Titel
Strategies to improve the explanatory power of a dynamic slope stability model by enhancing land cover parameterisation and model complexity
Autor*in
L.P.H. Van Beek
Department of Physical Geography, Utrecht University
Autor*in
Thom A. Bogaard
Water Resources Section, Delft University of Technology
... show all
Abstract
Despite the importance of land cover on landscape hydrology and slope stability, the representation of land cover dynamics in physically based models and their associated ecohydrological effects on slope stability is rather scarce. In this study, we assess the impact of different levels of complexity in land cover parameterisation on the explanatory power of a dynamic and process‐based spatial slope stability model. Firstly, we present available and collected data sets and account for the stepwise parameterisation of the model. Secondly, we present approaches to simulate land cover: 1) a grassland landscape without forest coverage; 2) spatially static forest conditions, in which we assume limited knowledge about forest composition; 3) more detailed information of forested areas based on the computation of leaf area development and the implementation of vegetation‐related processes; 4) similar to the third approach but with the additional consideration of the spatial expansion and vertical growth of vegetation. Lastly, the model is calibrated based on meteorological data sets and groundwater measurements. The model results are quantitatively validated for two landslide‐triggering events that occurred in Western Austria. Predictive performances are estimated using the Area Under the receiver operating characteristic Curve (AUC). Our findings indicate that the performance of the slope stability model was strongly determined by model complexity and land cover parameterisation. The implementation of leaf area development and land cover dynamics further yield an acceptable predictive performance (AUC ~0.71‐0.75) and a better conservativeness of the predicted unstable areas (FoC ~0.71). The consideration of dynamic land cover expansion provided better performances than the solely consideration of leaf area development. The results of this study highlight that an increase of effort in the land cover parameterisation of a dynamic slope stability model can increase the explanatory power of the model.
Stichwort
Shallow translational landslidesland cover dynamicsparameterisationphysically based slope stability modellingSTARWARS/PROBSTABpredictive performance
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:996088
Erschienen in
Titel
Earth Surface Processes and Landforms
Band
44
Ausgabe
6
Seitenanfang
1259
Seitenende
1273
Verlag
Wiley
Erscheinungsdatum
2019
Zugänglichkeit
Rechteangabe
© 2018 The Authors

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0