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Recent experiments have revealed the possibility of pre-
cise electron beam manipulation of silicon impurities in
graphene. Motivated by these findings and studies on
metal surface quantum corrals, the question arises what
kind of embedded Si structures are possible within the
hexagonal lattice, and how these are limited by the dis-
tortion caused by the preference of Si for sp3 hybridiza-
tion. In this work, we study the geometry and stability
of elementary Si patterns in graphene, including lines,
hexagons, triangles, circles and squares. Due to the size
of the required unit cells, to obtain the relaxed geome-
tries we use an empirical bond-order potential as a start-
ing point for density functional theory. Despite some in-
teresting discrepancies, the classical geometries provide
an effective route for the simulation of large structures.

A relaxed hexagonal structure of 30 Si embedded within the
graphene lattice, containing in total of 1152 atoms in the unit
cell. This pattern corrugates the graphene lattice in a symmetric
way around a central plateau.
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1 Introduction Single-layer graphene not only has
remarkable electronic [1] and mechanical [2] proper-
ties, but it is also highly suitable for atomic-resolution
transmission electron microscopy studies [3]. Due to its
two-dimensional (2D) nature, each atom can be directly
imaged, and the high conductivity reduces radiolysis and
ionization, completely suppressing beam damage at elec-
tron acceleration voltages below 80 kV [4,5]. However, C
atoms next to impurities such as Si heteroatoms embedded
within the lattice [6] are less strongly bound than atoms of
the bulk [7]. Scanning transmission electron microscopy
(STEM) with 60 keV electrons cannot quite outright eject
them, but instead induces out-of-plane dynamics [8] that
allow the Si atoms to be non-destructively moved with
atomic precision [9]. These findings have raised the ques-
tion of what kinds of stable patterns could be possible
within the bounds of lattice symmetry.

Designed Si structures could be of importance for at
least two reasons. First, they raise the possibility of con-
finement of the graphene surface states, similarly to quan-
tum corrals created by scanning tunnelling microscopy on
metal surfaces [10] since the early 1990s. Although em-
bedded Si impurities certainly differ from adatoms on a
metal surface, it is possible that closed rings or similar
structures could also confine graphene electronic states
into standing wave patterns. The second reason is the pos-
sible enhancement of graphene surface plasmons [11] near
the impurities. Electron energy loss spectroscopy at sin-
gle Si impurities has provided evidence for localized en-
hancement of the plasmon resonances [12] (although the
mechanism is yet unclear). Arranging many impurities into
patterns whose dimensions match the plasmon wavelength
might result in stronger enhancement [13], and their shape
might allow plasmons to be directed [14].
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2 Nosraty Alamdary et al.: Embedded Si patterns in graphene

Figure 1 An overview of the basic categories of structures studied in this work, from left: dashed zigzag (ZZ) line, ZZ line, A-B zigzag
line (A-B ZZ), armchair (AC) line, hexagon, triangle, circle, square.

Before such experiments can be realized, we need to
know what kinds of Si patterns are possible. The hexag-
onal symmetry of graphene restricts the possibilities for
placing Si atoms within the lattice, and the two symmetry
directions, zigzag (ZZ) and armchair (AC), further limit the
number of inequivalent patterns. Within these limitations,
at least five categories of elementary structures appear pos-
sible, namely lines (both ZZ and AC), hexagons, triangles,
circles, and squares, with the latter two being generally im-
possible to perfectly realize (Fig. 1).

Two further considerations are important. One is rela-
tive stability: C–C bonds are more stable than Si–C bonds,
which in turn are more stable than Si–Si bonds [15]. Thus
while 2D silicon carbide is stable [16] and indeed more sta-
ble than 2D silicene [17], it is significantly less stable and
more reactive than graphene [18]. Similarly for Si impurity
patterns, Si–Si bonds increase the energy of the system (al-
though it may still be stable [8]), as will bonds between Si
and C. More importantly, though, since the beam manipu-
lation method is based on the inversion of Si–C bonds [8],
neighbouring impurities are difficult to control. The sec-
ond issue is computational: the size of the unit cell needs
to be large enough so that the structures and the distortion
they cause in the graphene lattice do not interact signifi-
cantly with their periodic images. Even distortions caused
by small vacancies in graphene become apparent only in
simulations involving hundreds of atoms [19]. For this rea-
son, computationally efficient empirical bond-order poten-
tials are required to relax structures with up to 1000 atoms.

Despite close similarities between the analytical po-
tential and more accurate density functional theory (DFT),
the leading tool for simulating such structures, we do find
some differences in the local geometries of the Si. These
mostly subtle differences are not trivial, as they highlight
the role of the electronic structure in their local bonding
and overall geometrical configuration. In few cases, this
leads to surprisingly different overall shapes. In general,
the analytical potential has a tendency to introduce stronger
out-of-plane corrugation of the graphene sheet, whereas
DFT consistently prefers flatter atomic arrangements.

