Titel
Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale
... show all
Abstract
Soil fertility and plant productivity are globally constrained by N availability. Proteins are the largest N reservoir in soils, and the cleavage of proteins into small peptides and amino acids has been shown to be the rate-limiting step in the terrestrial N cycle. However, we are still lacking a profound understanding of the environmental controls of this process. Here we show that integrated effects of climate and soil geochemistry drive protein cleavage across large scales. We measured gross protein depolymerization rates in mineral and organic soils sampled across a 4000 km long European transect covering a wide range of climates, geologies and land uses. Based on structural equation models we identified that soil organic N cycling was strongly controlled by substrate availability, e.g., by soil protein content. Soil geochemistry was a secondary predictor, by controlling protein stabilization mechanisms and protein availability. Precipitation was identified as the main climatic control on protein depolymerization, by affecting soil weathering and soil organic matter accumulation. In contrast, land use was a poor predictor of protein depolymerization. Our results highlight the need to consider geology and precipitation effects on soil geochemistry when estimating and predicting soil N cycling at large scales.
Stichwort
Earth-Surface ProcessesEcology, Evolution, Behavior and Systematics
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
Erschienen in
Titel
Biogeosciences
Band
19
Ausgabe
23
ISSN
1726-4189
Erscheinungsdatum
2022
Seitenanfang
5419
Seitenende
5433
Publication
Copernicus GmbH
Erscheinungsdatum
2022
Zugänglichkeit
Rechteangabe
© Author(s) 2022.

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0