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Abstract. We introduce GBDT version of Darboux transformation for
Hamiltonian and Shin–Zettl systems as well as for Sturm–Liouville equa-
tions (including indefinite Sturm–Liouville equations). These are the
first results on Darboux transformation for general-type Hamiltonian
and for Shin–Zettl systems. The obtained results are applied to the cor-
responding transformations of the Weyl–Titchmarsh functions and to
the construction of explicit solutions of dynamical systems, of two-way
diffusion equations and of indefinite Sturm–Liouville equations. The en-
ergy of the explicit solutions of dynamical systems is expressed (in a
quite simple form) in terms of the parameter matrices of GBDT. The
insertion of non-real eigenvalues into the spectrum of indefinite Sturm–
Liouville operators is studied.
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1. Introduction

This paper is dedicated to the study of the important subclasses of the first
order differential systems with a spectral parameter λ. Namely, we consider
Hamiltonian systems

d

dx
y(x, λ) = F (x, λ)y(x, λ), F (x, λ) = J

(
λH1(x) + H0(x)

)
, (1.1)

where

J∗ = −J, H1(x)∗ = H1(x), H0(x) = H0(x)∗, H1(x) ≥ 0; (1.2)
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and so called Shin–Zettl systems

d

dx
y(x, λ) = F (x, λ)y(x, λ), F (x, λ) =

[
r1(x) p(x)−1

q(x) − λω(x) r2(x)

]
. (1.3)

Here J∗ is the conjugate transpose of the matrix J . We assume that the
m×m (m ∈ N) matrix functions H1(x) and H0(x) in (1.1) and the functions
p−1, q, r1, r2 and ω in (1.3) are locally summable on [0, �) (� ≤ ∞). The
matrix function F in (1.3) is the 2×2 Shin–Zettl matrix of general form (see,
e.g., § 2 in [14] or in [15]). We note that Shin–Zettl differential expressions
were introduced in [50,53] and were actively studied in regularization and
spectral theories (see the books [1,54], papers [14,15], recent surveys [37,55]
and various references therein). The Lagrange-symmetric case

ω = ω, p = p, q = q, r1 = −r2 (1.4)

and the Lagrange-J-symmetric case

r1 = −r2 (1.5)

are of special interest [15]. Here μ stands for the value which is complex
conjugate to μ.

The entries of the 2×1 vector function y in (1.3) are denoted by y1 and
y2. When r1 ≡ r2 ≡ 0, we rewrite (1.3) in the form

y′
1 = p−1y2, y′

2 = (q − λω)y1

(
y′

k =
d

dx
yk

)
, (1.6)

which is equivalent to the Sturm–Liouville equation

− (
p(x)u′(x, λ)

)′ + q(x)u(x, λ) = λω(x)u(x, λ), (1.7)

where u = y1. If ω = ω, p = p and ω or p change signs, one speaks about
indefinite Sturm–Liouville problem. Quasi-derivatives related to the quasi-
derivatives generated by Shin–Zettl systems are used in the study of im-
portant modifications of Schrödinger-type operators (see, e.g., [13,49] and
references therein) including Schrödinger-type operators with distributional
potentials [13].

On the other hand, Lagrange-symmetric Shin–Zettl systems, where
ω ≥ 0, form also a subclass of Hamiltonian systems. See, for instance, [22]
on the representation (1.1), (1.2) of Hamiltonian systems and the equivalence
of the definite Sturm–Liouville equation to a certain subclass of Hamilton-
ian systems. We note that the book [2] by Atkinson, the papers by Hinton
and Shaw as well the Kac–Krein supplement [24] (to the translation of [2])
presented seminal developments in the theory of Hamiltonian systems and
Sturm–Liouville equations. (For recent references on Hamiltonian systems
see, e.g., [25,38,46,51].) In some works, conditions (3.1) are added in the
definition of Hamiltonian systems but these conditions are absent in [22] and
they are not essential for Darboux transformations, which we will construct
here, as well.

In this paper we construct our GBDT version of the Bäcklund–Darboux
transformation (see the results and references in [42,44,46]) for the cases of
Hamiltonian and Shin–Zettl systems in order to study perturbations of these
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systems and corresponding transformations of the Weyl–Titchmarsh (or sim-
ply Weyl) functions. We construct explicit solutions of the perturbed systems
as well. Several versions of Bäcklund–Darboux transformations (see, e.g., [9,
21,35,46] and references therein) are a well-known tool for the construction of
explicit solutions of linear and integrable nonlinear equations. GBDT as well
as Crum–Krein and commutation methods (which are related to Bäcklund–
Darboux transformations) are also essential in the study of Weyl–Titchmarsh
theory and important spectral problems [10,12,17,18,20,29,32,36,45].

As far as we know, neither Bäcklund–Darboux transformations nor
commutation methods were applied to general-type Hamiltonian systems
(1.1) and to Shin–Zettl systems (1.3) before (although commutation and
Bäcklund–Darboux transformations for such important particular cases as
Schrödinger equations, canonical systems and related Dirac equations are
well-known). We mention an interesting paper [5] on Kummer–Liouville trans-
formation for Shin–Zettl systems but that transformation is different and was
applied with different purposes.

Darboux transformation for general-type Hamiltonian systems is intro-
duced in Sect. 2. The corresponding transformations of the Weyl functions
are considered in Sect. 3. GBDT for Shin–Zettl systems and Sturm–Liouville
equations is introduced in Sects. 4–6. Explicit solutions of dynamical systems
and of two-way diffusion equations are constructed in Sect. 7. The insertion
of real and non-real eigenvalues is discussed in Sect. 8. Finally, explicit so-
lutions of indefinite Sturm–Liouville equations (and explicit expressions for
generalised eigenfunctions) are considered in Sect. 9.

As usual, N denotes the set of natural numbers, C denotes the complex
plane, C+ is the open upper half-plane {λ: �(λ) > 0} and C− is the open lower
half-plane {λ: �(λ) < 0}. The notation In stands for the n×n identity matrix,
H∗ is the conjugate transpose of the matrix H, the inequality H ≥ 0 means
that H = H∗ and that all the eigenvalues of the matrix H are nonnegative.

