Title
Impact of heavy metals (Cu, Fe, Pb, Zn) on carbon and nitrogen uptake of the diatom-bearing benthic foraminifera Heterostegina depressa
... show all
Abstract
Foraminifera are protists primarily living in benthic marine and estuarine environments. We studied uptake of inorganic carbon (C) and nitrogen (N) of the photosymbiont-bearing benthic coral reef foraminifera Heterostegina depressa in the presence of heavy metals. Incubation experiments were accomplished with artificial seawater enriched with copper, iron, lead and zinc at two different concentration levels (10 and 100 fold enriched in contrast to the usual culture medium). Additionally, isotopically labelled 13C-sodium bicarbonate and 15N-ammonium chloride were added to trace their assimilation over time (1 d, 3 d, 5 d, 7 d). Pulse-amplified modulated fluorescence measurements were performed to measure the potential impacts of heavy metals on chlorophyll fluorescence of the photosymbiont. Increased levels of copper (430.5 μg Cu/l) exhibited the greatest toxicity, while for low levels no effect on the overall metabolism of the foraminifera and the fluorescence activity of the photosymbiont could be detected. Iron (III) increased the symbiont activity, independent of concentration applied (44.5 and 513.3 μg Fe/l), which indicates Fe-limitation of the algal symbiont. Lead enrichment showed no detectable effect even at high concentration. Low concentrations of zinc (35.1 μg Zn/l) promoted the metabolism of the foraminifera, while high concentrations (598.4 μg Zn/l) were toxic. At low levels, two metals (Fe and Zn) promoted symbiont activity, at high levels, iron still boosted photosynthesis, but Zn and Cu had a negative impact on the obligatory photosynthetic symbionts.
Object type
Language
English [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:2084201
Appeared in
Title
Heliyon
Volume
10
Issue
6
ISSN
2405-8440
Issued
2024
Publisher
Elsevier BV
Date issued
2024
Access rights
Rights statement
© 2024 The Authors

Download

University of Vienna | Universitätsring 1 | 1010 Vienna | T +43-1-4277-0