2 Methods The Atomic Simulation Environment
(ASE) [20] enables the efficient design and manual adjust-
ment of atomic structures along with structure optimization

(we used FIRE [21] for force minimization). To obtain po-
tential energies and forces, this needs to be coupled to a
calculator, either based on an analytical potential or den-
sity functional theory (DFT). For the classical calculations,
we settled on the Erhart-Albe (EA) [22] Si–C potential as
implemented in the Atomistica package [23]. For DFT, we
used the real-space grid-based projector-augmented wave
code GPAW [24,25] with the PBE [26] functional and k-
point spacings of less than 0.2 Å�1. For smaller systems
we used a combination of plane wave (enabling a strain
filter; cutoff energy 600 eV) and finite-difference (FD)
modes (grid spacing 0.18 Å), and for large ones, the highly
efficient atom-based-orbital (LCAO) implementation [27]
with a polarized double-zeta basis.

For each structure type, we studied using the EA poten-
tial the influence of both the structure size (area delimited
by the Si atoms) as well as the unit cell size (amount of
graphene between the structures). After designing an in-
lattice Si structure, we found the minimum energy cell size
by scaling the structure separately in the x and y directions
while relaxing the atomic positions. After this, the structure
was further relaxed by a successively stricter three-stage it-
eration of a strain filter (minimizing the stress; for smaller
structures using DFT) and force minimization (maximum
forces <0.001 eV/Å). We then took the converged size of
each structure, scaled it by the difference between the DFT
and EA equilibrium C–C bond length, relaxed each with
LCAO-DFT, and finally converged the electron density and
total energy using FD-DFT.

To estimate the smallest cell where the periodic images
of the structures do not interact and to compare stability be-
tween structures, we calculate the embedding energy (rel-
ative energy with respect to pristine graphene) per Si as

" =
Etot �NCµC

NSi
� µSi, (1)

where µC is the chemical potential of C (energy per atom
in pristine graphene), Etot the total energy of the system,
NC the number of the C atoms, and µSi the chemical po-
tential of Si calculated for a single Si atom in vacuum (zero
for any classical potential). The value of µC was calculated
in EA and DFT respectively to be �7.374 and �9.223 eV,
while the value of µSi in DFT is �0.805 eV. This energy
becomes constant for sufficiently large unit cells.
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Figure 2 Comparison of relaxed geometries with the Erhart-Albe potential (EA, top row) and density functional theory (DFT, bottom).
a-b) Si substitution (crop of 160-atom unit cell), c-d) dashed zigzag line, e-f) zigzag line, g-h) A-B zigzag line and i-j) armchair line
(each unit cell 48 atoms, lateral boundaries denoted by dashed lines). hi denotes the height of atom i from the lattice plane, and bi the
length of bond i.

3 Results We first compared the geometry a single
trivalent Si substitution relaxed using the EA potential or
with DFT (Fig. 2a-b). The equilibrium graphene C–C bond
length in EA is 3.6% larger at 1.475 Å (DFT: 1.424 Å),
while the Si–C bond is 1.770 Å (DFT: 1.762 Å). Thus
graphene is slightly underbound with EA, whereas the Si
atoms are comparatively overbound. The main difference,
however, is the local corrugation: with EA, the second-
nearest C neighbors buckle almost 0.3 Å (8.3%) further
from the plane than with DFT, resulting in a Si height of
1.815 Å (DFT: 1.676 Å). Despite these discrepancies, the
overall agreement is good. For multiple Si atoms in a unit
cell, alternating their placement above and below the plane
results in a lower energy [8]. For EA, the symmetric and
antisymmetric energies are equal for cell sizes above 6⇥
(number of pristine graphene hexagons between the Si),
where the DFT energy is converged within 20 meV.

Next we turn to the different Si line structures (Fig. 2c-
j). Due to its simplicity (Si atoms on the same sublattice),
the ZZ line is an elementary building block of most of the
larger structures. In addition to a dense ZZ line, where ev-
ery other C atom is replaced by Si, sparser arrangements
such as the dashed ZZ line can be envisaged. Finally, an
armchair line can be embedded into the lattice in the other
symmetry direction, superficially resembling an A-B ZZ
line where Si atoms are placed on alternating sublattices.

Most relaxed line structures are very similar between
EA and DFT, with the exception of the AC line. Here
EA predicts a significant out-of-plane corrugation (Fig. 2i),
while DFT finds a nearly flat structure (Fig. 2j). For the ZZ
line, EA yields a corrugated structure (Fig. 2e), which is
also reproduced by DFT (Fig. 2f) when the EA configura-
tion is used as the starting point for relaxation.

