Titel
A multivariate ecogeographic analysis of macaque craniodental variation
Autor*in
Robert A. Foley
Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge
Abstract
Objectives: To infer the ecogeographic conditions that underlie the evolutionary diversification of macaques, we investigated the within‐ and between‐species relationships of craniodental dimensions, geography, and environment in extant macaque species. We studied evolutionary processes by contrasting macroevolutionary patterns, phylogeny, and within‐species associations. Materials and Methods: Sixty‐three linear measurements of the permanent dentition and skull along with data about climate, ecology (environment), and spatial geography were collected for 711 specimens of 12 macaque species and analyzed by a multivariate approach. Phylogenetic two‐block partial least squares was used to identify patterns of covariance between craniodental and environmental variation. Phylogenetic reduced rank regression was employed to analyze spatial clines in morphological variation. Results: Between‐species associations consisted of two distinct multivariate patterns. The first represents overall craniodental size and is negatively associated with temperature and habitat, but positively with latitude. The second pattern shows an antero‐posterior tooth size contrast related to diet, rainfall, and habitat productivity. After controlling for phylogeny, however, the latter dimension was diminished. Within‐species analyses neither revealed significant association between morphology, environment, and geography, nor evidence of isolation by distance. Discussion: We found evidence for environmental adaptation in macaque body and craniodental size, primarily driven by selection for thermoregulation. This pattern cannot be explained by the within‐species pattern, indicating an evolved genetic basis for the between‐species relationship. The dietary signal in relative tooth size, by contrast, can largely be explained by phylogeny. This cautions against adaptive interpretations of phenotype–environment associations when phylogeny is not explicitly modelled.
Stichwort
environmental gradientphylogenyrainfallspatial analysistemperature
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:998489
Erschienen in
Titel
American Journal of Physical Anthropology
Band
166
Ausgabe
2
Seitenanfang
386
Seitenende
400
Verlag
Wiley
Erscheinungsdatum
2018
Zugänglichkeit
Rechteangabe
© 2018 The Authors

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0