2. GBDT for Hamiltonian Systems

1. Our GBDT version of Bäcklund–Darboux transformation for system
(1.1) is a particular case of GBDT for systems with rational dependence on
spectral parameter (see, e.g., [44] or [46, Sect. 7.2]). We start with introducing
GBDT for the first order system of m differential equations with a linear
dependence on the spectral parameter (m ∈ N):

y′(x, λ) = F (x, λ)y(x, λ), F (x, λ) = −(
λQ1(x) + Q0(x)

)
. (2.1)

For that purpose we fix some initial system (2.1) (i.e., some m × m matrix
functions Q1(x) and Q0(x), which are locally summable on [0, �)), an integer
n ∈ N and five parameter matrices, namely, n × n matrices A1, A2 and S(0),
and n × m matrices Π1(0) and Π2(0) such that the matrix identity
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A1S(0) − S(0)A2 = Π1(0)Π2(0)∗ (2.2)

holds. Matrix functions Π1(x), Π2(x) and S(x) are introduced by their initial
values Π1(0), Π2(0), S(0) and differential equations

Π′
1 = A1Π1Q1 +Π1Q0, (Π∗

2)
′ = −Q1Π∗

2A2 −Q0Π∗
2, S′ = Π1Q1Π∗

2. (2.3)

The identity

A1S(x) − S(x)A2 = Π1(x)Π2(x)∗, (2.4)

for all x ∈ [0, �), is a particular case of [46, f-la (7.18)] and easily follows from
(2.2) and (2.3).

When we deal with S(x)−1, our further statements are valid in the points
of invertibility of S(x). The questions of invertibility of S(x) are discussed
in our sections separately (see, e.g., Remarks 2.3, 8.2, 9.4 and formulas (9.7)
and (9.8)).

According to the subcase r = 1, l = 0 of [46, Theor. 7.4], the so called
Darboux matrix for system (2.1) is given by the formula

wA(x, λ) = Im − Π2(x)∗S(x)−1(A1 − λIn)−1Π1(x). (2.5)

More precisely, [46, Theor. 7.4] yields that wA satisfies the following equation

d

dx
wA(x, λ) = F̃ (x, λ)wA(x, λ) − wA(x, λ)F (x, λ), (2.6)

where

F̃ (x, λ) := −(
λQ1(x) + Q̃0(x)

)
, (2.7)

Q̃0(x) := Q0(x) − (
Q1(x)X(x) − X(x)Q1(x)

)
, (2.8)

X(x) := Π2(x)∗S(x)−1Π1(x). (2.9)

We note that (in view of (2.4)) the matrix function wA(λ) of the form (2.5)
is (for each x) the so called transfer matrix function in Lev Sakhnovich form
(see [46–48] and references therein).

System y′ = F̃ y is called the transformed (GBDT-transformed) system
(recall that (2.1) is the initial system). An important step in the proof of
(2.6) is the proof of the equation

(
Π∗

2S
−1

)′ = −Q1Π∗
2S

−1A1 − Q̃0Π∗
2S

−1. (2.10)

See [46, f-la (7.61)] for the general formula, of which (2.10) is a particular
case. We will use (2.10) in Sect. 7.1.

Formula (2.6) implies the following theorem.

Theorem 2.1. Let y(x, λ) satisfy system (2.1) and let wA be given by (2.5),
where the matrix functions Π1, Π2 and S are determined by (2.3) and identity
(2.2) holds. Then the function

ỹ(x, λ) := wA(x, λ)y(x, λ) (2.11)

satisfies, in the points of invertibility of S(x), another (transformed) first
order system
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d

dx
ỹ(x, λ) = F̃ (x, λ)ỹ(x, λ), (2.12)

where F̃ (x, λ) is given by (2.7)–(2.9).

2. The most important subcase of the considered above transformations
(GBDT-transformations) is the subcase of the initial system (2.1) such that

Q1(x) = −JH1(x), Q0(x) = −JH0(x), (2.13)
J∗ = −J, H1(x)∗ = H1(x), H0(x) = H0(x)∗. (2.14)

In that subcase we deal with the system (1.1), where all the conditions (1.2)
on Hamiltonian system, excluding the nonnegativity condition H1(x) ≥ 0,
hold. Further in the paragraphs 2 and 3 we assume that the equalities (2.13)
and (2.14) are valid. Since we do not require in paragraph 2 that H1 ≥ 0,
we may apply the corresponding results not only to Hamiltonian systems but
also to all Lagrange-symmetric Shin–Zettl systems and to indefinite Sturm–
Liouville equations.

We omit indices in A1 and Π1 and set

A = A1, Π = Π1; A2 = A∗, S(0) = S(0)∗, Π2(0) = −Π(0)J.

(2.15)

Using (2.13)–(2.15) we rewrite the first and second equations in (2.3), corre-
spondingly, in the forms

(−ΠJ)′ = −A(−ΠJ)H1J − (−ΠJ)H0J, (Π2)′ = −AΠ2H1J − Π2H0J.

Thus, the equations on −ΠJ and on Π2 coincide, and, in view of the equality
Π2(0) = −Π(0)J we obtain Π2(x) ≡ −Π(x)J . In this way, Eq. (2.3) is reduced
to the equation

Π′(x) = −AΠ(x)JH1(x) − Π(x)JH0(x), S′(x) = Π(x)JH1(x)J∗Π(x)∗.
(2.16)

Since we assume in (2.15) that S(0) = S(0)∗, the second equation in (2.16)
yields S(x) = S(x)∗. Thus, we have

Π2(x) ≡ −Π(x)J, S(x) = S(x)∗. (2.17)

Now, the matrix identity (2.4) and Darboux matrix (2.5) are rewritten in the
form

AS(x) − S(x)A∗ = Π(x)JΠ(x)∗, (2.18)
wA(x, λ) = Im − JΠ(x)∗S(x)−1(A − λIn)−1Π(x). (2.19)

Moreover, using (2.13) and the equalities Π2(x) ≡ −Π(x)J and J∗ = −J , we
rewrite (2.7)–(2.9) in the form

F̃ (x, λ) = J
(
λH1(x) + H̃0(x)

)
, H̃0(x) = H0(x) + Z(x), (2.20)

Z(x) := Π(x)∗S(x)−1Π(x)JH1(x) + H1(x)J∗Π(x)∗S(x)−1Π(x). (2.21)
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Formulas (2.14), (2.20) and (2.21) imply that H̃0 = H̃∗
0 , that is, F̃ has the

same form as F . Hence, the next proposition follows from Theorem 2.1.

Proposition 2.2. Let y(x, λ) satisfy system (1.1) (such that (2.14) holds), and
let a triple {A,S(0) = S(0)∗,Π(0)} of parameter matrices satisfying (2.18)
at x = 0 be given. Introduce wA(x, λ) by (2.19), where the matrix functions
Π(x) and S(x) are determined by (2.16).

Then the function ỹ(x, λ) = wA(x, λ)y(x, λ) satisfies, in the points of
invertibility of S(x), another (transformed) system of the same form as (1.1),
namely,

d

dx
ỹ(x, λ) = F̃ (x, λ)ỹ(x, λ), (2.22)

where F̃ (x, λ) is given by (2.20), (2.21) and the equality H̃0 = H̃∗
0 holds.

