger 2002). However, games that do not
satisfy the SPC are exceptional. For instance, the deaf person in the previous example
would normally be expected to care at least a little bit about the effect of the loud mu-
sic on her neighbors. This may be because she wants to get along with them or, to the
contrary, because she likes to annoy them. Either way, any slight such change of her
preferences would eliminate the violation of the SPC. It seems intuitive, therefore, that
a typical game should satisfy the SPC. For this consideration, it does not matter from
which class of games—normal form games, extensive form games, repeated games or
any other family of games—the game is taken, as long as the family does not itself sys-
tematically violate the SPC. However, if the notion of “typical” is formalized mathemat-
ically as genericity, being generic in any of these classes mean something very different.

Trivially, for generic normal form games, there are neither own-payoff equivalent nor
payoff equivalent strategies and, hence, the SPC holds. This is of little interest because
most important classes of normal form games, such as normal forms of extensive form
games or of finitely repeated games, are nongeneric. Requiring genericity conflicts with
imposing any additional structure on the class of games considered.20 In this appendix,
we identify a condition on a class of normal form games that implies that the SPC holds
generically within this class. This condition is shown to be satisfied by the classes of nor-
mal forms of extensive form games, of finitely repeated games, and of cheap talk games.
Thus, the restriction to games that satisfy the SPC and, hence, after the identification of
payoff equivalent strategies, to games in G∗, is not severe.

Definition 4. A normal form game satisfies the single payoff condition (SPC) if the fol-
lowing holds for all players i ∈ I: Two strategies si� s′i ∈ Si satisfy the equation

ui(si� s−i) = ui(s
′
i� s−i)

for all s−i ∈ S−i only if the equation

uj(si� s−i) = uj(s
′
i� s−i)

holds for all j ∈ I and all s−i ∈ S−i.

Definition 5. For a given set of strategy combinations S , consider a family of normal
form games {�μ}μ∈O , given by utility functions

ui(s�μ)

for s ∈ S and i ∈ I, which depend on a vector of parameters μ taken from a nonempty
open set O in some Euclidean space R

k. We call the family analytic if all ui(s�μ) are

20For an illuminating discussion on this point, see Mertens (2003).



Theoretical Economics 8 (2013) Best reply correspondence and dynamics 187

analytic functions in μ for a given s ∈ S.21 We say that the family satisfies the functional
single payoff condition if the following holds for all players i ∈ I: Two strategies si� s

′
i ∈ Si

satisfy the functional identities

ui(si� s−i�μ) = ui(s
′
i� s−i�μ) for all μ ∈O�

for all s−i ∈ S−i only if the functional identities

uj(si� s−i�μ) = uj(s
′
i� s−i�μ) for all μ ∈O

hold for all j ∈ I and all s−i ∈ S−i.

Proposition 3. Suppose the analytic family of games {�μ}μ∈O satisfies the functional
single payoff condition. Then for generic μ ∈ O, the game �μ satisfies the single payoff
condition.

Proof. Fix i ∈ I, si� s′i ∈ Si, s−i ∈ S−i, and j ∈ I such that uj(si� s−i�μ) and uj(s
′
i� s−i�μ) are

distinct as functions in μ. Then the set of parameter values μ for which

uj(si� s−i�μ) = uj(s
′
i� s−i�μ) (4)

is a closed lower-dimensional analytic set because the function is analytic (see, e.g.,
Gunning and Rossi 1965). Because there are finitely many choices of i ∈ I, si� s′i ∈ Si,
s−i ∈ S−i, and j ∈ I to consider, we find that for μ outside a lower-dimensional analytic
subset D of O, the identity (4) for some i ∈ I, si� s′i ∈ Si, s−i ∈ S−i, and j ∈ I implies the
identity (4) for all i ∈ I, si� s′i ∈ Si, s−i ∈ S−i, and j ∈ I, and also for all μ ∈ O. In particular,
the SPC condition holds for all μ /∈D. �

