Titel
If It Works, Don’t Touch It? A Cell-Based Approach to Studying 2-[18F]FDG Metabolism
Autor*in
Mahshid Mahmudi
Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
Autor*in
Barbara Katharina Geist
Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
... show all
Abstract
The glucose derivative 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) is still the most used radiotracer for positron emission tomography, as it visualizes glucose utilization and energy demand. In general, 2-[18F]FDG is said to be trapped intracellularly as 2-[18F]FDG-6-phosphate, which cannot be further metabolized. However, increasingly, this dogma is being questioned because of publications showing metabolism beyond 2-[18F]FDG-6-phosphate and even postulating 2-[18F]FDG imaging to depend on the enzyme hexose-6-phosphate dehydrogenase in the endoplasmic reticulum. Therefore, we aimed to study 2-[18F]FDG metabolism in the human cancer cell lines HT1080, HT29 and Huh7 applying HPLC. We then compared 2-[18F]FDG metabolism with intracellular tracer accumulation, efflux and the cells’ metabolic state and used a graphical Gaussian model to visualize metabolic patterns. The extent of 2-[18F]FDG metabolism varied considerably, dependent on the cell line, and was significantly enhanced by glucose withdrawal. However, the metabolic pattern was quite conserved. The most important radiometabolites beyond 2-[18F]FDG-6-phosphate were 2-[18F]FDMannose-6-phosphate, 2-[18F]FDG-1,6-bisphosphate and 2-[18F]FD-phosphogluconolactone. Enhanced radiometabolite formation under glucose reduction was accompanied by reduced efflux and mirrored the cells’ metabolic switch as assessed via extracellular lactate levels. We conclude that there can be considerable metabolism beyond 2-[18F]FDG-6-phosphate in cancer cell lines and a comprehensive understanding of 2-[18F]FDG metabolism might help to improve cancer research and tumor diagnosis.
Stichwort
2-[18F]FDG2-[18F]FDG metabolismPET-tracer metabolismmolecular imagingcancer metabolism
Objekt-Typ
Sprache
Englisch [eng]
Erschienen in
Titel
Pharmaceuticals
Band
14
Ausgabe
9
ISSN
1424-8247
Erscheinungsdatum
2021
Publication
MDPI AG
Erscheinungsdatum
2021
Zugänglichkeit
Rechteangabe
© 2021 by the authors

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0