If the inequalities H1(x) ≥ 0 and S(0) > 0 are valid, the systems (1.1)
and (2.22) are Hamiltonian.

Remark 2.3. If system (1.1), (2.14) is Hamiltonian (i.e., H1(x) ≥ 0) and, in
addition, the inequality S(0) > 0 holds, formula (2.16) shows that S(x) > 0
for all x ∈ [0, �). Therefore, S(x) is invertible on [0, �). In particular, it follows
that the system (2.22) is, indeed, Hamiltonian.

3. If in the system (1.1) we have J = −J∗ = −J−1 and H0 ≡ 0, we come
to the important class of canonical systems. See GBDT for canonical system
and its applications to Weyl–Titchmarsh theory in [43].

For the case of Hamiltonian systems with invertible J we can (similar
to the case of canonical systems) consider transformation slightly different
from (2.20), (2.21). More precisely, we introduce matrix functions ŵ(x) and
v(x, λ) by the formulas

ŵ′(x) = −ŵ(x)JZ(x), ŵ(0) = Im; v(x, λ) = ŵ(x)wA(x, λ) (2.23)

with Z of the form (2.21). It is easy to see that ŵ(x)Jŵ(x)∗ = J , and so

ŵ(x)−1 = Jŵ(x)∗J−1 = J∗ŵ(x)∗(J∗)−1. (2.24)

In view of Proposition 2.2 and relations (2.23) and (2.24), if y(x, λ) satisfies
(1.1), then the matrix function ŷ(x, λ) = v(x, λ)y(x, λ) satisfies the system

d

dx
ŷ(x, λ) = F̂ (x, λ)ŷ(x, λ), F̂ (x, λ) = J

(
λĤ1(x) + Ĥ0(x)

)
, (2.25)

where

Ĥ1 = J−1ŵJH1ŵ
−1 = J−1ŵJH1J

∗ŵ∗(J∗)−1 = Ĥ∗
1 , (2.26)

Ĥ0 = J−1ŵJ(H̃0 − Z)ŵ−1 = J−1ŵJH0J
∗ŵ∗(J∗)−1 = Ĥ∗

0 . (2.27)

In the special case H0 = icJ−1 (c = c), the formula (2.27) is simplified and
we obtain Ĥ0 ≡ icJ−1.
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3. Darboux Transformations of Weyl–Titchmarsh Functions

In his important paper [30], Krall introduced Weyl–Titchmarsh (or simply
Weyl) M(λ)-functions of Hamiltonian systems in the classical terms of “Weyl
circle” inequalities. Here, Weyl circles of system (1.1) on the intervals [0, �′]
(�′ < �) and the values λ in the upper half-plane λ ∈ C+ (i.e., �(λ) > 0) are
considered. The Weyl circles in the lower half-plane C− are treated in a quite
similar way and we omit that case.

Krall required that m is even and that J in (1.1) has a special form:

m = 2r (r ∈ N), J =
[

0 Ir

−Ir 0

]
. (3.1)

In fact, Hamiltonian system in [30] is written in a slightly different from
(1.1) way and our J∗ stands for J in an equivalent to (1.1) system in [30].
Rewriting correspondingly the inequality for the Weyl circle (of matrices
M(λ) with λ ∈ C+) from [30, p. 670], we obtain

i
[
Ir M(λ)∗]Y (�′, λ)∗JY (�′, λ)

[
Ir

M(λ)

]
≤ 0. (3.2)

Here Y (x, λ) is the fundamental m × m solution of the Hamiltonian system
(1.1) (such that (1.2) and (3.1) are valid), normalized by the initial condition

Y (0, λ) = E (EJ = JE, E∗E = Im). (3.3)

According to Proposition 2.2, the fundamental solution Ỹ (x, λ) (nor-
malized by Ỹ (0, λ) = E) of the transformed Hamiltonian system (2.22) is
given by the formula

Ỹ (x, λ) = wA(x, λ)Y (x, λ)E∗wA(0, λ)−1E. (3.4)

Let us set

U(λ) = {Uij(λ)}2i,j=1 := E∗wA(0, λ)E, (3.5)

where Uij(λ) are r × r blocks of U . In view of (3.4) and (3.5), the Weyl circle
(of matrices M̃(λ)) for the transformed system on [0, �′] and for λ ∈ C+ is
determined by the inequality

i
[
Ir M̃(λ)∗

] (U(λ)−1
)∗

Y (�′, λ)∗wA(x, λ)∗JwA(x, λ)Y (�′, λ)U(λ)−1

[
Ir

M̃(λ)

]

≤ 0. (3.6)

Relations (2.18) and (2.19) yield the following identity [46, f-la (1.88)]:

iwA(x, λ)∗JwA(x, λ)

= iJ + i(λ − λ)Π(x)∗(A∗ − λIn)−1S(x)−1(A − λIn)−1Π(x). (3.7)

In this section we consider Hamiltonian systems and assume that S(0) > 0.
Hence, according to Remark 2.3 we have S(x) > 0. Now, it is immediate from
(3.7) that

iwA(x, λ)∗JwA(x, λ) ≤ iJ (λ ∈ C+). (3.8)
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Formula (3.8) implies that

i
[
Ir M̃(λ)∗

] (U(λ)−1
)∗

Y (�′, λ)∗wA(x, λ)∗JwA(x, λ)Y (�′, λ)U(λ)−1

[
Ir

M̃(λ)

]

≤ i
[
Ir M̃(λ)∗

] (U(λ)−1
)∗

Y (�′, λ)∗JY (�′, λ)U(λ)−1

[
Ir

M̃(λ)

]
(3.9)

Using (3.9), we derive the next theorem.

Theorem 3.1. Let Hamiltonian system (1.1) (such that (1.2) and (3.1) are
valid) be given. Let its GBDT transformation be determined by the triple of
matrices {A,S(0),Π(0)} such that S(0) > 0 and that the matrix identity

AS(0) − S(0)A∗ = Π(0)JΠ(0)∗ (3.10)

holds. Assume that M(λ) (λ ∈ C+) belongs to the Weyl circle (3.2) of the
system (1.1) and that

det
(U11(λ) + U12(λ)M(λ)

) �= 0, (3.11)

where U is defined in (3.5). Then

M̃(λ) =
(U21(λ) + U22(λ)M(λ)

)(U11(λ) + U12(λ)M(λ)
)−1 (3.12)

belongs to the Weyl circle of the transformed system.

