Titel
Defect-based local error estimators for high-order splitting methods involving three linear operators
Autor*in
Winfried Auzinger
Technische Universität Wien
... show all
Abstract
Prior work on high-order exponential operator splitting methods is extended to evolution equations defined by three linear operators. A posteriori local error estimators are constructed via a suitable integral representation of the local error involving the defect associated with the splitting solution and quadrature approximation via Hermite interpolation. In order to prove asymptotical correctness, a multiple integral representation involving iterated defects is deduced by repeated application of the variation-of-constant formula. The error analysis within the framework of abstract evolution equations provides the basis for concrete applications. Numerical examples for initial-boundary value problems of Schrödinger and of parabolic type confirm the asymptotical correctness of the proposed a posteriori error estimators.
Stichwort
Linear evolution equationsTime integration methodsHigh-order exponential operator splitting methodsLocal errorA posteriori local error estimators
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:423891
Erschienen in
Titel
Numerical Algorithms
Band
70
Ausgabe
1
Seitenanfang
61
Seitenende
91
Verlag
Springer
Verfügbarkeitsdatum
07.11.2015
Datum der Annahme zur Veröffentlichung
2014-11-06
Zugänglichkeit

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0