However, when initialized from a flat geometry, DFT
can also yield another, rather surprising ZZ line: one of the
four Si is lifted from the graphene plane, remaining bound
to just one C atom with its other two C neighbours bond-
ing in a pentagon (Fig. 3). The structure is otherwise almost
completely flat—presumably to minimize the energy of the
C atoms—reducing the embedding energy by 0.6 eV com-
pared to the corrugated ZZ line. It appears that the DFT
energy penalty of C atoms bound to two Si is so high that
breaking two Si–C bonds to create just one more C–C bond
becomes energetically favourable when a periodicity of at
least four Si atoms is available in the cell. This can also
be seen in the embedding energies plotted in Fig. 3, which
show how the introduction of new in-plane Si atoms by in-
creasing unit cell size increases the energy until the number
of Si atoms reaches eight, which allows a second Si atom
to buckle out of the plane. Before this, the separation of the
singly-bound Si atoms is too short, which would result in
too high strain between the C pentagons.
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Figure 3 The relaxed DFT structure and embedding energy of
the flat ZZ line as a function of the lateral unit cell size.

For the line structures, the embedding energy is con-
verged to <10 meV when there are six rows of carbon be-
tween the Si lines. While a weak indirect interaction be-
tween the lines remains even at this distance, simulations
with the system size doubled to introduce a second Si line
into the unit cell show that the symmetry of the corruga-
tion of the second line with respect to the first does not sig-
nificantly influence the embedding energy. Since the sec-
ond line neither leads to appreciable changes in the overall
atomic structure, we limit the discussion here to the sym-
metric case possible in the smaller simulation cell.

In Table 1 we have listed the embedding energy per Si
as given by Eq. 1 for all of our structure classes using both
the EA and DFT potentials. It is immediately obvious that
bringing several Si atoms to close proximity reduces the
embedding energy (thus stabilizing the structure), in some
cases by more than 1 eV per Si. The embedding energies as
calculated with the two methods show a trend that is sim-
ilar to the atomic structures discussed above: the relaxed
configurations that are alike between the two methods also
show similar relative embedding energies. In fact, for most
structures, the differences remain below 0.5 eV per silicon
atom, the largest one (⇠1 eV) arising for the AC line with
its EA out-of-plane corrugation.

For the other pattern classes, we were mainly inter-
ested in large closed structures that could be reasonably
simulated, and also potentially fabricated using electron
beam manipulation. The first obvious closed structures are
hexagons delineated by dense ZZ lines. Based on their EA

energy convergence in terms of feature size and super-cell
size, we settled on a square 7⇥14 supercell of nominally
392 C atoms as a sufficient yet minimal graphene tem-
plate. For the hexagon pattern, we considered both a dense
24 Si atom structure and a sparse version with only 12 Si,
which we compare in Fig. 4. The six ZZ lines are each
⇠10 Å in length, enclosing 27 full C hexagons within an
area of ⇠280 Å2, nearly comparable to graphene quantum
dots that have been studied on metal surfaces [28].

The main difference between the two structures is the
overall height of the ”mesa” delineated by the Si atoms.
The preferred local bonding of the Si within the line leads
to their periodic up-and-down oscillation, similar to the
corrugated lines. In the dense pattern, this seems only pos-
sible by raising the entire enclosed area several Å above the
lattice plane, whereas in the sparse hexagon, the Si atoms
bond above and below the plane, greatly reducing the over-
all buckling. We also created sparser versions of the other
structures, which exhibit the same kinds of differences and
thus do not need to be discussed at length.

Like hexagons, triangles fully respect the lattice sym-
metry, with the 24-Si one shown in Fig. 5a appearing qual-
itatively quite similar to the hexagon. Of structures that do
not completely respect the symmetry, circles are particu-
larly interesting. While it is not possible to make ones of ar-
bitrary size that are fully circular, a 12-Si ring comes close
and encloses exactly seven carbon hexagons (Fig. 5b), i.e.,
embedded coronene. For this small structure where the
Si atoms on the two halves of the circle occupy different
sublattices, the ”mesa” rising from the graphene plane is
highly symmetrical and flat (consistent with smaller struc-
tures of other types). For larger circles, the Si atoms at the
circumference weave up and down similar to the hexagon.
Lastly we made structures as similar to a square shape as
possible. While these also do not respect the hexagonal lat-
tice symmetry, it is possible to make them using ZZ lines in
one direction and AC lines in the other (Fig. 5c), arguably
making them an elementary shape.

Table 1 The relative EA and DFT embedding energies per Si
(�"; Eq. 1) calculated for different structures with respect to the
Si substitution ("subEA = �3.175 eV, "subDFT = �0.780 eV), and
their difference (� = �"DFT ��"EA).

