Titel
Rewiring of Gene Expression in Pseudomonas aeruginosa During Diauxic Growth Reveals an Indirect Regulation of the MexGHI-OpmD Efflux Pump by Hfq
... show all
Abstract
In Pseudomonas aeruginosa, the RNA chaperone Hfq and the catabolite repression protein Crc act in concert to regulate numerous genes during carbon catabolite repression (CCR). After alleviation of CCR, the RNA CrcZ sequesters Hfq/Crc, which leads to a rewiring of gene expression to ensure the consumption of less preferred carbon and nitrogen sources. Here, we performed a multiomics approach by assessing the transcriptome, translatome, and proteome in parallel in P. aeruginosa strain O1 during and after relief of CCR. As Hfq function is impeded by the RNA CrcZ upon relief of CCR, and Hfq is known to impact antibiotic susceptibility in P. aeruginosa, emphasis was laid on links between CCR and antibiotic susceptibility. To this end, we show that the mexGHI-opmD operon encoding an efflux pump for the antibiotic norfloxacin and the virulence factor 5-Methyl-phenazine is upregulated after alleviation of CCR, resulting in a decreased susceptibility to the antibiotic norfloxacin. A model for indirect regulation of the mexGHI-opmD operon by Hfq is presented.
Stichwort
Pseudomonas aeruginosaHfqCRCcarbon catabolite repressionmultiomicsnorfloxacinphenazinesMexGHI-OpmD efflux pump
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
Erschienen in
Titel
Frontiers in Microbiology
Band
13
ISSN
1664-302X
Erscheinungsdatum
2022
Publication
Frontiers Media SA
Erscheinungsdatum
2022
Zugänglichkeit
Rechteangabe
© 2022 Rozner, Nukarinen, Wolfinger, Amman, Weckwerth, Bläsi and Sonnleitner

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0