Titel
On how Poincaré inequalities imply weighted ones
Abstract
We consider a domain Ω⊂Rd equipped with a nonnegative weight w and are concerned with the question whether a Poincaré inequality holds on Ω, i.e., if there exists a finite constant C independent of f such that media.springernature.com/original/springer-static/image/art:10.1007/s00605-019-01266-w/MediaObjects/605_2019_1266_Figa_HTML.png It turns out that it is essentially sufficient that on all superlevel sets of w there hold Poincaré inequalities w.r.t. the constant weight 1 and that the corresponding Poincaré constants satisfy an integrability condition. Furthermore we provide an explicit bound of the constant C in the weighted inequality (1) in terms of the Poincaré constants of the superlevel sets. A similar statement holds true in the more general asymmetric case where we allow for certain weights ρ different from w on the right hand side of (1).
Stichwort
Weighted Poincaré inequalityPoincaré constantSobolev inequalitySuperlevel sets
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
Erschienen in
Titel
Monatshefte für Mathematik
Band
188
Ausgabe
4
Seitenanfang
753
Seitenende
763
Publication
Springer Science and Business Media LLC
Erscheinungsdatum
2019
Zugänglichkeit
Rechteangabe
© The Author(s) 2019

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0