Titel
Comparison of metabolic pathways of different α-N-heterocyclic thiosemicarbazones
Autor*in
Lisa M. Frensemeier
Institute of Inorganic and Analytical Chemistry, University of Muenster
Autor*in
Uwe Karst
Institute of Inorganic and Analytical Chemistry, University of Muenster
... show all
Abstract
Clinical failure of novel drugs is often related to their rapid metabolism and excretion. This highlights the importance of elucidation of their pharmacokinetic profile already at the preclinical stage of drug development. Triapine, the most prominent representative of α-N-heterocyclic thiosemicarbazones, was investigated in more than 30 clinical phase I/II trials, but the results against solid tumors were disappointing. Recent investigations from our group suggested that this is, at least partially, based on the fast metabolism and excretion. In order to establish more detailed structure/activity/metabolism relationships, herein a panel of 10 different Triapine derivatives was investigated for their metabolic pathways. From the biological point of view, the panel consists of terminally dimethylated thiosemicarbazones with nanomolar IC50 values, derivatives with micromolar cytotoxicities comparable to Triapine and a completely inactive representative. To study the oxidative metabolism, a purely instrumental approach based on electrochemistry/mass spectrometry was applied and the results were compared to the data obtained from microsomal incubations. Overall, the investigated thiosemicarbazones underwent the phase I metabolic reactions dehydrogenation, hydroxylation, oxidative desulfuration (to semicarbazone and amidrazone) and demethylation. Notably, dehydrogenation resulted in a ring-closure reaction with formation of thiadiazoles. Although strong differences between the metabolic pathways of the different thiosemicarbazones were observed, they could not be directly correlated to their cytotoxicities. Finally, the metabolic pathways for the most cytotoxic compound were elucidated also in tissues collected from drug-treated mice, confirming the data obtained by electrochemical oxidation and microsomes. In addition, the in vivo experiments revealed a very fast metabolism and excretion of the compound.
Stichwort
Drug metabolismThiosemicarbazonesElectrochemical oxidationMicrosomesIn vivo metabolism
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:947020
Erschienen in
Titel
Analytical and Bioanalytical Chemistry
Band
410
Ausgabe
9
Seitenanfang
2343
Seitenende
2361
Verlag
Springer Nature
Erscheinungsdatum
2018
Zugänglichkeit
Rechteangabe
© The Author(s) 2018

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0