Titel
Oxidation, reduction and semi-classical limit for quantum matrix geometries
Autor*in
Abstract
Matrix configurations define noncommutative spaces endowed with extra structure including a generalized Laplace operator, and hence a metric structure. Made dynamical via matrix models, they describe rich physical systems including noncommutative gauge theory and emergent gravity. Refining the construction in [25], we construct a semi-classical limit through an immersed submanifold of complex projective space based on quasi-coherent states. We observe the phenomenon of oxidation, where the resulting semi-classical space acquires spurious extra dimensions. We propose to remove this artifact by passing to a leaf of a carefully chosen foliation, which allows to extract the geometrical content of the noncommutative spaces. This is demonstrated numerically via multiple examples.
Stichwort
Matrix modelsFuzzy branesQuantizationQuantum geometryOxidation and reduction
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
Erschienen in
Titel
Journal of Geometry and Physics
Band
199
ISSN
0393-0440
Erscheinungsdatum
2024
Publication
Elsevier BV
Erscheinungsdatum
2024
Zugänglichkeit
Rechteangabe
© 2024 The Authors

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0