Titel
Atomic-Scale Deformations at the Interface of a Mixed-Dimensional van der Waals Heterostructure
Autor*in
Aqeel Hussain
Department of Applied Physics, Aalto University School of Science
... show all
Abstract
Molecular self-assembly due to chemical interactions is the basis of bottom-up nanofabrication, whereas weaker intermolecular forces dominate on the scale of macromolecules. Recent advances in synthesis and characterization have brought increasing attention to two- and mixed-dimensional heterostructures, and it has been recognized that van der Waals (vdW) forces within the structure may have a significant impact on their morphology. Here, we suspend single-walled carbon nanotubes (SWCNTs) on graphene to create a model system for the study of a 1D–2D molecular interface through atomic-resolution scanning transmission electron microscopy observations. When brought into contact, the radial deformation of SWCNTs and the emergence of long-range linear grooves in graphene revealed by the three-dimensional reconstruction of the heterostructure are observed. These topographic features are strain-correlated but show no sensitivity to carbon nanotube helicity, electronic structure, or stacking order. Finally, despite the random deposition of the nanotubes, we show that the competition between strain and vdW forces results in aligned carbon–carbon interfaces spanning hundreds of nanometers.
Stichwort
carbon nanotubeelasticitygrapheneinterfacingscanning transmission electron microscopy
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:930865
Erschienen in
Titel
ACS Nano
Band
12
Ausgabe
8
Seitenanfang
8512
Seitenende
8519
Verlag
American Chemical Society (ACS)
Erscheinungsdatum
2018
Zugänglichkeit
Rechteangabe
Copyright © 2018 American Chemical Society

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0