Titel
Sensory epithelia of the fish inner ear in 3D: studied with high-resolution contrast enhanced microCT
Autor*in
Tanja Schulz-Mirbach
Department of Biology II, Zoology, Ludwig-Maximilians-University
Autor*in
Martin Heß
Department of Biology II, Zoology, Ludwig-Maximilians-University
Abstract
Introduction: While a number of studies have illustrated and analyzed 3D models of inner ears in higher vertebrates, inner ears in fishes have rarely been investigated in 3D, especially with regard to the sensory epithelia of the end organs, the maculae. It has been suggested that the 3D curvature of these maculae may also play an important role in hearing abilities in fishes. We therefore set out to develop a fast and reliable approach for detailed 3D visualization of whole inner ears as well as maculae. Results: High-resolution microCT imaging of black mollies Poecilia sp. (Poeciliidae, Teleostei) and Steatocranus tinanti (Cichlidae, Teleostei) stained with phosphotungstic acid (PTA) resulted in good tissue contrast, enabling us to perform a reliable 3D reconstruction of all three sensory maculae of the inner ears. Comparison with maculae that have been 3D reconstructed based on histological serial sections and phalloidin-stained maculae showed high congruence in overall shape of the maculae studied here. Conclusions: PTA staining and subsequent high-resolution contrast enhanced microCT imaging is a powerful method to obtain 3D models of fish inner ears and maculae in a fast and more reliable manner. Future studies investigating functional morphology, phylogenetic potential of inner ear features, or evolution of hearing and inner ear specialization in fishes may benefit from the use of 3D models of inner ears and maculae.
Stichwort
microCTInteractive 3D modelsFish inner earMaculaSensory epithelium
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
phaidra.univie.ac.at/o:502533
Erschienen in
Titel
Frontiers in Zoology
Band
10
Seitenanfang
63
Publication
Springer Nature
Erscheinungsdatum
2013
Zugänglichkeit

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0