Proof. Taking into account (3.11) and (3.12), we obtain
[

Ir

M̃(λ)

]
= U(λ)

[
Ir

M(λ)

]
(U11(λ) + U12(λ)M(λ)

)−1
. (3.13)

Now, substitute (3.13) into the right-hand side of (3.9) and use (3.2) in order
to see that (3.6) is valid. �

According to [30, p. 671], we have i
(
M(λ) − M(λ)∗) ≤ 0. Moreover, we

have

i
(
M(λ) − M(λ)∗) < 0, (3.14)

if only
∫ �′

0
y(x, λ)∗H1(x)y(x, λ)dx > 0 for each nontrivial solution y of (1.1).

Remark 3.2. If (3.14) is valid, then the inequality (3.11) holds automatically.
Indeed, if det

(U11(λ) + U12(λ)M(λ)
)

= 0, then there is a vector f �= 0 such
that

(U11(λ) + U12(λ)M(λ)
)
f = 0. Therefore, recalling that J has the form

(3.1), we obtain

if∗ [
Ir M(λ)∗] U(λ)∗JU(λ)

[
Ir

M(λ)

]
f = 0 (f �= 0). (3.15)

On the other hand, relations (3.5) and (3.8) (together with the properties of
E from (3.3)) imply that U(λ)∗JU(λ) ≤ iJ . Hence, using (3.14), we derive

i
[
Ir M(λ)∗] U(λ)∗JU(λ)

[
Ir

M(λ)

]
≤ i

[
Ir M(λ)∗] J

[
Ir

M(λ)

]
< 0, (3.16)

which contradicts (3.15).
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In the limit point case (see, e.g., the discussions in [23,31]) there is a
unique holomorphic in C+ Weyl function M(λ) the values of which belong
to all the Weyl circles (3.2) such that �′ < � (λ ∈ C+). We note that M(λ)
is the limit of the values of M(λ) when �′ tends to �. Thus, formula (3.12)
shows that

M̃(λ) :=
(U21(λ) + U22(λ)M(λ)

)(U11(λ) + U12(λ)M(λ)
)−1 (3.17)

is a Weyl function of the transformed system considered on [0, �).

4. GBDT for Shin–Zettl Systems

Shin–Zettl systems (1.3) present (as well as Hamiltonian systems) an impor-
tant subclass of systems (2.1). Matrices Q1 and Q2, in the case of Shin–Zettl
systems, have the form

Q1(x) =
[

0 0
ω(x) 0

]
, Q0(x) = −

[
r1(x) p(x)−1

q(x) r2(x)

]
. (4.1)

Recall that GBDT is determined by the parameter matrices A1, A2, S(0),
Π1(0) and Π2(0) such that (2.2) holds. For the Shin–Zettl systems, we have
m = 2, and so matrices Π1(0) and Π2(0) are n × 2 matrices. Using the
second equality in (1.3) and the first equality in (4.1), we rewrite F̃ given by
(2.7)–(2.9) in the Shin–Zettl form

F̃ (x, λ) =
[

r̃1(x) p̃(x)−1

q̃(x) − λω̃(x) r̃2(x)

]
, ω̃ = ω, p̃ = p; (4.2)

r̃1 = r1 − ωX12, r̃2 = r2 + ωX12, q̃ = q + ω(X11 − X22). (4.3)

where Xik(x) are the entries of X(x). Now, the following proposition is im-
mediate from Theorem 2.1.

Proposition 4.1. Let y(x, λ) satisfy Shin–Zettl system (1.3) and let wA be
given by (2.5), where the matrix functions Π1, Π2 and S are determined by
(2.3) and identity (2.2) holds. Then the function ỹ(x, λ) = wA(x, λ)y(x, λ)
satisfies, in the points of invertibility of S(x), the transformed Shin–Zettl
system (2.12), where F̃ (x, λ) is given by (4.2) and (4.3).

The next corollary easily follows from Proposition 4.1.

Corollary 4.2. Let the conditions of Proposition 4.1 hold and let the ini-
tial system (1.3) be Lagrange-J-symmetric (i.e., let (1.5) be valid). Then
the transformed system is Lagrange-J-symmetric as well, that is, the equality
r̃1 = −r̃2 holds.

In the next section, we consider the Lagrange-symmetric case (i.e., the
case (1.4)).
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5. Lagrange-Symmetric Case

Further we assume that (1.4) is fulfilled and rewrite (4.1) for that case:

Q1(x) =
[

0 0
ω(x) 0

]
, Q0(x) = −

[
r(x) p(x)−1

q(x) −r(x)

]
, (5.1)

r(x) := r1(x) = −r2(x). (5.2)

Now, system (1.3) may be rewritten as the quasi-differential equation:

− (
u[1]

)′ − ru[1] + qu = λωu, u[1] := p(u′ − ru), (5.3)

where y1(x) = u(x), y2(x) = u[1](x) and the quasi-differential expression

Mu = −(
u[1]

)′ − ru[1] + qu − λωu

is symmetric (see, e.g., [15]). See also [7,39,54] and references therein on sym-
metric expressions (−(

u[1]
)′ − ru[1] + qu)/ω in the weighted spaces L2

|ω|[0, �)
and L2

ω[0, �). Using the quasi-derivative u[1] one may consider Sturm–Liouville
equations (including self-adjoint Sturm–Liouville equations) with non-smooth
coefficients (see, e.g., the discussions in [53, p. 455] and in [54, p. 25]).

We note that Q1 and Q0 given by (5.1) admit representation (2.13),
where

J = iσ2, H1(x) =
[
ω(x) 0

0 0

]
, H0(x) =

[−q(x) r(x)
r(x) p(x)−1

]
, (5.4)

σ2 :=
[
0 −i
i 0

]
is a Pauli matrix, and (2.14) holds. In fact, conditions (2.13)

and (2.14) (in the Shin–Zettl case and with J = iσ2) are equivalent to the
conditions (1.4) of Lagrange symmetry. (Clearly, when ω ≥ 0 we deal with a
subclass of Hamiltonian systems.) Thus, omitting the indices in A1 and Π1

and rewriting (2.15) in the form

A = A1, Π = Π1; A2 = A∗, S(0) = S(0)∗, Π2(0) = −iΠ(0)σ2,

(5.5)

we see that the formulas of §2 in Sect. 2 are valid for Lagrange-symmetric
case.

Since Π2(x) = −iΠ(x)σ2, formula (2.9) for X may be rewritten as

X(x) = JΠ(x)∗S(x)−1Π(x), J = iσ2 =
[

0 1
−1 0

]
, (5.6)

and we obtain

X12(x) = X12(x), X22(x) = −X11(x). (5.7)

Recall that Π(x) and S(x) are given by the equations

Π′ = −AΠJH1 − ΠJH0, S′ = ΠJH1J
∗Π∗, J = iσ2. (5.8)

Formula (2.19) for the Darboux matrix takes the form

wA(x, λ) = I2 − iσ2Π(x)∗S(x)−1(A − λIn)−1Π(x). (5.9)
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Using (5.4) and (5.7), we derive from Propositions 2.2 and 4.1 the next corol-
lary.

