Titel
Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher-order methods for linear problems
Autor*in
Winfried Auzinger
Technische Universität Wien
Autor*in
Othmar Koch
Technische Universität Wien
Autor*in
Othmar Koch
Technische Universität Wien
... show all
Abstract
In this work, defect-based local error estimators for higher-order exponential operator splitting methods are constructed and analyzed in the context of time-dependent linear Schrödinger equations. The technically involved procedure is carried out in detail for a general three-stage third-order splitting method and then extended to the higher-order case. Asymptotical correctness of the a posteriori local error estimator is proven under natural commutator bounds for the involved operators, and along the way the known (non)stiff order conditions and a priori convergence bounds are recovered. The theoretical error estimates for higher-order splitting methods are confirmed by numerical examples for a test problem of Schrödinger type. Further numerical experiments for a test problem of parabolic type complement the investigations.
Stichwort
Linear evolution equationsTime-dependent linear Schrödinger equationsTime integrationHigher-order exponential operator splitting methodsDefect correctionA priori local error estimatesA posteriori local error estimates
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
phaidra.univie.ac.at/o:423906
Erschienen in
Titel
Journal of Computational and Applied Mathematics
Band
255
Seitenanfang
384
Seitenende
403
Publication
Elsevier BV
Verfügbarkeitsdatum
02.01.2016
Datum der Annahme zur Veröffentlichung
01.01.2014
Zugänglichkeit

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0