Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences, Peking University
... show all
Abstract
Let (M, g) be a complete Riemannian 3-manifold asymptotic to Schwarzschild-anti-deSitter and with scalar curvature R≥−6. Building on work of A. Neves and G. Tian and of the first-named author, we show that the leaves of the canonical foliation of (M, g) are the unique solutions of the isoperimetric problem for their area. The assumption R≥−6 is necessary. This is the first characterization result for large isoperimetric regions in the asymptotically hyperbolic setting that does not assume exact rotational symmetry at infinity.