Example 1. In a cheap-talk game, players first send, simultaneously and indepen-
dently, public messages mi from message spaces Mi. After all players have received the
combination of messages

m= (m1� � � � �mn) ∈M = ×i∈IMi�

they simultaneously and independently choose actions ai ∈ Ai. A pure strategy in such
a game consists of a message mi and a function fi :M → Ai. The play of any strategy
combination s results in a combination of messages m ∈M and a combination of actions

a= (a1� � � � � an) ∈A= ×i∈IAi�

of which, in a cheap-talk game, only the latter is payoff-relevant. In this example, the
parameter space is R

A×I . For μ ∈ R
A×I , we define the utility function by

ui(s�μ) = μa�i�

21An analytic function is a function that is locally described by power series. The notion covers most
functions arising in applications, and, in particular, linear and rational functions or functions like ex or
ln(x). In our examples, the functions are always linear.
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where a is the combination of actions induced by s. The utility function for each s ∈ S is
then the projection onto a particular component of the vector μ. The identity

ui(si� s−i�μ) = ui(s
′
i� s−i�μ)

can hold for all μ only if both functions project onto the same component of μ, i.e.,
if the play of both (si� s−i) and (s′i� s−i) results in the same combination of actions a,
although in possibly different combinations of messages. (If (si� s−i) and (s′i� s−i) result
in different combinations of actions, a and a′, the equality does not hold in the game
where all players get 1 after a and 0 after a′.) If this is the case, then, by construction,

uj(si� s−i�μ) = μa�j = uj(s
′
i� s−i�μ)

for all j and μ. Thus Proposition 3 applies and we conclude that the SPC holds generi-
cally in cheap-talk games. ♦

Example 2. In an extensive game without chance moves, the play of any pure strategy
combination results in a terminal node t ∈ T . In this case, the parameter space for a
given extensive form is R

T×I and the utility function is ui(s�μ) = μt�i if s induces t. The
same arguments as for cheap-talk games imply that the SPC holds in generic extensive
form games with no random moves. Notice, though, that almost no extensive game with
the extensive form of a cheap-talk game is itself a cheap-talk game. Hence, the previous
result is not a special case of this one. ♦

Example 3. In an extensive game with chance moves, the parameter space remains as
in the previous example, but the utility function becomes

ui(s�μ) =
∑

t∈T
ptμt�i�

where pt is the probability with which terminal node t is reached when the pure strategy
combination s is played. Clearly, the equation

ui(si� s−i�μ) =
∑

t∈T
ptμt�i =

∑

t∈T
p′
tμt�i = ui(s

′
i� s−i�μ)

can hold for all μ ∈ R
T×I only if pt = p′

t for all t ∈ T . Thus, the SPC holds for generic
extensive form games, even with chance moves. ♦

Example 4. In a finitely repeated game with perfect monitoring, no discounting,
and t ≥ 0 periods, the play of a pure strategy combination s results in a sequence
(a1� a2� � � � � at) of combinations of actions in the stage game. The payoff to a player can
be written as

∑

a∈A
ks�aμa�i�
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where the parameter μa�i is player i’s payoff in the stage game from the combina-
tion of actions a and where ks�a is the number of times a is played in the sequence
(a1� a2� � � � � at). For the two strategy combinations s = (si� s−i) and s′ = (s′i� s−i), if

ui(s�μ) =
∑

a∈A
ks�aμa�i =

∑

a∈A
ks′�aμa�i = ui(s

′�μ)

for all μ ∈ R
A×I , then ks�a = ks′�a for all a ∈A and, hence,

ui(s�μ) =
∑

a∈A
ks�aμa�i =

∑

a∈A
ks′�aμa�i = ui(s

′�μ)�

Again, the SPC holds generically in repeated games. ♦

Example 5. Consider, finally, the class of normal form games that, for every i ∈ I, every
s−i ∈ S−i, and any si� s

′
i ∈ Si satisfy the equation

ui(si� s−i�μ) = ui(s
′
i� s−i�μ)�

If at least one player has two strategies, then this class does not satisfy the functional
single payoff condition. Almost all games in this class violate the SPC. ♦
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