Corollary 5.1. Assume that the initial Shin–Zettl system is Lagrange-
symmetric (i.e., that (1.4) holds). Let the matrices A, Π(0) and S(0) be
chosen so that S(0) = S(0)∗ and AS(0) − S(0)A∗ = iΠ(0)σ2Π(0)∗, and let
Π(x), S(x) and X(x) be determined by (5.8) and (5.6), respectively.

Then the corresponding transformed Shin–Zettl system
ỹ′(x, λ) = F̃ (x, λ)ỹ(x, λ) is given by (4.2), where

r̃1 = −r̃2 = r − ωX12, q̃ = q + ω(X11 + X11). (5.10)

This transformed system is Lagrange-symmetric as well. Moreover, the func-
tion ỹ(x, λ) = wA(x, λ)y(x, λ), where wA has the form (5.9) and y is a solu-
tion of the initial Shin–Zettl system, satisfies the transformed system.

6. Sturm–Liouville Equations

In this section we consider Sturm–Liouville equation (1.7). GBDT for its
particular case (namely, for Schrödinger equation where p ≡ ω ≡ 1) was
dealt with in [19] but the general equation (1.7) contains other interesting
subcases, where GBDT could be useful as well.

Proposition 6.1. Let the function pω be differentiable and its derivative (pω)′

as well as the functions p−1, q and ω be locally summable on [0, �). Assume
that

ω = ω, p = p, q = q, r ≡ 0, (6.1)

and set

ỹ(x, λ) = wA(x, λ)y(x, λ), (6.2)

where wA is given by the relations (5.9) and (5.8), H0 and H1 (in (5.8))
are given by (5.4) and y satisfies the initial Lagrange-symmetric Shin–Zettl
system

y′(x, λ) = J
(
λH1(x) + H0(x)

)
y(x, λ). (6.3)

Then the entry ỹ1 of ỹ satisfies the transformed Sturm–Liouville equation

− (
p(x)ỹ′

1(x, λ)
)′ + q̆(x)ỹ1(x, λ) = λω(x)ỹ1(x, λ), (6.4)

where

q̆ = q + 2ω(X11 − X22) + 2p(ωX12)2 − (pω)′X12, (6.5)

and Xik are the entries of X given by (5.6).

Proof. Recall that in Sect. 5 we rewrote Shin–Zettl system in the form (5.3)
where u = y1. In the notations of the transformed system it means

− (
p(ỹ′

1 − r̃ỹ1)
)′ − r̃p(ỹ′

1 − r̃ỹ1) + q̃ỹ1 = λωỹ1, (6.6)
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where r̃ := r̃1(x) = −r̃2(x). Using the identity r1 ≡ r2 ≡ 0 and equalities
(4.3) and (5.7) we present (6.6) in the form

−(
pỹ′

1

)′ − (
pωX12ỹ1

)′ + pωX12ỹ
′
1 + p(ωX12)2ỹ1

+
(
q + ω(X11 − X22)

)
ỹ1 = λωỹ1, (6.7)

which is equivalent to (6.4) with

q̆ = q + ω(X11 − X22) + p(ωX12)2 − (pω)′X12 − pωX ′
12. (6.8)

Finally, in order to show that the functions q̆ given by (6.5) and (6.8) coincide,
let us differentiate X12. Taking into account (5.6) and (5.8), we obtain:

X ′ = J(H1JΠ∗A∗S−1Π + H0JΠ∗S−1Π) − JΠ∗S−1ΠJH1J
∗Π∗S−1Π

− JΠ∗S−1(AΠJH1 + ΠJH0).

In particular, for X12 we obtain

X ′
12 = p−1(X22 − X11) − ωX2

12. (6.9)

Here we again took into account that r1 ≡ r2 ≡ 0. Equalities (6.8) and (6.9)
imply (6.5). �

Remark 6.2. In view of (5.7), (6.1) and (6.5), the equality �(q̆) ≡ 0 is valid.
Thus, the coefficients of the transformed Sturm–Liouville equation (6.4) are
real-valued. It is easy to see that the function q̆ is locally summable on [0, �)
if the conditions of Proposition 6.1 hold and S(x) is invertible on [0, �).

7. Dynamical Systems

7.1. Dynamical Systems

Formally applying Laplace transform to the system (1.1) (satisfying (2.14)),
we come to the interesting dynamical system

∂

∂x
z(x, t) = J

(
−H1(x)

∂

∂t
z(x, t) + H0(x)z(x, t)

)
. (7.1)

In order to construct Darboux transformation of system (7.1) and so-
lutions of the transformed system, we use (2.17) and rewrite (2.10) (for our
case where the relations (2.13)–(2.15) are valid) in the form

(
JΠ∗S−1

)′ = J
(
H1JΠ∗S−1A + H̃0JΠ∗S−1

)
, (7.2)

H̃0 = H0 − X∗H1 − H1X, X = JΠ∗S−1Π. (7.3)

We note that (7.3) is equivalent to the second equality in (2.20).

Proposition 7.1. Let J , H1(x) and H0(x) satisfying (2.14), as well as the
triple {A,S(0) = S(0)∗,Π(0)} satisfying (3.10), be given. Let the matrix
functions Π(x) and S(x) be determined by (2.16). Then the vector functions

z̃(x, t) = JΠ(x)∗S(x)−1e−tAh (h ∈ C
m) (7.4)
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satisfy, in the points of invertibility of S(x), the transformed dynamical sys-
tem (of the same form as (7.1)). More precisely, we have

∂

∂x
z̃(x, t) = J

(
−H1(x)

∂

∂t
z̃(x, t) + H̃0(x)z̃(x, t)

)
, (7.5)

where H̃0 is given by (7.3)

Proof. In view of (7.2) and (7.4), both sides of (7.5) equal J
(
H1JΠ∗S−1A+

H̃0JΠ∗S−1
)
e−tAh. �

When H1 ≥ 0, the energy Ez(t) of the solutions z of system (7.1) on
[0, a] (0 < a < �) is given by the formula

Ez(t)2 =
∫ a

0

z(x, t)∗H1(x)z(x, t)dx. (7.6)

The energy of the transformed solutions z̃ of the form (7.4) is expressed via
A and S(x).

