• Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case

  • We introduce a defect correction principle for exponential operator splitting methods applied to time-dependent linear Schrödinger equations and construct a posteriori local error estimators for the Lie–Trotter and Strang splitting methods. Under natural commutator bounds on the involved operators we prove asymptotical correctness of the local error estimators, and along the way recover the known a priori convergence bounds. Numerical examples illustrate the theoretical local and global error estimates.

  • PDF

  • http://phaidra.univie.ac.at/o:423898

  • Wissenschaftlicher Artikel

  • Angenommene Version

  • 04.2012

  • 236

  • 10

  • 2643-2659

  • Elsevier BV

  • Englisch

  • Frei zugänglich

  • 01.05.2014

  • 0377-0427