Titel
Modeling Formamide Denaturation of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics
Autor*in
L. Safak Yilmaz
Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School
Autor*in
Alexander Loy
Autor*in
Erik S. Wright
Department of Civil and Environmental Engineering, University of Wisconsin-Madison
... show all
Abstract
Application of high-density microarrays to the diagnostic analysis of microbial communities is challenged by the optimization of oligonucleotide probe sensitivity and specificity, as it is generally unfeasible to experimentally test thousands of probes. This study investigated the adjustment of hybridization stringency using formamide with the idea that sensitivity and specificity can be optimized during probe design if the hybridization efficiency of oligonucleotides with target and non-target molecules can be predicted as a function of formamide concentration. Sigmoidal denaturation profiles were obtained using fluorescently labeled and fragmented 16S rRNA gene amplicon of Escherichia coli as the target with increasing concentrations of formamide in the hybridization buffer. A linear free energy model (LFEM) was developed and microarray-specific nearest neighbor rules were derived. The model simulated formamide melting with a denaturant m-value that increased hybridization free energy (ΔG°) by 0.173 kcal/mol per percent of formamide added (v/v). Using the LFEM and specific probe sets, free energy rules were systematically established to predict the stability of single and double mismatches, including bulged and tandem mismatches. The absolute error in predicting the position of experimental denaturation profiles was less than 5% formamide for more than 90 percent of probes, enabling a practical level of accuracy in probe design. The potential of the modeling approach for probe design and optimization is demonstrated using a dataset including the 16S rRNA gene of Rhodobacter sphaeroides as an additional target molecule. The LFEM and thermodynamic databases were incorporated into a computational tool (ProbeMelt) that is freely available at http://DECIPHER.cee.wisc.edu.
Stichwort
FormamidesFree energyProbe hybridizationMicroarraysRibosomal RNAMeltingMelting pointThermodynamics
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:590650
Erschienen in
Titel
PLoS ONE
Band
7
Ausgabe
8
Verlag
Public Library of Science (PLoS)
Erscheinungsdatum
2012
Zugänglichkeit
Rechteangabe
© Yilmaz et al

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0