Proposition 7.2. Let the conditions of Proposition 7.1 hold and assume ad-
ditionally that H1 ≥ 0 and S(0) > 0. Then the energy Ez̃, where z̃ has the
form (7.4), is given by the formula

Ez̃(t) =
√

h∗e−tA∗(
S(0)−1 − S(a)−1

)
e−tAh. (7.7)

Proof. Taking into account (5.8) and (7.4) we see that

z̃(x, t)∗H1(x)z̃(x, t) = −h∗e−tA∗(
S(x)−1

)′e−tAh. (7.8)

Formula (7.7) follows from (7.6) and (7.8). �
7.2. Two-Way Diffusion Equation

In this subsection, we consider the important case when J , H1 and H0 have
the form (5.4) (i.e., the same form as in Lagrange-symmetric Shin–Zettl sys-
tem) and ω = ω, p = p, q = q. In that case we set

z(x, t) =
[
z1(x, t)
z2(x, t)

]
, z̃(x, t) =

[
z̃1(x, t)
z̃2(x, t)

]
, (7.9)

and rewrite (7.1) in the form

z′
1 = rz1 + p−1z2, z′

2 = ω
∂

∂t
z1 + qz1 − rz2

(
z′
i =

∂

∂x
zi

)
. (7.10)

Next, we rewrite the first equality in (7.10) as z2 = p(z′
1 − rz1), substitute

the expression for z2 into the second equality in (7.10) and obtain

ω
∂

∂t
z1 =

(
p(z′

1 − rz1)
)′ − qz1 + rp(z′

1 − rz1). (7.11)

In particular, when r = 0, Eq. (7.11) takes the form

ω
∂

∂t
z1 =

(
p(z′

1)
)′ − qz1. (7.12)

We note that Eq. (7.12) coincides (in the case of sign-indefinite ω) with the
two-way diffusion equation (6.1) in [28]. See also various references in [4,16,28]
on the literature related to the two-way diffusion equation.



548 A. Sakhnovich IEOT

According to Corollary 5.1, H̃0 has the same form as H0. More precisely,
we have (see (5.10) or (7.3)):

H̃0(x) =
[−q̃(x) r̃(x)

r̃(x) p(x)−1

]
, r̃ = r − ωX12, q̃ = q + ω(X11 + X11). (7.13)

In the same way as (7.1) yields (7.11), Eq. (7.5) implies that the entry z̃1 of
the solution z̃ given by (7.4) satisfies the equation

ω
∂

∂t
z̃1 =

(
p(z̃′

1 − r̃z̃1)
)′ − q̃z̃1 + r̃p(z̃′

1 − r̃z̃1). (7.14)

Assuming r ≡ 0, we see that

r̃ = −ωX12, q̃ = q + ω(X11 + X11). (7.15)

Multiplying the left-hand side of (6.6) by “−1” and substituting there ỹ1 = z̃1
we obtain the right-hand side of (7.14). Hence, the proof of Proposition of 6.1
shows that

(
p(z̃′

1 − r̃z̃1)
)′ − q̃z̃1 + r̃p(z̃′

1 − r̃z̃1) =
(
pz̃′

1

)′ − q̆z̃1, (7.16)

q̆ = q + 2ω(X11 − X22) + 2p(ωX12)2 − (pω)′X12. (7.17)

From (7.9), (7.14) and (7.16), the next proposition is immediate.

Proposition 7.3. Let J , H1 and H0 have the form (5.4), and let the function
pω be differentiable and its derivative (pω)′ as well as the functions p−1, q
and ω be locally summable on [0, �). Assume that (6.1) holds and that the
triple {A,S(0) = S(0)∗,Π(0)} satisfies (3.10). Introduce Π(x) and S(x) via
(2.16).

Then the function z̃1 (given by (7.4) and (2.16)) satisfies, in the points
of invertibility of S(x), the dynamical equation

ω
∂

∂t
z̃1 =

(
pz̃′

1

)′ − q̆z̃1, (7.18)

where q̆ is given by (7.17).

Recall that (7.18) is an equation of the form (7.12).

Remark 7.4. It is important that [46, Theorem 7.4] and our Theorem 2.1,
in particular, is valid on any interval I such that 0 ∈ I. Thus, the previ-
ous statements of the paper, excluding the last sentence in Proposition 2.2,
Remark 2.3, Proposition 7.2 and the statements from Sect. 3 (where the con-
dition S(x) > 0 is essential), are also valid on the intervals I such that 0 ∈ I.
The interval [0, �) was chosen for simplicity but the interval (−�, �) is some-
times more convenient in the two-way diffusion equation and in the indefinite
Sturm–Liouville case.

8. Transformed Systems: Inserted Eigenvalues

The insertion of real eigenvalues into the spectrum of Schrödinger and Dirac
operators was actively studied using Crum–Krein and commutation methods
(see, e.g., important papers [10,17,32,52]). In the case of none-self-adjoint
and indefinite first order differential systems and indefinite Sturm–Liouville
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equations, non-real eigenvalues are of interest (see [6,7,11,26,27,41] and ref-
erences therein). Thus, the insertion (and the removal as an operation which
is inverse to the insertion) of non-real eigenvalues is of interest as well. Here
(in this section and in Sect. 9), we begin this study and consider real and
non-real eigenvalues inserted via the parameter matrix A.

In the GBDT approach, the Darboux matrix wA of the form (2.5) or
(2.19) is basic for the construction of fundamental solutions of the trans-
formed systems (in the case of the so called spectral systems with a spectral
parameter). On the other hand, when we apply GBDT to the construction
of explicit solutions of dynamical systems (as in Sect. 7) or to the construc-
tion of eigenfunctions and generalised eigenfunctions (in this section), we use
relations (2.10) or (7.2).

When J and H1(x) are invertible, we introduce differential expressions

L := H1(x)−1

(
J−1 d

dx
− H0(x)

)
, L̃ := H1(x)−1

(
J−1 d

dx
− H̃0(x)

)
,

(8.1)

and rewrite systems (1.1) and (2.22) in the forms Ly = λy and L̃ỹ = λỹ,
respectively. In view of (7.2), we obtain the following proposition.

Proposition 8.1. Let (2.14) hold, let J and H1(x) be invertible and let the
transformed matrix function H̃0 be given by the relations (2.20), (2.21) using
the triple of parameter matrices {A,S(0) = S(0)∗,Π(0)} satisfying

AS(0) − S(0)A∗ = Π(0)JΠ(0)∗.

Moreover, let L̃ be a linear operator generated by the differential expres-
sion L̃ on (−�, �) or on [0, �), � ≤ ∞; let the columns of JΠ∗S−1 belong to the
domain of L̃, and assume that f is a generalised eigenvector of the matrix A
(more precisely, an eigenvector corresponding to the eigenvalue μ and of rank
k ≥ 1). Assume that the columns of JΠ(x)∗S(x)−1 are linearly independent
vector functions.

Then, JΠ(x)∗S(x)−1f is a generalised vector eigenfunction of rank k,
which corresponds to the eigenvalue μ of the operator L̃.