Structure EA (eV) DFT (eV) � (eV)
Dashed ZZ line 0.022 -0.197 -0.219
ZZ line (corrug.) -0.510 -1.065 -0.555
A-B ZZ line -0.875 -1.176 -0.301
AC line -0.274 -1.335 -1.061
ZZ line (flat) — -1.665 —
Dashed hexagon 0.058 0.407 0.349
Hexagon -0.492 -1.098 -0.606
Triangle -0.527 -0.856 -0.329
Circle -0.788 -0.913 -0.125
Square -0.565 -0.687 -0.122
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Figure 4 The relaxed structures of the a) dashed and b) dense hexagon (including a histogram of atom heights). Dense Si lines result in
a raised ”mesa” delineated by the Si atoms that corrugate symmetrically around it at varying heights.

4 Discussion All of the above structures have been
designed using the simple trivalent Si substitution. A pla-
nar tetravalent bonding configuration [6], with the Si bond-
ing to four C atoms in a graphene divancy, is also possible
despite being slightly higher in energy [8]. However, while
it would certainly reduce the corrugation of the lattice, that
configuration is not possible to manipulate [9] and thus is
of little practical interest. Further, our interest in such struc-
tures stems from their great potential as initial targets for
electron beam manipulation [30]. Thus while their overall
physical and chemical properties may be of independent
interest, these are beyond the scope of the present study.

The easy availability of carefully parametrized and ex-
tensively tested bond-order potentials for C and Si makes it
straightforward to simulate Si patterns in graphene (which
is not the case for another interesting heteroatom, phos-
phorus [29]). However, although we have shown that the
classical structures mostly provide a good starting point
for DFT, one has to be careful to avoid structurally and
energetically distinct local minima. Starting from the cor-
rugated EA-relaxed geometry of the AC line, DFT is able
to find the correct flat structure. This is not the case for the
flat ZZ line, which cannot be reached from the corrugated
starting point.

In terms of the general differences in the relaxed struc-
tures, DFT tends prefer more symmetric arrangements with
flatter graphene areas, perhaps due to the short range of
the bond-order potential. However, the overall agreement
of both the geometries and the relative energetics is sur-
prisingly good, and starting with the EA potential offers
a dramatic speedup. For example, the initial classical re-
laxation of the large hexagon takes only 10 min on single
processor, whereas even with optimized LCAO calculator
parameters, each of the subsequent relaxation steps con-
sumes on average over 2000 CPU-min (well over 140 000
CPU-h in total).

Unfortunately, the EA potential is not useful for the
simulation of dynamics induced by electron irradiation: we
found that it gives qualitatively wrong results for the ejec-
tion of C neighbors to the Si, and fails to reproduce the Si–
C bond inversion [8] underlying the mechanism of electron
beam manipulation. We should also note that electron im-
pacts are the only plausible mechanism to alter these struc-
tures: we find with DFT a barrier of over 4 eV for the ther-
mal diffusion of a single Si substitution, whereas classical
MD simulations find our multi-Si structures to be stable at
temperatures over 2000 K. This is a crucial advantage over
patterns created at surfaces [10].
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Figure 5 The relaxed structures and histograms of atom heights of the a) triangle, b) small circle and c) square.
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Finally, we should note that even larger structures can
be designed and relaxed using the methodology of combin-
ing progressively more accurate simulations. For example,
the unit cell with the 30-Si hexagon shown in the abstract
figure contains 1152 atoms in total, yet it is even possible
to obtain its high-quality wavefunctions due to the excel-
lent parallelization of the GPAW code. Unfortunately, de-
spite modern computational resources, such system sizes
are still prohibitively expensive for systematic studies, not
the mention for simulating their electron beam stability and
phonon modes using DFT [5].

5 Conclusions We have presented here a multimodal
approach for the efficient prediction of large embedded
Si structures in graphene. After designing a Si pattern, its
structure and unit cell size can be first roughly optimised
using a classical bond-order potential. The structure can
then be scaled to correct for the C–C bond length mis-
match with respect to DFT, and then further relaxed us-
ing a computationally efficient atom-based orbital basis.
Finally, after the expensive structural optimisation has been
effectively handled, if needed we could switch to the finite-
difference projector-augmented wave basis of the GPAW
code to obtain accurate energies, or indeed electron den-
sities or wavefunctions. This allows structures of many
hundreds of atoms to be efficiently and accurately simu-
lated, especially when all modes are implemented within
the same simulation code. The resulting large ”quantum
corral” structures will be interesting for their potential con-
finement of surface electronic states or plasmons, and thus
make attractive targets for single-atom manipulation.
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