Title
Long term hydrogen storage properties of ZK60 Mg-alloy as processed by different methods of SPD
Author
Y. Kimoto
Joining and Welding Research Institute, Osaka University
Author
M. Janoska
Faculty of Nonferrous Metals, Univ.Sci & Technology, Krakow
... show all
Abstract
Hydrogen storage characteristics is studied in the Mg-alloy ZK60 after processing by different SPD (Severe Plastic Deformation) methods such as High Pressure Torsion (HPT) and Friction Stir Processing (FSP), applying various deformation extents and rates. The capacity and kinetics of hydrogen storage was investigated and analysed, up to 100 storage cycles. While the degree of SPD deformation is less important for the storage capacity, the SPD processing method itself matters, yielding about ~ 30% more capacity in FSP than in HPT. As shown by DSC and XRD analyses, it is the density of SPD-induced vacancy agglomerates which is significantly higher in FSP than in HPT (~ 10–3 instead of ~ 10–4) because of the enhanced dislocation slip activity. Thanks to their stabilization through Mg(Zn,Zr) precipitates, the vacancy agglomerates survive numerous cycles of hydrogen storage in spite of the high storage temperature of 350 °C, and can act as thermally stable heterogeneous nuclei for the hydrogenation. This latter mechanism was found in all SPD methods applied irrespective of the deformation extent, on the basis of Johnson–Mehl–Avrami-Kolmogorov analysis providing the Avrami exponent n = 1, already from the second up to the highest hydrogen storage cycles.
Object type
Language
English [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:2085486
Appeared in
Title
Journal of Materials Science
Volume
59
Issue
14
ISSN
0022-2461
Issued
2024
From page
5906
To page
5922
Publisher
Springer Science and Business Media LLC
Date issued
2024
Access rights
Rights statement
© The Author(s), 2024

Download

University of Vienna | Universitätsring 1 | 1010 Vienna | T +43-1-4277-0