Proof. The intertwining relation

(L̃ − μI)JΠ∗S−1g = JΠ∗S−1(A − μIn)g for all g ∈ C
n (8.2)

is immediate from (7.2). The statement of the proposition follows. �

The remark below is useful when the invertibility of S(x) and the condi-
tion (from Proposition 8.1) that the columns of JΠ∗S−1 belong to the domain
of L̃ are studied.

Remark 8.2. Assume that H1(x) ≥ εIm > 0 for x ≥ 0, that S(0) > 0, and let
L and L̃ be considered on [0,∞). Then S(x) is invertible and the columns of
JΠ∗S−1 belong to L2

m(0,∞). Indeed, since S′ = ΠJ∗H1JΠ∗ (see (2.16) and
take into account that J∗ = −J), we have S(x) > 0 for x ≥ 0, and
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∫ ∞

0

S(x)−1Π(x)J∗JΠ(x)∗S(x)−1dx

≤ (1/ε)
∫ ∞

0

S(x)−1Π(x)J∗H1(x)JΠ(x)∗S(x)−1dx

= −(1/ε)
∫ ∞

0

(
S(x)−1

)′
dx ≤ (1/ε)S(0)−1. (8.3)

In the indefinite case, we may achieve that S(x) is invertible for each
x ∈ (−∞,∞). For instance, assuming that H1(x) > 0 for x > 0, H1(x) < 0
for x < 0 and S(0) > 0, we have S(x) > 0.

In order to study the insertion of eigenvalues in the case of Sturm–
Liouville operators, we consider a Lagrange-symmetric Shin–Zettl system and
partition JΠ∗S−1 into two rows, that is, we set

JΠ∗S−1 = Ω =
[
Ω1

Ω2

]
. (8.4)

Using (5.4) and (7.13), and assuming that r ≡ 0, we rewrite (7.2) in the form

pΩ′
1 = pr̃Ω1 + Ω2, Ω′

2 = −ωΩ1A + q̃Ω1 − r̃Ω2; (8.5)
r̃ = −ωX12, q̃ = q + ω(X11 − X22). (8.6)

Here we also used the equalities X12 = X12 (i.e., r̃ = r̃) and X11 = −X22,
which are immediate from the fact that Xij are the blocks of X = JΠ∗S−1Π.
We proceed similar to the proof of (7.18). Namely, differentiating the first
equation in (8.5) and taking into account the second equation in (8.5) as well
as relations (6.9) and (8.6), we derive

− (
pΩ′

1

)′ + q̆Ω1 = ωΩ1A, (8.7)

where q̆ is given by (7.17). When ω �= 0, we introduce differential expressions

Ku =
1
ω

( − (
pu′)′ + qu

)
, K̃ũ =

1
ω

( − (
pũ′)′ + q̆ũ

)
. (8.8)

From (8.7), quite similarly to the proof of Proposition 8.1 follows the next
proposition.

Proposition 8.3. Let the functions ω, p and q satisfy both the equalities (6.1)
and the inequality ω �= 0 on (−�, �) or on [0, �), � ≤ ∞; let the function pω
be differentiable and its derivative (pω)′ as well as the functions p−1, q and ω
be locally summable. Assume that the triple {A,S(0) = S(0)∗,Π(0)} satisfies
(3.10). Introduce Π(x) and S(x) via (2.16), where J , H1 and H0 have the
form (5.4) and r ≡ 0, and let S(x) be invertible.

Moreover, let K̃ be a linear operator generated by the differential expres-
sion K̃ on (−�, �) or on [0, �), let the entries of Ω1 =

[
0 1

]
Π∗S−1 be linearly

independent functions, which belong to the domain of K̃, and assume that f
is a generalised eigenvector of the matrix A (more precisely, an eigenvector
corresponding to the eigenvalue μ and of rank k ≥ 1).

Then, Ω1(x)f is a generalised eigenfunction of rank k, which corre-
sponds to the eigenvalue μ of the operator K̃.
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9. Indefinite Sturm–Liouville Equations

First order systems, where H1 is not necessarily nonnegative, and indefi-
nite Sturm–Liouville equations are of growing interest in the literature (see,
e.g., [3,7,8,33,34,40] and references therein). Therefore, in this section of
the paper we will consider some examples of Darboux transformation for the
Lagrange-symmetric Shin–Zettl system and indefinite Sturm–Liouville equa-
tion on the real axis (−∞,∞), see Remark 7.4.

More precisely, we will construct explicit solutions and generalised eigen-
functions for the interesting model case

ω(x) = sgn(x), p(x) ≡ 1. (9.1)

(Assumptions (9.1) were made, for instance, in [26].)
First, we consider Shin–Zettl system (1.1), (5.4) and assume that the

equalities (9.1) and

q(x) = r(x) ≡ 0 (9.2)

hold for the initial system. Partitioning Π(x) into the two columns Π(x) =[
Λ1(x) Λ2(x)

]
and taking into account (9.1) and (9.2), we rewrite the first

system in (5.8) in the form

Λ′
1 =

{
AΛ2 for x > 0
−AΛ2 for x < 0 ; Λ′

2 = −Λ1. (9.3)

Let us set Λk(0) = gk (i.e., Π(0) =
[
g1 g2

]
) and assume that

A = α2 (det α �= 0), S(0) = In. (9.4)

It is immediate that the vector functions
Λ1(x) =

(
eixα(g1 − iαg2) + e−ixα(g1 + iαg2)

)
/2

Λ2(x) = iα−1
(
eixα(g1 − iαg2) − e−ixα(g1 + iαg2)

)
/2 for x ≥ 0; (9.5)

Λ1(x) =
(
exα(g1 − αg2) + e−xα(g1 + αg2)

)
/2

Λ2(x) = −α−1
(
exα(g1 − αg2) − e−xα(g1 + αg2)

)
/2 for x ≤ 0 (9.6)

satisfy both (9.3) and the initial conditions Λk(0) = gk. The second system
in (5.8) takes the form S′ = ωΛ2Λ∗

2, that is,

S(x) = S(0) +
∫ x

0

Λ2(t)Λ2(t)∗dt ≥ S(0) (x > 0), (9.7)

S(x) = S(0) +
∫ 0

x

Λ2(t)Λ2(t)∗dt ≥ S(0) (x < 0). (9.8)

Formulas (9.5)–(9.8) present explicit expressions for Π(x) and S(x), and so
the Darboux matrix wA(x, λ) of the form (5.9) is constructed explicitly.

