Titel
Unraveling the microbial processes of black band disease in corals through integrated genomics
Autor*in
Yui Sato
Australian Institute of Marine Science
Autor*in
Edmund Y. S. Ling
Global Change Institute, School of Agriculture & Food Sciences, The University of Queensland
Autor*in
Dmitrij Turaev
... show all
Abstract
Coral disease outbreaks contribute to the ongoing degradation of reef ecosystems, however, microbial mechanisms underlying the onset and progression of most coral diseases are poorly understood. Black band disease (BBD) manifests as a cyanobacterial-dominated microbial mat that destroys coral tissues as it rapidly spreads over coral colonies. To elucidate BBD pathogenesis, we apply a comparative metagenomic and metatranscriptomic approach to identify taxonomic and functional changes within microbial lesions during in-situ development of BBD from a comparatively benign stage termed cyanobacterial patches. Results suggest that photosynthetic CO2-fixation in Cyanobacteria substantially enhances productivity of organic matter within the lesion during disease development. Photosynthates appear to subsequently promote sulfide-production by Deltaproteobacteria, facilitating the major virulence factor of BBD. Interestingly, our metagenome-enabled transcriptomic analysis reveals that BBD-associated cyanobacteria have a putative mechanism that enables them to adapt to higher levels of hydrogen sulfide within lesions, underpinning the pivotal roles of the dominant cyanobacterium within the polymicrobial lesions during the onset of BBD. The current study presents sequence-based evidence derived from whole microbial communities that unravel the mechanism of development and progression of BBD.
Stichwort
Microbial ecologyWater microbiology
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:922052
Erschienen in
Titel
Scientific Reports
Band
7
Verlag
Springer Nature
Erscheinungsdatum
2017
Zugänglichkeit
Rechteangabe
© The Author(s) 2017

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0