Titel
Molecular mode of action of NKP-1339 – a clinically investigated ruthenium-based drug – involves ER- and ROS-related effects in colon carcinoma cell lines
... show all
Abstract
Sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (NKP-1339) is a clinically investigated ruthenium-based metal complex, which shows promising results in solid tumors, such as non-small cell lung cancer, colorectal carcinoma, and most distinctively in gastrointestinal neuroendocrine tumors. In previous studies, fast binding to albumin as well as transferrin could be shown. The enhanced permeability and retention (EPR) effect, which is diversely being exploited for tumor targeting, could therefore be applicable for NKP-1339. Here we studied the serum dependence of its biological activity in various methods, influencing its cellular accumulation, cytotoxicity as well as the generation of reactive oxygen species (ROS). ROS lead to Nrf2 activation, which is known to activate antioxidant response gene transcription. GRP78 down-regulation on the protein level suggests ER associated protein degradation (ERAD) as a mode of action, as RNA levels are only mildly affected. Another important part for the mode of action is endoplasmic reticulum (ER) stress, as different factors are highly upregulated on the protein level. For example PERK, a transmembrane receptor which is released by GRP78 when the ER is disturbed, is upregulated and phosphorylated. EIF2α is phosphorylated, which leads to an inhibition of CAP-dependent translation and other stress responses. The transcription factor CHOP (DDIT3), which promotes ER stress dependent apoptosis, is time and concentration dependently upregulated. Finally cytotoxicity tests could prove that inhibition of ER stress and ER stress-mediated apoptosis leads to decreased cytotoxic effects of NKP-1339, which highlights the involvement of this mechanism in the mode of action.
Stichwort
RutheniumOxidative stressER stressUnfolded protein response
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:440125
Erschienen in
Titel
Investigational New Drugs
Band
34
Ausgabe
3
Seitenanfang
261
Seitenende
268
Verlag
Springer Science + Business Media
Erscheinungsdatum
2016
Zugänglichkeit

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0