We note that (in view of (9.4)), the matrix identity (3.10), which should
hold for the triple {A,S(0),Π(0)}, takes the form

α2 − (α∗)2 = g1g
∗
2 − g2g

∗
1 . (9.9)

In order to use Corollary 5.1, we also solve explicitly the initial Shin–
Zettl system (1.1), (5.4), where (9.1) and (9.2) hold. Namely, we introduce
matrices
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T+(λ) =
[

1 1
i
√

λ −i
√

λ

]
, D+(λ) =

[
i
√

λ 0
0 −i

√
λ

]
, (9.10)

T−(λ) =
[

1 1√
λ −√

λ

]
, D−(λ) =

[√
λ 0

0 −√
λ

]
, (9.11)

where
√

λ is any fixed branch of the square root of λ. It is easy to see that
(in our case) F given in (1.1) satisfies the equalities FT+ = T+D+ for x > 0
and FT− = T−D− for x < 0. Therefore, solutions y of the initial Shin–Zettl
system (1.1) are given by the formulas

y(x, λ) = T+(λ)exD+(λ)T+(λ)−1h (x > 0), (9.12)

y(x, λ) = T−(λ)exD−(λ)T−(λ)−1h (x < 0) (9.13)

with any vectors h ∈ C
2. Now, Corollary 5.1 yields our next corollary.

Corollary 9.1. Assume that the initial Shin–Zettl system on (−∞,∞) has
the form (1.1), (5.4) and that equalities (9.1) and (9.2) are valid. Let the
matrices A and S(0) have the form (9.4), and let (9.9) hold.

Then, S(x) is invertible, and the corresponding GBDT-transformed Shin-
Zettl system is well defined and is given explicitly by the formulas

ỹ′(x, λ) = J(λH1(x) + H̃0(x))ỹ(x, λ), H̃0(x) =
[−q̃(x) r̃(x)

r̃(x) 1

]
, (9.14)

r̃(x) = r̃(x) = −sgn(x)X12(x), q̃(x) = sgn(x)(X11(x) + X11(x)), (9.15)

where Xij are the blocks of X = JΠ∗S−1Π, and explicit expressions for S
and Π are given in (9.5)–(9.8).

Moreover, system (9.14) is Lagrange symmetric, and its solutions ỹ are
explicitly expressed via the formula ỹ(x, λ) = wA(x, λ)y(x, λ), where y is given
by (9.12) and (9.13).

By virtue of Proposition 6.1, Remark 7.4 and Corollary 9.1, we obtain
explicit solutions of indefinite Sturm–Liouville systems

− ỹ′′
1 (x, λ) + q̆(x)ỹ1(x, λ) = λ sgn(x)ỹ1(x, λ) (−∞ < x < ∞). (9.16)

Corollary 9.2. Assume that relations (9.4) and (9.9) hold, and let Π(x) and
S(x) be given by (9.5)–(9.8) . Set ỹ(x, λ) = wA(x, λ)y(x, λ), where explicit
expressions for wA(x, λ) and y(x, λ) are given by (5.9) and (9.12), (9.13), re-
spectively. Then the first entry ỹ1 of ỹ satisfies the indefinite Sturm–Liouville
system (9.16) where

q̆(x) = 2 sgn(x)
(
X11(x) − X22(x)

)
+ 2X12(x)2 (9.17)

and Xij are the blocks of X = JΠ∗S−1Π.

Recall that the operator K̃ was introduced and its generalised eigen-
functions Ω1f (Ω1 = Λ∗

2S
−1) were considered in Proposition 8.3. Now, we

will study K̃ generated by the differential expression K̃, which takes the form

K̃ũ = sgn(x)
( − ũ′′ + q̆ũ

)
(9.18)

on the domain D of the absolutely continuous functions ũ from L2(−∞,∞),
such that ũ′(x) are absolutely continuous (for x �= 0) and K̃ũ ∈ L2(−∞,∞).
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We note that it is often required that ũ (from D) is absolutely continuous
everywhere on (−∞,∞) (see [26]), although the requirements in [7] are some-
what weaker. Proposition 8.3 yields the following corollary.

Corollary 9.3. Let the operator K̃ be generated by the differential expression K̃
of the form (9.18), where q̆ is given by (9.17), X = JΠ∗S−1Π, Π =

[
Λ1 Λ2

]
,

Λk (k = 1, 2) are given by (9.5) and (9.6), and S is given by (9.7) and (9.8).
Assume that (9.4) and (9.9) hold. Moreover, assume that the entries of Λ∗

2S
−1

are linearly independent functions and that f is a generalised eigenvector of
the matrix A (more precisely, an eigenvector corresponding to the eigenvalue
μ and of rank k ≥ 1).

Then, Λ2(x)∗S(x)−1f is a generalised eigenfunction of rank k, which
corresponds to the eigenvalue μ of the operator K̃.

Proof. In order to show that the conditions of the Proposition 8.3 are fulfilled
(and to prove our corollary in this way), it remains only to show that the
entries of Λ∗

2S
−1 are squarely summable.

Indeed, we have S′(x) = sgn(x)Λ2(x)Λ2(x)∗, which implies that

S(x)−1Λ2(x)Λ2(x)∗S(x)−1 = −sgn(x)
(
S(x)−1

)′
. (9.19)

From (9.19), it is immediate that
∫ ∞

−∞
S(x)−1Λ2(x)Λ2(x)∗S(x)−1dx ≤ 2S(0)−1 = 2In. (9.20)

Thus, Λ∗
2S

−1 is squarely summable, and so its entries belong to the domain
D of K̃. The conditions of the Proposition 8.3 are fulfilled. �

Remark 9.4. In connection with Corollary 9.3, we note that (9.9) holds for
α = α0 + i c hh∗, where α0 = α∗

0, c = c, h ∈ C
n and we set g1 = iα0h,

g2 = 2c h. In this case, it would be of interest to study how the choice of α0

and h influences the Jordan structure of A = α2.

Remark 9.5. Interesting indefinite Sturm-Liouville equations with the poten-
tials q̆(x), which are singular at x = 0, are generated by the triples of matrices
{A, S(0), Π(0)} of the form

A = α2, S(0) = 0, Π(0) =
[−2iαg 2μαg

]
, (9.21)

where α are n×n matrices, g ∈ C
n are vector columns, μ are purely imaginary

values (i.e., μ = −μ), and

det(μα ± In) �= 0, det(μα ± iIn) �= 0. (9.22)

It is easily checked that the third equality in (9.21) yields Π(0)JΠ(0)∗ = 0
(J = iσ2), and so the matrix identity (3.10), which is required in GBDT,
holds for the triple of the form (9.21). We note that S(x) > 0 for x �= 0 if

the pair α̂ :=
[
α 0
0 −α

]
and ĝ :=

[
g
g

]
is controllable. That is, in this case

the singularity is restricted to the point x = 0. Some particular cases (but in
greater detail) were considered in [29, Section 5], and it was proved for those
cases that q̆(x) = O(x−2) when x tends to 0.
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